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Abstract

This paper proposes a method for efficient nearest neigh-
bor classification in non-Euclidean spaces with computa-
tionally expensive similarity/distance measures. Efficient
approximations of such measures are obtained using the
BoostMap algorithm, which produces embeddings into a
real vector space. A modification to the BoostMap algo-
rithm is proposed, which uses an optimization cost that is
more appropriate when our goal is classification accuracy
as opposed to nearest neighbor retrieval accuracy. Us-
ing the modified algorithm, multiple approximate nearest
neighbor classifiers are obtained, that provide a wide range
of trade-offs between accuracy and efficiency. The approxi-
mations are automatically combined to form a cascade clas-
sifier, which applies the slower and more accurate approx-
imations only to the hardest cases. The proposed method
is experimentally evaluated in the domain of handwritten
digit recognition using shape context matching. Results on
the MNIST database indicate that a speed-up of two to three
orders of magnitude is gained over brute force search, with
minimal losses in classification accuracy.

1. Introduction
Nearest neighbor classifiers are appealing because of their
simplicity and their ability to model a wide range of com-
plex, non-parametric distributions. However, finding the
nearest neighbors of an object in a large database can take
too long, especially in domains that employ computation-
ally expensive distance measures.

This problem is illustrated in [3], where a computation-
ally expensive image similarity measure, called shape con-
text matching, is used for optical character recognition. A
three-nearest-neighborclassifier using shape context match-
ing and 20,000 training objects yields an error rate of only

This work was supported by NSF grants IIS-0308213, IIS-0329009,
and EIA-0202067, and by ONR grant N00014-03-1-0108.

0.63% on the MNIST database of handwritten digits. Un-
fortunately, recognizing a single test image takes over 20
minutes on a state-of-the-art PC, because it involves per-
forming shape context matching between the test image and
all 20,000 training objects.

The complexity of nearest neighbor classification us-
ing shape context matching is an instance of a more gen-
eral problem, i.e., the problem of finding nearest neigh-
bors in non-Euclidean spaces with computationally expen-
sive distance measures. In this paper, we propose a gen-
eral method that can be applied to arbitrary non-Euclidean
similarity measures, including shape context matching, Dy-
namic Time Warping [5], or the chamfer distance [2].

The key idea underlying the proposed method is that
nearest neighbor classification is not the same problem as
nearest neighbor retrieval. In nearest neighbor retrieval we
want to identify the nearest neighbors of test objects in the
database. In nearest neighbor classification, the goal is to
produce the right class label for every test object. Our
method improves efficiency by sacrificing nearest neighbor
retrieval accuracy in such a way that classification accuracy
is minimally affected.

The first contribution of this paper is a modified version
of the BoostMap embedding algorithm [1]. The modifica-
tion consists of using an embedding optimization cost that
is more appropriate for classification accuracy, as opposed
to nearest neighbor retrieval accuracy. The second contri-
bution is a method for building a cascade of approximate
nearest neighbor classifiers. Using BoostMap embeddings
and the filter-and-refine framework [12], we construct a se-
quence of approximations of the original nearest neighbor
classifier. The first approximation in that sequence is rela-
tively fast, but also has a relatively high error rate. Each suc-
cessive approximation in the sequence is slower and more
accurate than the previous one. These approximations are
combined in a cascade structure, whereby easy cases are
classified by earlier classifiers, and harder cases are passed
on to the slower but more accurate classifiers.
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Figure 1: Some examples from the MNIST database of images of
handwritten digits.

In our experiments with handwritten digit recognition
using the MNIST database [15], we obtain speed-ups of two
to three orders of magnitude compared to exact shape con-
text matching, with minimal loss in classification accuracy
(about 0.1% or less). Our method also yields significant
speed-ups compared to using BoostMap, a state-of-the-art
method for approximating a similarity measure.

2. Related Work
Typically, the problem of efficient nearest neighbor classifi-
cation is addressed by using indexing methods, that can find
the nearest neighbor or neighbors of the test object (also
called query object) without having to exhaustively com-
pare the test object with every single training object. Sev-
eral hashing and tree structures [4, 11, 23, 24] have been
proposed for indexing. However, the performance of such
methods degrades in high dimensions. Locality sensitive
hashing (LSH) [14] is a method for approximate nearest
neighbor retrieval that scales better with the number of di-
mensions, but LSH is only applicable for specific metrics,
and cannot be applied to arbitrary distance measures.

