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Abstract. We present a novel fingerprint alignment and matching scheme
that utilizes ridge feature maps to represent, align and match fingerprint
images. The technique described here obviates the need for extracting
minutiae points or the core point to either align or match fingerprint im-
ages. The proposed scheme examines the ridge strength (in local neigh-
borhoods of the fingerprint image) at various orientations, using a set of
8 Gabor filters, whose spatial frequencies correspond to the average inter-
ridge spacing in fingerprints. A standard deviation map corresponding to
the variation in local pixel intensities in each of the 8 filtered images, is
generated. The standard deviation map is sampled at regular intervals in
both the horizontal and vertical directions, to construct the ridge feature
map. The ridge feature map provides a compact fixed-length represen-
tation for a fingerprint image. When a query print is presented to the
system, the standard deviation map of the query image and the ridge
feature map of the template are correlated, in order to determine the
translation offsets necessary to align them. Based on the translation off-
sets, a matching score is generated by computing the Euclidean distance
between the aligned feature maps. Feature extraction and matching takes
∼ 1 second in a Pentium III, 800 MHz processor. Combining the match-
ing score generated by the proposed technique with that obtained from
a minutiae-based matcher results in an overall improvement in perfor-
mance of a fingerprint matching system.

1 Introduction

The uniqueness of a fingerprint is determined by the topographic relief of its
ridge structure and the presence of certain ridge anomalies termed as minutiae
points (Figure 1(a)). The ridge structure in a fingerprint can be viewed as an
oriented texture pattern having a dominant spatial frequency and orientation in a
local neighborhood. The frequency is due to the inter-ridge spacing present in the
fingerprint (Figure 1(b)), and the orientation is due to the flow pattern exhibited
by the ridges (Figure 1(c)). By capturing the frequency and orientation of ridges
in local regions in the fingerprint, a distinct representation of the fingerprint is
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possible. Two such techniques of representation have been discussed in [1] and
[2]. Both techniques apply a set of 8 Gabor filters to a fingerprint image; the
resulting filtered images are then tessellated into cells, and the grayscale variance
within a cell is used to quantify the underlying ridge structure. The grayscale
variance in a cell captures the local ridge property, and the ordered enumeration
of the tessellation captures the invariant global relationships among the local
patterns. While in [1] a circular tessellation about the core point is employed, [2]
uses a square tessellation over the entire image. Matching two fingerprints using
such a representation requires a suitable alignment of the template and query
images. In [1] the core point is used for alignment, while [2] uses the minutiae
fields of the two fingerprint images for alignment. These techniques, however,
have the following drawbacks:

X

(a) (b) (c) (d)

Fig. 1. (a) A fingerprint image with the core and four minutiae points marked on it. (b)
the constant inter-ridge spacing in a local region of the fingerprint; (c) the dominant
direction of the ridges in (b); (d) the power spectrum of (a).

1. Detecting the core point is not an easy problem. Further, in images acquired
using small solid-state sensors, the core point may not even be present, or
may be present close to the boundary of the image. If the core is incorrectly
detected, then the feature sets cannot be reliably compared, and in images
that lack a core point, the technique described in [1] cannot be used.

2. In poor quality images (viz., images of dry fingers or fingers having cuts and
bruises), the minutiae information may not be reliable due to spurious or
missing minutiae points. Consequently, the alignment described in [2] may
be erroneous.

To circumvent the problem of unreliable landmark points (i.e., core and minu-
tiae points), we propose a technique that uses the extracted feature sets them-
selves to align and match fingerprint images. The feature set, in this case, is a
ridge feature map that captures the local ridge strengths at various orientations.
The local ridge characteristics are extracted via a set of Gabor filters that are
pre-tuned to a specific frequency corresponding to the average inter-ridge spacing
in a fingerprint image. A template fingerprint image is filtered using this set of
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Gabor filters; a standard deviation map is next computed using each filtered im-
age; the standard deviation map is then sampled at regular intervals to generate
the ridge feature map. Fingerprint verification entails correlating the standard
deviation map of the query image with the ridge feature map of the template. A
two-dimensional correlation is performed thereby taking the spatial relationship
between feature values into account. A matching score is generated using the Eu-
clidean distance metric between corresponding elements in the ridge feature map
of the template and the standard deviation map of the query image. Based on
the matching score, and a pre-specified threshold, the query image is declared to
match successfully (genuine) or unsuccessfully (impostor) with the template. In
the following sections we describe the feature extraction and correlation process
in more detail.

