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Abstract 
 

A data set can be clustered in many ways depending 
on the clustering algorithm employed, parameter settings 
used and other factors. Can multiple clusterings be 
combined so that the final partitioning of data provides 
better clustering? The answer depends on the quality of 
clusterings to be combined as well as the properties of the 
fusion method. First, we introduce a unified 
representation for multiple clusterings and formulate the 
corresponding categorical clustering problem. As a 
result, we show that the consensus function is related to 
the classical intra-class variance criterion using the 
generalized mutual information definition. Second, we 
show the efficacy of combining partitions generated by 
weak clustering algorithms that use data projections and 
random data splits. A simple explanatory model is offered 
for the behavior of combinations of such weak clustering 
components. We analyze the combination accuracy as a 
function of parameters controlling the power and 
resolution of component partitions as well as the learning 
dynamics vs. the number of clusterings involved. Finally, 
some empirical studies compare the effectiveness of 
several consensus functions. 
 

1. Introduction 
 

In contrast to supervised classification, clustering is an 
inherently ill-posed problem, whose solution violates at 
least one of the common assumptions about scale-
invariance, richness, and cluster consistency [1]. 
Exploratory nature of the problem forces us to seek 
generic and robust clustering algorithms when explicit 
model-based approaches prove to be ineffective. 

One of the methods used to increase the robustness of 
the clustering solution is to combine outputs of several 
clustering algorithms. Combination of clusterings using 
multiple sources of data or features is important in 
distributed data mining. Several recent studies on 
clustering combination [2,3,4] have pioneered a new area 
in the conventional taxonomy of clustering algorithms 
[5,6]. The problem of clustering fusion can be defined 
generally as follows: given multiple clusterings of the data 
set, find a combined clustering with better quality. We 
offer a representation of multiple clusterings as a set of 

new attributes characterizing the data items. Such a view 
directly leads to a formulation of the combination problem 
as a categorical clustering problem in the space of these 
attributes, or, in other terms, a median partition problem. 
We show how median partition is related to the classical 
intra-class variance criterion when generalized mutual 
information is used as the evaluation function. 

While the problem of clustering combination bears 
some traits of a classical clustering, it also has three major 
issues which are specific to combination design: 

1. Consensus function: How to combine different 
clusterings? How to resolve the label correspondence 
problem? How to ensure symmetrical and unbiased 
consensus with respect to all the component partitions? 

2. Diversity of clustering: How to generate different 
partitions? What is the source of diversity in the 
components? 

3. Strength of constituents/components: How “weak”  
could each input partition be? What is the minimal 
complexity of component clusterings to ensure a 
successful combination? 

Similar questions have already been addressed in the 
framework of multiple classifier systems [7]. However, it 
is not possible to mechanically apply the combination 
algorithms from classification (supervised) to clustering 
(unsupervised). Indeed, no labeled training data is 
available in clustering; therefore the ground truth 
feedback necessary for boosting the overall accuracy 
cannot be used. In addition, different clusterings may 
produce incompatible data labelings, resulting in 
intractable correspondence problems, especially when the 
numbers of clusters are different.  

From the supervised case we also learn that the proper 
combination of weak classifiers [8,9] may achieve 
arbitrarily low error rates on training data, as well as 
reduce the predictive error. One of the goals of our work 
is to adopt weak clustering algorithms and combine their 
outputs. Vaguely defined, a weak clustering algorithm 
produces a partition, which is only slightly better than a 
random one. We propose two different weak clustering 
algorithms as the components of the combination: 

1. Clustering of random 1-dimensional projections of 
multidimensional data. This can be generalized to 
clustering in any random subspace of the original data 
space.  



2. Clustering by splitting the data using a number of 
random hyperplanes. For example, if only one hyperplane 
is used then data is split into two groups. 

One can expect that using many simple, but 
computationally inexpensive components will be preferred 
to combining clusterings obtained by sophisticated, but 
computationally involved algorithms. 