In domains where the distance measure is computa-
tionally expensive, embedding methods can been used for
speeding up nearest neighbor retrieval. Such methods in-
clude Lipschitz embeddings [12], FastMap [7], MetricMap
[22], SparseMap [13], and BoostMap [1]. Embedding
methods define functions that map every object into a vector
of real numbers. Given a query object, instead of computing
its exact distance to each training object, we simply map the
query to a vector and compare that vector with the vectors
corresponding to the training objects. Typically vectors are
compared using a Euclidean (L2) or Lp distance metric, that
can be several orders of magnitude faster to evaluate com-
pared to the exact distance measure in the original space.

The goal of existing embedding methods is efficient and
accurate nearest neighbor retrieval. The main difference of
our method is that it aims at efficient and accurate clas-
sification. Our method builds on top of existing embed-

ding methods, and shows how to improve classification ef-
ficiency by constructing a cascade of approximate nearest
neighbor classifiers.

The efficiency of nearest neighbor classifiers can also
be improved using condensing methods [6, 8, 10]. Those
methods try to identify and remove training objects whose
removal does not negatively affect classification accuracy.
In the experiments we compare our method to the condens-
ing method described in [10].

Shape context matching [3] is a computationally expen-
sive non-Euclidean similarity measure. It is based on the
shape context feature, a rich local feature that describes the
distribution of points around a given location. Shape con-
text has been successfully applied in various recognition do-
mains, like trademark recognition [3], hand shape detection
and classification [19] and body pose estimation [9, 18].

Methods that improve the efficiency of shape context
matching can be useful in a wide range of domains. In
[17], efficient retrieval is attained by pruning based on com-
parisons of a small subset of shape context features, and
also using vector quantization on the space of those fea-
tures. In [9] shape context features are matched based on
the Earth Mover’s Distance (EMD). The EMD is efficiently
approximated using an embedding, and then Locality Sen-
sitive Hashing is applied on top of the embedding. In [25]
a discriminative classifier is learned based on correspon-
dences of shape context features between the test object and
a small number of prototypes per class. In experiments on
the MNIST database, [25] reports an error rate of 2.55% by
comparing the test object to only 50 prototypes. In compar-
ison, the original brute force method in [3] is much slower
(20,000 distance computations per test object), but achieves
a significantly lower error rate(0.63%).

Our algorithm constructs a cascade of nearest neighbor
classifiers. Cascades of classifiers have been very popular
in recent years [16, 19, 21]. However, typically cascades
are applied to a binary “detection” problem, where the goal
is to determine whether a given image window contains an
instance of some class. Our method produces a cascade of
classifiers for a multi-class problem, using approximations
of the original nearest neighbor classifier as building blocks.

3. Tuning BoostMap for Classification
Accuracy

BoostMap [1] is a method for constructing embeddings that
are optimized for preserving the similarity structure of the
original space. In this section we introduce a modified ver-
sion of the algorithm, that is more appropriate when our
goal is nearest neighbor classification accuracy. We will
first give a very basic description of BoostMap (the reader
is referred to [1] for the details). Then we will motivate and
describe our modification to the algorithm.
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3.1. Embeddings and BoostMap
We use X to denote a set of objects, and DX(x1, x2) to de-
note a distance measure between objects x1, x2 ∈ X . In
our example application, X is a set of images of handwrit-
ten digits (Fig. 1), and DX is shape context matching as
defined in [3]. However, any X and DX can be plugged in
the formulations described in this paper.

An embedding F : X → R
d is a function that maps

any object x ∈ X into a d-dimensional vector F (x) ∈ R
d.

Distances in R
d are measured using some Lp metric, most

commonly the Euclidean (L2) or Manhattan (L1) metric.
It is assumed that measuring a single Lp distance between
two vectors is significantly faster than measuring a single
distance DX between two objects of X . This assumption
is obeyed in our example application: on our PC, over a
million L1 distances between high-dimensional vectors in
R

100 can be measured in one second, whereas only 15 shape
context distances can be evaluated per second.

In BoostMap [1], the building blocks used to construct
an embedding F are simple, one-dimensional (1D) embed-
dings. Any object r ∈ X can be used to define a one-
dimensional embedding F r : X → R, as follows:

F r(x) = DX(x, r) . (1)

In plain terms, F r maps each object of X to a single real
number. Furthermore, if x1 is very similar to x2 under
DX , then in many domains we can expect (and in metric
spaces we can guarantee) that the distances DX(x1, r) and
DX(x2, r) will be similar, meaning that F r will map x1 and
x2 to nearby points on the real line [1].