2 Ridge Feature Maps

Fingerprint matching techniques can be broadly classified as being minutiae-
based or correlation-based [3]. Minutiae-based techniques attempt to align two
minutiae sets to determine the total number of matched minutiae pairs [4] [5].
Correlation-based techniques, on the other hand, compare the global pattern
of ridges and furrows to see if the ridge structure in the two fingerprint images
align [6] [7]. The performance of minutiae-based techniques relies on the accurate
detection of minutiae points and the use of sophisticated matching techniques
to compare the two minutiae sets. The performance of correlation-based tech-
niques is affected by non-linear distortions and noise present in the image. In
general, it has been observed that minutiae-based techniques perform better
than correlation-based ones.

Correlation-based techniques suffer from the following problems [3]: (a) A
fingerprint image may have non-linear warping due to the effect of pressing a
convex elastic surface (the finger) on a flat surface (the sensor). Moreover, various
sub-regions in the sensed image are distorted differently due to the non-uniform
pressure applied by the subject. It is difficult to compare two such distorted
prints, even if translation and rotation effects are considered. (b) Based on the
moisture content of the skin, the acquired images may have either thin or thick
ridges. Further, the quality of the images acquired using the sensor may vary
with time, thereby complicating the correlation process. Hence, an invariant1

representation of the fingerprint is necessary if a correlation type matcher is used.
As noted in the previous section, the ridge orientation in a local neighborhood of
the fingerprint image has a dominant direction. Thus, features associated with
the strength of the ridges (in a local neighborhood), at various orientations,
may be used to represent a fingerprint image. To capture this information, 2D

Gabor filters are used. These filters optimally capture both local orientation and
frequency information very well.2 By tuning a Gabor filter to a specific frequency

1 Invariant to noise, distortions and ridge width variability.
2 They are optimal in the sense that they try to minimize simultaneously the joint

space-spatial frequency uncertainty [8].
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and direction, the local frequency and orientation information can be obtained.
An even symmetric Gabor filter has the following general form in the spatial
domain:

Gθ,f (x, y) = exp

{

−1

2

[
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δ2
x

+
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δ2
y

]}

cos(2πfx′), (1)

x′ = xsinθ + ycosθ, y′ = xcosθ − ysinθ,

where f is the frequency of the sinusoidal plane wave at an angle θ with the x-
axis, and δx and δy are the standard deviations of the Gaussian envelope along
the x and y axes, respectively.

For extracting the response of the ridge at various orientations of the Gabor
filter, the parameters (f , δx, δy, θ) are set to the following values: (i) The fre-
quency, f , is set to correspond to the inter-ridge distance in fingerprint images.
For the 300 × 300 (500 dpi) images obtained using the Veridicom sensor and
resized to 240 × 240 (see section 4), the average inter-ridge spacing is about 8
pixels. Hence, f = 1

8
= 0.125. (ii) The selection of the standard deviation values,

δx and δy, involves a trade-off. Larger values are more robust to noise, but will
not capture ridge information at a fine level. Smaller values, on the other hand,
are less robust to noise in the image, but capture ridge information very well.
Based on empirical data [9], both these values are set to 4, i.e., δx = δy = δ =
4. (iii) Eight different orientations are examined. These correspond to θ values
of 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦. These parameters are fixed
during the feature extraction process, allowing for pre-storing the Gabor filter
representations in a lookup table referred to as the Gabor filter bank. This filter
bank precalculates the Fourier representation of the Gabor filter for all orienta-
tions of interest. This formulation substantially improves the feature extraction
time.