The second goal of this paper is to compare the 
performance of different consensus functions. A 
consensus function maps multiple clusterings to a final 
partitioning of the data. We study a family of consensus 
functions based on categorical clustering including the co-
association based hierarchical methods [4], hypergraph 
algorithms [3] and a new simple centroid-based heuristic 
consensus function. Combination accuracy is analyzed as 
a function of the number and the resolution of the 
clustering components.  

Previous research on clustering ensembles has 
addressed both how the component clusterings are 
obtained as well as method by which they are combined. 
Consensus functions using co-association values were 
explored in [2,4] with multiple k-means partitions. 
Hypergraph algorithms for consensus were analyzed in 
[3]. Other related work can be found in [10,11,12,13] 
 

2. Problem of consensus clustering 
 

Let X be a set of N data points (objects) in d-
dimensional space. No assumptions are needed at the 
moment about the data input: it could be represented in a 
non-metric space or as an N� N dissimilarity matrix. 
Suppose we are given a set of H partitions 
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of clusters in the i-th partition. The problem of consensus 
clustering is to find a new partition �  ={ C1,…,CK}  of data 
X given the partitions in 

�
, such that the objects in a 

cluster of �  are more similar to each other than to objects 
in different clusters of � . This statement of the problem is 
virtually the same as for a conventional clustering except 
that it uses information contained in already existing 
partitions { � 1,…, � H} . Other variants of this definition 
could be obtained by putting some extra requirements on 
the target partition � , such as fixing the number of clusters 
in � , or allowing fuzzy membership values for data points. 
In general, one could use information from two available 
sources: the partitions in 

�
 and/or the original attributes 

of objects in X.  
It is convenient to characterize consensus clustering as 

clustering in a space of new features induced by the set 
�

. 
Indeed, each component partition � i represents a feature 
with categorical values. The values assumed by the i-th 
new feature are simply the cluster labels from partition � i. 

Therefore, membership of each object in different 
partitions is treated as a new feature vector, an H-tuple, 
given H different partitions in 

�
. Combined clustering 

becomes equivalent to a problem of clustering of H-tuples 
if we ignore the original d attributes. 

 

3. Consensus functions 
 

A consensus function maps a given set of partitions 
�

 
={ � 1,…,� H}  to a target partition � . A family of 
hierarchical clustering consensus functions immediately 
follows from the similarity between two objects x and y:  
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Similarity between a pair of objects simply counts the 
number of clusters shared by these objects in the partitions 
{ � 1,…, � H} .  This is the same as the co-association value 
introduced in [2]. One can use a co-association matrix for 
subsequent clustering by single-link algorithm [4] or any 
other type of agglomerative procedure to obtain a target 
consensus clustering � . 

Another candidate consensus function is based on the 
notion of median partition. A median partition �  is the 
best summary of existing partitions in 

�
. In contrast to the 

co-association approach, median partition is derived from 
estimates of similarities between attributes (i.e., partitions 
in 
�

), rather then from similarities between objects. A 
well-known example of this approach is implemented in 
the COBWEB algorithm in the context of conceptual 
clustering [14]. The category utility function U( � , � i) 
evaluates the quality of a candidate median partition �  
={ C1,…,CK}  against some other partition � i = { Li

1,…, 
Li

K(i)} , with labels Li
j for j-th cluster [15]: �� �
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with the following notations: p(Cr)= |Cr|/N, p(Li
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The function U( � , � i) assesses the agreement between 
two partitions as the difference between the expected 
number of labels of partition � i that can be correctly 
predicted both with the knowledge of clustering �  and 
without it. The overall utility of the partition �  with 
respect to all the partitions in 

�
 can be measured as the 

sum of pair-wise agreements: �
��� H
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Therefore, the best median partition should maximize the 
value of overall utility: 

),(maxarg  ! "" # Ubest
 (4) 