Each 1D embedding F r acts as a classifier for the fol-
lowing binary classification problem: given three objects
q, a, b ∈ X , is q closer to a or to b? F r provides an answer
by simply checking if F r(q) is closer to F r(a) or to F r(b).
Since F r is a simple, 1D embedding, it is expected to act
as a weak classifier [1, 20], i.e., it will probably have a high
error rate, but still it is expected to be more accurate than a
random guess, which would have an error rate of 50%.

The BoostMap algorithm uses a training set S of triples
(q, a, b), picked randomly from the available training ob-
jects. The algorithm constructs, using AdaBoost [20], an
embedding F : X → R

d optimized for classification accu-
racy on triples of objects. In BoostMap, distances in R

d are
measured using a weighted L1 metric.

3.2. The Modified BoostMap Algorithm
The original BoostMap algorithm aims at preserving sim-
ilarity rankings, and minimizes the fraction of triples
(q, a, b) where q is closer to a than to b, but F (q) is closer to
F (b) than to F (a). If our end goal is classification accuracy,
then for some triples of objects the minimization criterion of
BoostMap is either irrelevant or problematic. For example,

suppose that q is an image of the digit “2”, and a and b are
images, respectively, of digits “0” and “1”. In that case,
for the purposes of classification, it is irrelevant whether the
embedding maps q closer to a or to b.

A more interesting example is the following: suppose q
and b are both images of the digit “2”, and a is an image
of the digit “0”. Furthermore, suppose that, a is the nearest
neighbor of q among training objects according to shape
context matching. In that case, we would actually prefer an
embedding that maps q closer to b than to a, although the
original BoostMap algorithm would penalize for that.

To address these problems, we propose the following
guidelines for selecting training triples and measuring the
optimization cost:

• Useful training triples are triples (q, a, b) such that a is
one of the nearest neighbors of q among objects of the
same class as q, and b is one of the nearest neighbors
of q among objects of some other class.

• The optimization cost that should be minimized is the
number of training triples (q, a, b) such that the output
embedding F maps q closer to b than to a, regardless
of whether q is actually closer to b than to a in terms
of distance measure DX . Since a is of the same class
as q, we want q to be mapped closer to a than to b.

In our example application, we apply these guidelines
as follows: we choose a subset X ′ of 5,000 training objects,
and for every object q ∈ X ′, we form 20 triples (q, a, b) (for
a total of 100,000 training triples), such that a is the nearest
neighbor of q among all objects in X ′ of the same class as q,
and b is one of the five nearest neighbors of q among objects
in X ′ that belong to some class different than that of q. In
other words, in order to choose b given q, we perform the
following three steps:

1. Choose (randomly) a class C different than that of q.

2. Find the five nearest neighbors of q among objects of
class C in X ′.

3. Set b randomly to one of those five objects.

Instead of finding the five nearest neighbors, we experi-
mented with different values, ranging from two to 20, with-
out observing much difference in the results.

Overall, our implementation of the BoostMap algorithm
is exactly as described in [1], except for the way we choose
training triples, the optimization cost that we use, and the
fact that we use only 1D embeddings of the type defined in
Eq. 1.

4. Cascading Approximate Classifiers
Suppose that we have used some embedding method, like
BoostMap, and we have obtained an embedding F . In
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this section we will use the filter-and-refine retrieval frame-
work [12] to define, based on F , multiple approximations of
the nearest neighbor classifier corresponding to the distance
measure DX . These approximations cover a wide range
of tradeoffs between accuracy and efficiency. We will also
show how to automatically combine such approximations
into a cascade classifier, that can approximate the accuracy
of the slowest approximation, while being much more effi-
cient than the slowest approximation.

4.1. Filter-and-refine Classification
We can use embedding F for nearest neighbor classification
in a filter-and-refine framework [12]. In particular, given
parameters p and k, and given a query object q, we perform
the following steps:

• Embedding step: compute the embedding F (q) of the
query. If F is a d-dimensional embedding obtained
with BoostMap, then F (q) = (F r1(q), . . . , F rd(q)),
where each F ri is defined using some object ri ∈ X ,
according to Eq. 1. Computing F (q) consists of com-
puting d distances DX between q and objects ri.