(a) (b) (c)

Fig. 2. (a) Original fingerprint image. (b) Fingerprint image after enhancement. (c)
Fingerprint image after segmentation.
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2.1 Constructing the Ridge Feature Map

The 240× 240 input fingerprint image, I , is convolved with the 8 Gabor filters,
{Gθ}. Since the input image may be noisy, it is first enhanced before applying
the filters. Enhancement improves the clarity of the ridge and furrow structure in
the fingerprint image [10]. We use the technique described in [9] to enhance the
fingerprint image (Figure 2(b)). A segmentation algorithm is also applied on the
input image to identify the foreground and background regions. The foreground
corresponds to those regions in the image that have ridges and furrows, while the
background represents those regions that do not have this information (Figure
2(c)). Segmentation is useful during the matching phase, when the distance
between two feature maps is computed.

Let H indicate the 240×240 enhanced image. Convolving H with the 8 Gabor
filters in the spatial domain would be a computationally intensive operation. In
order to speed-up this operation, the convolution is performed in the frequency
domain. Let F(H) denote the discrete Fourier transform of H , and let F(Gθ)
indicate the discrete Fourier transform of the Gabor filter having the spatial
orientation θ as described by Equation (1). Then the Gabor filtered image, Vθ,
may be obtained as,

Vθ = F−1[F(H)F(Gθ)], (2)

where F−1 is the inverse Fourier transform. 8 filtered images are obtained in
this way (Figure 3). Each Vθ is used to construct a standard deviation image,
Sθ, where Sθ(x, y) represents the standard deviation of the pixel intensities in a
16 × 16 neighborhood of (x, y) in Vθ. The standard deviation map, S = {Sθ},
comprises of 8 images corresponding to the 8 filtered images. Thus, the stan-
dard deviation map, S, captures the variation in the ridge strength at various
orientations (Figure 4). Each standard deviation image, Sθ, is then sampled at
regular intervals (every 16th pixel) in both the horizontal and vertical direc-
tions to obtain the ridge feature image, Rθ (Figure 5). The ridge feature map,
R = {Rθ}, is composed of these 8 images. The size of Rθ (15× 15) is lesser than
that of Sθ (240× 240). We, therefore, have a compact fixed-length (15× 15× 8
= 1, 800-valued) representation for the fingerprint.

3 Fingerprint Matching Using Ridge Feature Maps

The process of fingerprint matching involves comparing a query print with a
set of one or more template prints. Prior to the matching process, ridge feature
maps are extracted from all template images present in the database. When a
query print, Q, is presented to the system, it is matched against a template ridge
map, RT = {RT

θ } as follows:

1. The query image is enhanced and the set of 8 Gabor filters is applied to the
enhanced image, resulting in 8 filtered images.

2. The standard deviation map, SQ = {SQ
θ }, for the query image is constructed

using these filtered images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Results of the filtering process on the enhanced image in Figure 2(b). The 8
images correspond to the 8 different orientations of the Gabor filter.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. The standard deviation map, {Sθ} of the filtered images shown in Figure 3.
Each image is 240 × 240.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The ridge feature map, {Rθ}, of the filtered images shown in Figure 3. Each
image is 15 × 15.

3. Each of the 8 template ridge feature images, RT
θ , is ‘expanded’ to the size

of S
Q
θ by interpolating with 0’s. Let the ridge feature map consisting of the

interpolated images be indicated by ST = {ST
θ }.