Mirkin [16] has proved that maximization of partition 
utility (3) is equivalent to minimization of the square-error 
clustering criterion if the number of clusters K in target 
partition �  is fixed. This is somewhat suprising in that the 
partition utility function (4) uses only the between-
attribute similarity measure (2), while the square-error 
criterion makes use of distances between objects and 
prototypes. Simple standardization of categorical labels in 
{ � 1,…,� H}  effectively transforms them to quantitative 
features [16]. This transformation replaces the i-th 
partition � i assuming K(i) values by K(i) binary features, 
and standardizes each binary feature to a zero mean. In 
other words, for each object x we can compute the values 
of the new features )(xyij , for j=1…K(i), i=1…H, as 

following: 
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Hence, the solution of median partition problem (4) can 
be approached by the k-means clustering algorithm 
operating in the space of features yij if the number of 
target clusters is predetermined. We use this heuristic as a 
part of empirical study of consensus functions. 

In information-theoretic framework, the quality of the 
consensus partition �  is determined by the amount of 
information, ),( ��I , it shares with the given partitions 

in 
�

. Strehl and Ghosh [3] suggest an objective function 
that is based on the classical mutual information: 
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Again, an optimal median partition can be found by 
solving this optimization problem. However, it is not clear 
how to use these equations to search for consensus.  

We show that another information-theoretic definition 
of entropy will reduce the mutual information criterion to 
the category utility function discussed before. We proceed 
from the generalized entropy of degree s for a discrete 
probability distribution P=(p1,…,pn) : 
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Shannon’s entropy is the limit form of (8) when s* 1. 
Generalized mutual information between �  and +  can be 
defined as:  

)|()(),( ,---, sss HHI ./  (9) 

Quadratic entropy (s=2) is of particular interest, since it is 
known to be closely related to classification error. When 
s=2, generalized mutual information Is( � , + i)  becomes: 
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Therefore, generalized mutual information gives the 
same consensus clustering criterion as category utility 
function (3). The gini-index measure for attribute 
selection used by Breiman et al. [17] also follows from (2) 
and (10). In light of Mirkin’s result, all these criteria are 
equivalent to within-cluster variance minimization, after 
simple label transformation.  

Other interesting consensus functions can be obtained 
as solutions to the hypergraph minimum cut problem. The 
details can be found in [3], where three different 
hypergraph algorithms were investigated. These 
algorithms are also used in our comparative empirical 
study. 

 
4. Combination of weak clusterings 
 

We now turn to the issue of generating different 
clusterings for the combination. Do we use the partitions 
produced by numerous existing clustering algorithms? We 
argue that it is possible to generate the partitions using 
weak, but less expensive, clustering algorithms and still 
achieve comparable or better performance. Certainly, the 
key motivation is that the synergy of many such 
components will compensate for their weaknesses. We 
consider two simple clustering algorithms: 

1. Clustering of the data projected to a random 
subspace of lower dimension. In the simplest case, 
the data is projected on 1-dimensional subspace, a 
random line. The k-means algorithm clusters the 
projected data and gives a partition for the 
combination. 

2. Random splitting of data by hyperplanes. For 
example, a single random hyperplane would create 
rather trivial clustering of d-dimensional data by 
cutting the hypervolume into two regions. 

 
4.1. Splitting by random hyperplanes 
 

Direct clustering by use of a random hyperplane 
illustrates how a reliable consensus emerges from low-
informative components. The random splits approach 
pushes the notion of weak clustering almost to an extreme. 
The data set is cut by random hyperplanes dissecting the 
original volume of d-dimensional space containing the 
points. Points separated by the hyperplanes are declared to 
be in different clusters. In this situation, a co-association 
consensus function is appropriate since the only 
information needed is whether the patterns are in the same 
cluster or not. Thus the contribution of a hyperplane 



partition to the co-association value for any pair of objects 
can be either 0 or 1. Finer resolutions of distance are 
possible by counting the number of hyperplanes 
separating the objects, but for simplicity we do not use it 
here. Consider a random line dissecting the classic 2-
spiral data shown in Fig. 1(a). While any single partition 
does little to reveal the true underlying clusters, analysis 
of the hyperplane generating mechanism shows how 
multiple partitions can discover the true clusters.  