• Filter step: compute the L1 distances between F (q)
and the embeddings of all training objects. Rank all
database objects in order of decreasing similarity to the
query, based on these distances. Mark the p highest-
ranked objects. Typically this step is very fast, because
it only involves measuring L1 distances.

• Refine step: rerank the p objects marked by the filter
step, by evaluating the DX distances between q and
each of those p objects.

Given the final ranking produced by the filter and re-
fine steps, we can then classify q based on majority voting
among its k nearest neighbors. Note that we can have p = 0.
In that case no refine step is performed, we simply use the
ranking produced by the filter step.

The performance of filter-and-refine classification is
measured in terms of accuracy and efficiency. In many do-
mains, the running time is dominated by the number of ex-
act distances measured at the embedding step and the refine
step. In our example application, the filter step, i.e., com-
paring the query to the entire database using the L1 metric,
takes less time than evaluating the shape context matching
distance DX between a single pair of objects. Overall, in-
creasing embedding dimensionality and the parameter p for
the filter step tends to improve accuracy, but at the cost of
computing more DX distances per query object.

4.2. Constructing a Cascade
Let F be the embedding obtained using BoostMap (or some
other embedding method), and let d ′ be the dimensionality

of F . For any d ∈ {1, . . . , d′}, we define embedding Fd to
be the embedding consisting of the first d dimensions of F .
Given positive integers d ≤ d′ and p we define filter-and-
refine process Fd,p to be the the filter-and-refine process that
uses Fd as the embedding, and p as the parameter for the
filter step. Naturally, given a query object q, as d and p in-
crease, the approximate similarity ranking obtained using
process Fd,p will get closer to the correct ranking. For ex-
ample, if p is equal to the number of training objects, then
process Fd,p becomes equivalent to brute force search: at
the refine step we simply compare the query object with ev-
ery training object. On the other hand, small d and p allow
the filter-and-refine process Fd,p to give results very fast.

With appropriate choices of di and pi we can construct
a sequence P = (P1, ..., Ps) of s filter-and-refine processes
Pi = Fdi,pi , such that each successive process Pi is less ef-
ficient and more accurate than the preceding process P i−1.
Table 1, in the experiments, provides an example of such
a sequence P. We want to use these processes to construct
a cascade classifier, that can approach the accuracy of the
slowest and most accurate process, while being significantly
more efficient than the slowest process.

In order to construct such a cascade, we need to answer
the following question: how can we identify, for each pro-
cess Pi, the test objects for which Pi provides sufficient in-
formation for classification? In other words, given the sim-
ilarity ranking that Pi produces for test object q, how can
we tell whether we can reliably classify q using that rank-
ing, or whether we need to pass on q to Pi+1, i.e., the next
filter-and-refine process?

We will answer this question by defining a quantity
K(q, Pi) which will be a measure of confidence in the clas-
sification result for object q obtained using process P i. We
define K(q, Pi) as follows: K(q, Pi) is the highest integer
k such that all the k nearest neighbors of q retrieved using
process Pi belong to a single class. For example, suppose
that, according to Pi, the 50 nearest neighbors of test object
q belong to class “1”, and the 51st neighbor belongs to class
“2”. Then, K(q, Pi) = 50.

We use quantity K(q, Pi) to define a criterion for when
Pi should be used to classify q, as follows: Given a thresh-
old ti, if K(q, Pi) ≥ ti then we assign to q the class label
of the ti nearest neighbors found using Pi. Otherwise, we
pass on q to Pi+1, i.e., the next filter-and-refine process in
the sequence P.

The intuition behind this criterion is that if, for some test
object, process Pi reports that that test object is surrounded
by a large number of training objects of a single class, then
we can confidently assign that class to the test object, with-
out needing to spend any additional computation. Note that
we are not concerned about actually finding the true near-
est neighbor of the test object: we stop as soon as we have
sufficient information about the class label of the test object.
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input : P: sequence of filter-and-refine processes
P1, · · · , Ps.
s: number of filter-and-refine processes in se-
quence P.
Xtrain: set of training objects.
Xvalidation: set of validation objects.
B: set of validation objects that are misclassi-
fied by process Ps.
e: a parameter specifying how many objects
should be misclassified, at most, at each step
in the cascade.

output : t1, · · · , ts−1: The thresholds ti to be used with
each process Pi.