4. To determine the alignment between SQ and ST , a 2D correlation of the two
maps is performed. Correlation involves multiplying corresponding entries in
the two maps at all possible translation offsets, and determining the sum. The
offset that results in the maximum sum is chosen to be the optimal alignment
between the two maps. Correlation is done in the frequency domain, and
every offset is appropriately weighted. The weighting is necessary to account
for the amount of overlap between the two maps. Let UTQ represent the
unweighted correlation matrix, and CTQ represent the weighted correlation
matrix. Let N × N be the size of a standard deviation image (N = 240).
Then,

UTQ =
∑

θ

{F−1[F(SQ
θ )

∗

F(ST
θ )]} (3)

CTQ(x, y) =
UTQ(x, y) ∗N ∗N

(N − hx)(N − wy)
, x = 1 . . .N, y = 1 . . .N (4)

where,

hx =| [(x +
N

2
)modN ]−

N

2
| and wy =| [(y +

N

2
)modN ]−

N

2
|

The optimal offset (tx, ty) required to align SQ with ST is then determined
as,

(t′x, t′y) = argmax
x,y

{CTQ(x, y)}, x = 1 . . .N, y = 1 . . .N
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tx =

{

t′x if t′x < N
2

,

t′x −N if t′x ≥ N
2

.
(5)

ty =

{

t′y if t′y < N
2

,

t′y −N if t′y ≥
N
2

.
(6)

Equations (5) and (6) are used to decide if the offsets are negative or positive.

5. At this optimal offset, the Euclidean distance between corresponding non-
zero foreground elements in {SQ

θ } and {ST
θ } is computed. This distance is

treated as the matching score between the query print, Q and the template,
T . Based on the matching score, and the pre-specified threshold, the query
image is said to have matched successfully or unsuccessfully with the tem-
plate.

The above procedure does not account for the rotational offset between the
query and the template feature maps. To account for rotational offsets, vari-
ous rotated versions of the template ridge feature map may be correlated with
the query feature map, and the optimal alignment computed. Alternately, FFT-
based registration techniques (like the Fourier-Mellin transform) may be em-
ployed. However this has not been implemented as yet.

4 Experiments and Results

Our database consists of fingerprint impressions (300× 300) obtained from 160
users using the Veridicom sensor. Each user provided 4 different impressions
(over 2 time sessions) of each of 4 different fingers - the left index finger, the
left middle finger, the right index finger and the right middle finger. A set of
2, 560 (160 × 4 × 4) images were collected. The 300 × 300 images were resized
to 240× 240 (inter-ridge spacing changed from 10 pixels to 8 pixels) in order to
speed-up the Fourier operations. This database is a difficult one for a fingerprint
matcher due to the following reasons: (a) There is temporal variance imposed
on the fingerprint impressions as they were acquired over two different time
sessions. (b) The users, though cooperative, were non-habituated users of the
system. (c) Some users were observed to have dry fingers that resulted in partial
or faint fingerprint images. Initial experiments on this database indicate that the
proposed technique provides a very good alignment of fingerprint image pairs.
We compare the proposed technique with a minutiae-based matcher by plotting
the Genuine Accept Rate against the False Accept Rate at various thresholds
of the matching score. As expected, the minutiae-based matcher demonstrates
better performance than the correlation-based matcher. However, fusing the two
matchers (by normalizing and adding the matching scores) results in an improved
performance of the fingerprint verification system. The ROC curves exhibiting
these behaviors is shown in Figure 6.
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Fig. 6. ROC curves depicting matching performance.

5 Summary and Future Work

We have described a novel technique to align and match fingerprint images. The
proposed technique utilizes ridge information to construct a ridge feature map
that is used for representing, aligning and matching fingerprints. The ridge fea-
ture map obviates the need to use minutiae or core information to align image
pairs. It also provides a compact fixed-length representation for a fingerprint
image. It must be mentioned here that the performance of the proposed tech-
nique is inferior to that of a minutiae-based fingerprint matcher. However, when
used alongside a minutiae matcher, an improvement in matching performance
is observed. Thus, the ridge feature map complements information provided by
the minutiae-based matcher. Currently we are investigating different metrics for
comparing feature maps; we are also looking into ways of developing effective
weighting techniques for the correlation matrix.
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