Consider first the case of one-dimensional data. 
Splitting objects in 1-dimensional space is done by a 
random threshold in R1. In general, if r points are 
randomly selected, then (r+1) clusters are formed. It is 
easy to derive that in 1-dimensional space the probability 
of separating two points whose inter-point distance is x is 
exactly: 

rLxP )1(1)split( ��� , (11) 

where L is the length of the interval containing the objects, 
and r points are drawn at random from uniform 
distribution on this interval. Fig. 1(b) illustrates the 
dependence for L=1 and r =1,2,3,4. If a co-association 
matrix is used to combine H different partitions, then the 
expected value of co-association between two objects is 

))split(1( PH � , that follows from the binomial 

distribution of the number of splits in H attempts. 
Therefore, the co-association values found after 
combining many random split partitions are generally 
expected to be a non-linear and a monotonic function of 
respective distances. The situation is similar for 
multidimensional data, however, the generation of random 
hyperplanes is a bit more complex. To generate a random 
hyperplane in d dimensions, we should first draw a 
random point in the multidimensional region that will 
serve as a point of origin. Then we randomly choose a unit 
normal vector u that defines the hyperplane. The two 
objects characterized by vectors p and q will be in the 
same cluster if (up)(uq)>0 and will be separated otherwise 
(here ab denotes a scalar product). If r hyperplanes are 
generated, then the total probability that two objects 
remain in the same cluster is just the product of 
probabilities that each of hyperplanes does not split the 
objects. Thus we can expect that the law governing the co-
association values is close to what is obtained in one-
dimensional space in (11). 

Let us compare the actual dependence of co-
association values with the function in (11). Fig. 2 shows 
the results of experiments with 1000 different partitions 
by random splits of the Iris data set. The Iris data is 4-
dimensional and contains 150 points. There are 
(150� 149)/2 pair-wise distances between the data items. 
For all the possible pairs of points, each plot in fig. 2 
shows the number of times a pair was split. The observed 
dependence of the inter-point “distances”  derived from the 

co-association values vs. the true Euclidean distance, 
indeed, can be described by the function in (11).  

Clearly, the inter-point distances dictate the behavior 
of respective co-association values. The probability of a 
cut between any two given objects does not depend on the 
other objects in the data set. Therefore, we can conclude 
that any clustering algorithm that works well with the 
original inter-point distances is also expected to work well 
with co-association values obtained from a combination of 
multiple partitions by random splits. However, this result 
is more of theoretical value when true distances are 
available, since they can be used directly instead of co-
association values. It illustrates the main idea of the 
approach, namely that the synergy of multiple weak 
clusterings can be very effective.  
 
4.2. Combination in random subspaces 
 

The weak projections approach combines multiple 
views of sample data. Each projection is much weaker, 
contains less information, then the data in the original 
space. However, combined partitions of projections 
become at least as powerful as clustering using the 
original data representation and may help to reveal data 
structure unattainable by any single clustering algorithm. 
Subspaces are not necessarily obtained by taking some of 

Figure 1. (a) An example of splitting 2-spiral data set by a 
random line. Points on the same side of the line are in the same 
cluster. (b) Probability of splitting two objects for different 
number of random thresholds as a function of distance between 
objects. 
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the original features (dimensions) as a whole, but could be 
created by projections, even random ones. Random 
subspaces are an excellent source of clustering diversity 
that provides different views of the data.  

Each random subspace can be of very low dimension 
and it is by itself not very informative. On the other hand, 
clustering in 1-dimensional space is computationally 
cheap and can be effectively performed by k-means 
algorithm. The main subroutine of k-means algorithm – 
distance computation – becomes d times faster in 1-
dimensional space. The cost of projection is linear with 
respect to the sample size and number of dimensions 
O(Nd), and is less than the cost of one k-means iteration. 