Xvalidation = Xvalidation − B
for i = 1 : (s − 1) do

for q ∈ Xvalidation do
Kq = K(q, Pi)
Nq = nearest neighbor of q in Xtrain according
to Pi

Yq = class label of q
Cq = class label of Nq

end
ti = size(Xtrain) + 1
for t = 1 : size(Xtrain) do

X1 = {q ∈ Xvalidation|Kq ≥ t}
X2 = {q ∈ X1|Yq �= Cq}
if size(X2) ≤ e then

ti = t
break;

end
end
Xvalidation = {q ∈ Xvalidation|Kq < ti }

end

Algorithm 1: The algorithm for choosing thresholds for a cas-
cade of filter-and-refine processes.

Naturally, in order to achieve good results, given a se-
quence P we need to choose good values for thresholds t i.
We choose those values using a validation set, sampled from
the set of training objects. Let e ≥ 0 be an integer param-
eter that specifies how many objects from the validation set
we are allowed to misclassify by each Pi. Then, for the
first process P1 we can simply set t1 to the smallest thresh-
old t satisfying the following property: if we use process
P1 to classify (using 1-nearest neighbor accuracy) all vali-
dation objects q satisfying the criterion K(q, P1) ≥ t, we
misclassify at most e validation objects. For example, if
e = 2, we can try all thresholds until we find the smallest
threshold t such that, if we find all validation objects with
K(q, P1) ≥ t and we label those objects with the label of
the t nearest neighbors retrieved using P1, we misclassify

Process Dimensions (d) p Threshold
P1 10 0 50
P2 20 0 56
P3 40 0 51
P4 60 0 51
P5 80 0 50
P6 100 0 41
P7 100 20 41
P8 100 40 41
P9 100 60 17
P10 100 80 20
P11 100 100 20
P12 100 150 24
P13 100 200 11
P14 100 250 4
P15 100 300 5
P16 100 700 NA

Table 1: The sequence P = P1, . . . , P16 of filter-and-refine pro-
cesses that was passed as input to Algorithm 1. We used this se-
quence both with BoostMap embeddings and with BoostMap-C
embeddings. The dimensions column specifies the dimensionality
of the embedding, and p is the parameter specifying the number of
distances to measure in the refine step. We also show the threshold
chosen by the cascade learning algorithm, using embeddings from
BoostMap-C and setting e = 0. Naturally, no threshold is needed
for the final step in the cascade.

no more than two objects.

After we have determined the right threshold for pro-
cess P1, we proceed to select an appropriate threshold for
P2, using the same parameter e, and using only the vali-
dation objects q that P1 does not classify (i.e., for which
K(q, P1) < t1). Proceeding this way recursively we can
choose all thresholds ti. Naturally, the last process Ps in
the sequence does not need a threshold, because Ps is the
last step in the cascade, and therefore it needs to classify all
objects that are passed on to it.

A slight problem with the above procedure for determin-
ing thresholds is that there may be some validation objects q
that even the final process Ps will misclassify, and for which
K(q, Pi) is very high for all processes Pi. In our experi-
ments, such objects were identified in practice. These ob-
jects are essentially outliers that look very similar to a large
number of objects from another class. These objects are
likely to influence the threshold choice ti for every Pi, so
that ti is large enough to avoid misclassifying those objects,
even though they will end up being misclassified anyway
at the final step Ps. We use a simple method to avoid this
problem: before choosing thresholds, we identify all vali-
dation objects that Ps misclassifies. We then remove those
objects from the validation set, and proceed with threshold
selection.

The exact algorithm for picking thresholds for each step
in a cascade is described in Algorithm 1.
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5. Experiments
We applied our method to define a cascade of approximate
similarity measures, using shape context matching as the
original distance measure DX . We evaluated our method
on the publicly available MNIST database [15] of hand-
written digits. MNIST consists of 60,000 images that are
used as training objects, and 10,000 images that are used
as test objects. Fig. 1 shows some of those images. The
exact shape context matching error rates, obtained by com-
paring the test object to all training objects, as described in
[3], were 0.63% for 20,000 training objects and 0.54% for
60,000 training objects, with classification time per object
equal to about 22 minutes and 66 minutes respectively.

We used the original BoostMap algorithm [1] and
BoostMap-C, i.e., the modified algorithm proposed in this
paper, to learn a 100-dimensional embedding F . Filter-
and-refine classification with p = 700 gave error rates
of 0.74% for BoostMap, and 0.72% for BoostMap-C, for
20,000 training objects. For 60,000 training objects, both
methods had an error rate of 0.58%. These error rates were
obtained at the cost of computing 800 exact distances per
test object, i.e., spending about 53 seconds to classify each
test object. In Fig. 2 we plot error rate vs. number of exact
distance evaluations per test object, using 60,000 training
objects. We see that BoostMap-C attains its peak accuracy
at around 300 exact distance computations per object, but it
takes BoostMap about 800 exact distance computations per
object to reach the same accuracy.

We applied Algorithm 1 to construct a cascade of clas-
sifiers, using different values of e, ranging from 0 to 4.
The training and validation sets passed to the algorithm
were disjoint sets of 20,000 and 10,000 objects respectively,
randomly picked from the original MNIST training set of
60,000 objects. The sequence P of filter-and-refine pro-
cesses that was passed as an input to Algorithm 1 is shown
in Table 1. We constructed the sequence by hand, i.e., we
manually picked d and p for each process. The thresholds
were learned automatically by the algorithm. We did not
experiment with any other sequence of processes, so we
have no reason to believe that the sequence we manually
constructed is particularly good or bad with respect to other
possible sequences. Our guideline in constructing the se-
quence was simply to provide an adequate number of steps,
ranging from really fast and inaccurate to really slow and
accurate, with the constraint that each cascade step could
reuse the work done at the previous steps.

For 20,000 objects, and passing e = 0 to Algorithm 1,
using BoostMap we obtained an error rate of 0.75%, at an
average cost of measuring about 149.0 distances per test
object, which translates to average classification time of
9.9 seconds per test object. Using the modified algorithm
BoostMap-C, the resulting cascade yielded an error rate of
0.74%, at an average cost of measuring 92.5 distances per
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Figure 2: Error rates attained using BoostMap and BoostMap-C,
without a cascade, vs. number of exact DX evaluations per test
object. We note that, for each number of DX evaluations per ob-
ject, BoostMap-C gives either as good or somewhat better results,
compared to BoostMap. 60,000 training objects were used.

test object, which translates to average classification time of
6.2 seconds per test object. Overall, using a cascade speeds
up average recognition time significantly, compared to us-
ing BoostMap or BoostMap-C without a cascade, and by
over two orders of magnitude over brute force search, at the
cost of about 0.1% increase in the error rate. We also see
that the BoostMap-C cascade gives faster average classifi-
cation time for essentially the same accuracy obtained with
the BoostMap cascade.

Finally, we evaluated the same cascades using as a train-
ing set all 60,000 training objects of the MNIST database.
For each cascade, the thresholds were set to the same values
that were employed in the experiments with 20,000 training
objects. The results, for parameter e ranging from 0 to 4,
are shown in Fig. 3. For e = 0 and using BoostMap we
got an error rate of 0.66% at an average cost of 123 ex-
act distance computations per test object. For e = 0 and
using BoostMap-C we got an error rate of 0.61% at an aver-
age cost of only 77.3 distance computations per test object.
This is a speed-up of almost three orders of magnitude over
brute-force search, which achieves an error rate of 0.54%.
As seen in Fig. 3, cascades using BoostMap-C achieve bet-
ter tradeoffs of accuracy versus efficiency compared to cas-
cades using BoostMap.

Note that increasing the training size from 20,000 to
60,000 objects improved both the accuracy and the effi-
ciency of the cascade classifier. This result may seem
surprising at first glance, and is in stark contrast to tradi-
tional nearest-neighbor methods, where recognition time in-
creases as training set size increases. By taking a closer look
at the results, we found that, as training size increased, and
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Figure 3: Error rates attained by cascade classifiers vs. aver-
age number of exact DX evaluations per test object. Cascade and
Cascade-C correspond to the five cascades that were learned, using
embeddings constructed with BoostMap and BoostMap-C respec-
tively. For each of these two embedding methods, we obtained five
cascades by running Algorithm 1 with parameter e set respectively
to e = 0, 1, 2, 3, 4. 60,000 training objects were used.

the processes Pi and thresholds ti remained fixed, the quan-
tity K(q, Pi) tended to increase, meaning that more objects
were classified at earlier steps in the cascade.