The main idea of our approach is to generate multiple 
partitions by projecting the data on a random line. A fast 
and simple algorithm such as k-means clusters the 
projected data, and the resulting partition becomes a 
component in the combination. Afterwards, a chosen 
consensus function is applied to the components. We 
discuss and compare several consensus functions in the 
experimental section.  

It is instructive to consider a simple 2-dimensional 
data and one of its projections, as illustrated in Fig. 3(a). 
There are two natural clusters in the data. This data looks 
the same in any 1-dimensional projection, but the actual 
distribution of points is different in different clusters in 
the projected subspace. For example, Fig. 3(b) shows one 
possible histogram distribution of points in 1-dimensional 
projection of this data. There are three identifiable modes, 
each having a clear majority of points from one of the 

classes. One can expect that clustering by k-means 
algorithm will reliably separate at least a portion of the 
points from class 2. It is easy to imagine that projection of 
the data in Fig. 3(a) on another random line would result 
in different distribution of points and different label 
assignment, but for this particular data set it will always 
appear as a mixture of three bell-shaped components. 
Most probably, these modes will be identified as clusters 
by k-means algorithm. Thus each new 1-dimensional view 
correctly helps to group some data points. Accumulation 
of multiple views eventually should result in a correct 
combined clustering. 

The important parameter is the number of clusters in 
the component partition + i returned by k-means algorithm 
at each iteration, i.e. the value of k. If the value of k is too 
large then the partitions { + i}  will overfit the data set 
which in turn may cause unreliable co-association values. 
Small number of clusters in { + i}  may not be sufficient to 
capture the true structure of data set. In addition, if the 
number of clusterings in the combination is too small then 
the effective sample size for the estimates of distances 
from co-association values is also insufficient, resulting in 
a larger variance of the estimates. That is why the 
consensus functions based on the co-association values 
are more sensitive to the number of partitions in the 
combination (value of H) than consensus functions based 
on hypergraph algorithms. 
 

5. Experimental Results and Discussion 
 

Figure 2. Dependence of distances derived from the co-association values vs. the actual Euclidean distance x for each 
possible pair of objects in Iris data. Co-association matrices were computed for several number of hyper planes r =1,2,3,4. 
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The experiments were performed with several data 
sets, including three classic problems, the “2 spirals”  and 
“half-rings” , the Iris dataset from UCI benchmarks 
repository and large real-world dataset of galaxies and 
stars described in [18]. All consensus functions were 
provided with the true known number of clusters in the 
data. By providing this information, we can use the 
misassignment rate (error) of the consensus partition as a 
measure of performance of clustering combination. Thus 
the optimal solution of the correspondence problem 
between the labels of known and derived clusters is easily 
found using Hungarian method for minimal weight 
bipartite matching problem 

We study the consensus accuracy as a function of the 
resolution of partitions (value of k) as well as its 
dependence on the number of components for seven 
consensus functions: 
1. Consensus functions operated on the co-association 

matrix, but with three different hierarchical clustering 
algorithms for obtaining the final partition, namely 
single-linkage, average-linkage, and complete-linkage. 

2. Consensus function based on k-means clustering in the 
space of standardized features defined in (5), that is 
equivalent to maximization of partition utility criterion 
in (3). 

3. Three consensus functions based on hypergraph 
algorithms [3]. We used a set of programs 

‘ClusterEnsemble’  implemented by Strehl and 
available at http://www.strehl.com/.  