In [25] a discriminative classifier is trained using shape
context features, and achieves an error rate of 2.55% on
the MNIST dataset while measuring only distances DX be-
tween the test object and 50 prototypes. That method is not
a nearest-neighbor method, so after learning the classifier
only the 50 prototypes are needed, and the rest of the train-
ing set is discarded. Overall, the cost of classifying a test
object using the method in [25] is the cost of evaluating 50
DX distances. Using BoostMap-C and the full training set
of 60,000 objects, with parameter e = 1 we obtain a cas-
cade that yields an error rate of 0.83%, while measuring on
average 49.5 evaluations of DX per test object. Also, as
Fig. 3 shows, several cascades obtained using BoostMap
and BoostMap-C achieve error rates under 1.2% at an av-
erage cost ranging from 35 to 50 DX evaluations per test
object.

We also compared our method to two well known meth-
ods for speeding up nearest neighbor classification: the
condensed nearest neighbor (CNN) method [10] and vp-
trees [24]. For the vp-trees the pivot object for each node
was selected randomly. We evaluated these methods us-
ing the smaller training set of 20,000 objects. Both meth-
ods achieved significantly worse tradeoffs between accu-
racy and efficiency compared to our method. CNN selected
1060 out of the 20,000 training objects, speeding up classi-
fication time by approximately a factor of 20. However, the

Method Distances per Speed-up Seconds per Error
query object factor query object rate

brute force 20,000 1 1232 0.63%
vp-trees [24] 8594 2.3 572 0.66%

CNN [10] 1060 18.9 70.6 2.40%
Zhang [25] 50 400 3.3 2.55%
BoostMap 800 25 53.3 0.74%

BoostMap-C 800 25 53.3 0.72%
Cascade 149 134 9.9 0.75%

Cascade-C 92.5 216 6.2 0.74%

Table 2: Speeds and error rates achieved by different methods on
the MNIST dataset, using 10,000 test objects and 20,000 training
objects. We also show the number of exact shape context distance
evaluations per query object for each method.

error rate using CNN increased from 0.63% to 2.40%. With
vp-trees the error rate was 0.66%, but the attained speed up
was only a factor of 2.3; an average of 8594 exact distances
needed to be measured per test object.

Table 2 summarizes the results of all the different meth-
ods on the smaller training set of 20,000 objects. As we
can see from those results, vp-trees, BoostMap and the cas-
cade methods are the only methods that achieve accuracy
comparable to brute force search. The speed-up obtained
using vp-trees is pretty minor compared to using BoostMap
or using a cascade. The cascade methods, and especially
Cascade-C, achieve by far the best trade-offs between accu-
racy and efficiency.

6. Discussion
We have presented two improvements to the state of the
art with respect to efficient nearest neighbor classification
under computationally expensive similarity measures. The
first contribution is BoostMap-C, a modified version of the
BoostMap embedding algorithm, that constructs embed-
dings using an optimization cost that is more relevant to
nearest neighbor classification accuracy. The second contri-
bution of this paper is a method for constructing a cascade
of approximations of the nearest neighbor classifier corre-
sponding to the original similarity measure. This cascade
method can be applied on top of BoostMap or any other ap-
propriate embedding method that may well work in a par-
ticular domain, like FastMap [7] or SparseMap [13].

The method proposed in this paper is domain-
independent, i.e., its formulation is appropriate for arbi-
trary spaces with computationally expensive distance mea-
sures. This is in contrast to methods like LSH [14] that
can only be applied to specific distance measures. At
the same time, no theoretical guarantees can be provided
that the proposed method, or any other alternative domain-
independent method (including the methods proposed in
[6, 7, 8, 10, 13, 22, 24]) will actually give useful results in
an arbitrary domain, in terms of accuracy and efficiency on
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previously unseen test objects. Some knowledge about the
domain, like the presence of Euclidean or metric properties,
is necessary in order to provide such guarantees.

A limitation of the cascade method, at least as formu-
lated in this paper, is that it cannot be applied if there is
only one training object per class. Overall, the more train-
ing examples per class we have, the more we expect the
cascade to improve classification efficiency. A direction for
future work is to formulate alternative cascade methods that
overcome this limitation.

In our experiments with the MNIST database of hand-
written digits and shape context matching as the underlying
distance measure, our method yielded a speed-up of about
two to three orders of magnitude with respect to brute-force
search, and yielded significant speed-ups over using Boost-
Map without a cascade, with negligible loss in accuracy.
Given the good experimental results and the generality of
the formulation, we believe that the proposed method can
be useful in a variety of classification tasks employing large
databases of training objects and computationally expensive
distance measures.
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