Three fundamental parameters affect the quality of the 
target consensus partition: H – the number of combined 
clusterings that directly influences the reliability and 
resolution of the co-association values; k – the number of 
clusters in the component clusterings { + 1,…,+ H}  produced 
by k-means algorithm on one-dimensional projections; r – 
the number of hyperplanes used for obtaining clusterings 
{ + 1,…, + H}  by random splitting algorithm. The value of k 
was varied in the interval [2,10], r in [2,5] and H in 
[5,1000]. Note that we report the average error rate for 20 
independent runs. We omit the detailed tables due to 
space limitations and refer the readers to complete 
experimental reports at http://www.cse.msu.edu/prip/. 
Some characteristics of the datasets are:  

 
Let us start by demonstrating how the combination of 

clusterings in projected 1-dimensional subspaces 
outperforms the combination of clusterings in the original 
multidimensional space. Fig. 4(a) shows the learning 
dynamics for Iris data and k=4, using average-link 
consensus function based on co-association values. Note 
that the number of clusters in each of the components 
{ + 1,…, + H}  is set to k=4, and is different from the true 
number of clusters (=3). Clearly, each individual 
clustering in full multidimensional space is much stronger 
than any 1-dim partition, and therefore with only a small 
number of partitions (H<50) the combination of weaker 
partitions is no yet effective. However, for larger numbers 
of combined partitions (H>50), 1-dimensional projections 
taken together better reveal the true structure of the data. 
It is quite unexpected, since the k-means algorithm with 
k=3 makes, on average, 19 mistakes in original 4-
dimensional space and 25 mistakes in 1-dimensional 
random subspace. Moreover, clustering in the projected 
subspace is d times faster than in multidimensional space. 
Although, the cost of computing a consensus partition �  is 
the same in both cases. 

The results regarding the impact of value of k are 
reported in Fig. 4(b), which shows that there is a critical 
value of k for the Iris data set. This occurs when the 
average-linkage of co-association distances is used as a 
consensus function. In this case the value k=2 is not 
sufficient to separate the true clusters.  

Figure 3. (a) A sample data with two identifiable natural 
clusters and a line randomly selected for projection. (b) 
Histogram of the distribution of points that resulted from 
data projection onto a random line.  

Number of Number of Number of Total number 
features classes points/class  of patterns

Iris 4 3 50-50-50 150
Galaxy 14 2 2082-2110 4192
2-spirals 2 2 100-100 200

Half-rings 2 2 100-300 400
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The role of the consensus function is illustrated in 
Fig.5. Three consensus functions are compared on the Iris 
data set. They all use similarities from the co-association 
matrix but cluster the objects using three different 
criterion functions, namely, single link, average link and 
complete link. It is clear that the combination using 
single-link performs significantly worse than the other two 
consensus functions. This is expected since the three 
classes in Iris data have hyperellipsoidal shape. 

More results were obtained on two data sets, which are 
traditionally difficult for any partitional centroid-based 
algorithm: “half-rings”  data set and “2 spirals”  data in Fig. 
1(a). The single-link consensus function performed the 
best and was able to identify both the ‘half-rings’  clusters 
as well as spirals. In contrast to the results for Iris data, 
average-link and complete-link consensus were not 
suitable for these data sets. In general, one can expect that 
average-link (single-link) consensus will be appropriate if 
standard average-link (single-link) agglomerative 
clustering works well for the data and vice versa. 
Moreover, none of the three hypergraph consensus 
functions could find a correct combined partition. This is 
somewhat surprising given that the hypergraph algorithms 
performed well on the Iris data. However, the Iris data is 
far less problematic because one of the clusters is linearly 
separable, and the other classes are well described as a 

mixture of two multivariate normal distributions. Perfect 
separation of natural clusters was achieved with a large 
number of partitions in clustering combination (H > 200) 
and for values of k > 3 for “half-rings”  and “2 spirals” . It 
indicates that for each problem there is a critical value of 
resolution of component partitions that guarantees good 
clustering combination. This further supports the work of 
Fred and Jain [4] who showed that a random number of 
clusters in each partition ensures a greater diversity of 
components. We see that the minimal required value of 
resolution for the Iris data is k=3, for “half-rings”  it is k=2 
and for “2 spirals”  it is k=4. In general, the value of k 
should be larger than the true number of clusters. 

The number of partitions affects the relative 
performance of the consensus functions. With large values 
of H (>100), co-association consensus becomes stronger, 
while with small values of H it is preferable to use 
hypergraph algorithms or k-means median partition 
algorithm.  

It is interesting to compare the combined clustering 
accuracy with the accuracy of some of the classical 
clustering algorithms. For example, for Iris data the EM 
algorithm has the best average error rate of 6.17%. In our 
experiments, the best performers for Iris data were the 
hypergraph methods, with an error as low as 3%, with H > 
200 and k > 5. For the “half-rings”  data, the best standard 
result is 5.25% error by the average-link algorithm, while 
the combined clustering using the single-link co-
association algorithm achieved a 0% error with H > 200. 
Also, for the “2 spirals”  data the clustering combination 
achieves 0% error, the same as by regular single-link 
clustering. Hence, with an appropriate choice of 
consensus function, clustering combination outperforms 
many standard algorithms. However, the choice of good 
consensus function is similar to the problem of choice of 
proper conventional clustering algorithm. Perhaps the 
good alternative to guessing the right consensus function, 
is simply to run all the available consensus functions and 
then pick the final consensus partition according to the 
partition utility criteria in (4) or (6).  
 

Figure 4. Performance of random subspaces algorithm on Iris 
data. (a) Number of errors by the combination of k-means 
partitions (k=4) in multidimensional space and projected 1-d 
subspaces. Average-link consensus function was used. (b) Error
of projection algorithm as a function of the number of 
components and the number of clusters k in each component. 
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Figure 5. Dependence of performance of the projection 
algorithm on the type of consensus function for Iris data set. 
k=3.  
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Table 1. Summary of the best results 

 

Quadratic computational complexity effectively 
prohibits co-association based consensus functions from 
being used on large data sets, since O(N2) factor arises 
when co-association matrix is built for all the N objects. 
Even though computation of component partitions is d 
times faster due to projecting, the overall computational 
effort can be dominated by the complexity of computing 
the consensus partition. Therefore for large datasets it is 
problematic to use three hierarchical agglomerative 
methods as well as the CSPA hypergraph algorithm [3]. 
The k-means algorithm for median partition is most 
attractive in terms of speed with the complexity O(kNH). 
For “galaxy”  data we limited the number of components 
in combination to H=20 because of large data size. The 
results show that k-means algorithm for median partition 
has the best performance. On “galaxy”  data HGPA did not 
work well due to its bias toward balanced cluster sizes, as 
it also happened in the case of the ”half-rings”  data set. 
Again the accuracy improved when the number of 
partitions and the number of clusters increases. 

The same set of experiments was also performed with 
clustering combination via splits by random hyperplanes. 
The results in many details are close to what has been 
obtained by using random subspaces, with a slightly worse 
performance.  

 

6. Conclusion 
 

This study extended previous research on clustering 
ensembles in several respects. First, we have introduced a 
unified representation for multiple clusterings and 
formulated the corresponding categorical clustering 
problem. It is shown that the consensus function is related 
to classical intra-class variance criterion using the 
generalized mutual information definition. Second, we 
have considered combining weak clustering algorithms 
that use data projections and random data splits. A simple 
explanatory model is offered for the behavior of 
combination of such weak components. We have analyzed 
combination accuracy as a function of parameters, which 
control the power and resolution of component partitions. 
Empirical study compared effectiveness of several 
consensus functions. 
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Best consensus Lowest error Prefered values
Dataset  function(s) obtained of parameters

Galaxy Median partition k -means < 13% H  > 10, k  > 3
Iris Hypergraph methods < 3% H  >100, k  > 4

2 spirals Co-association SL 0% H  >200, k  > 3
Half-rings Co-association SL 0% H  >200, k  > 4


