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Fig. 1. Data clustering.General Terms: ClusteringAdditional Key Words and Phrases: Cluster analysis, unsupervised learning, similarity indices,exploratory data analysis, incremental clustering, clustering applications.1. INTRODUCTION1.1 MotivationData analysis underlies many computing applications, either in a design phase or aspart of their on-line operations. Data analysis procedures can be dichotomized aseither exploratory or con�rmatory, based on the availability of appropriate modelsfor the data source, but a key element in both types of procedures (whether forhypothesis formation or decision-making) is the grouping or classi�cation of mea-surements based on either (i) goodness-of-�t to a postulated model or (ii) naturalgroupings (clustering) revealed through analysis. Cluster analysis is the organiza-tion of a collection of patterns (usually represented as a vector of measurements, ora point in a multidimensional space) into clusters based on similarity. Intuitively,patterns within a valid cluster are more similar to each other than they are to apattern belonging to a di�erent cluster. An example of clustering is depicted inFigure 1. The input patterns are shown in Figure 1(a) and the desired clustersare shown in Figure 1(b). Here, points belonging to the same cluster are given thesame label. The variety of techniques for representing data, measuring proximity(similarity) between data elements, and grouping data elements has produced arich and often confusing assortment of clustering methods.It is important to understand the di�erence between clustering (unsupervisedclassi�cation) and discriminant analysis (supervised classi�cation). In supervisedclassi�cation, we are provided with a collection of labeled (preclassi�ed) patternsand the problem is to label a newly encountered, yet unlabeled, pattern. Typically,the given labeled (training) patterns are used to learn the descriptions of classeswhich in turn are used to label a new pattern. In the case of clustering, the problemis to group a given collection of unlabeled patterns into meaningful clusters. In a



Data Clustering: A Review � 3sense, labels are associated with clusters also, but these category labels are datadriven; that is, they are obtained solely from the data.Clustering is useful in several exploratory pattern analysis, grouping, decisionmaking and machine learning situations including data mining, document retrieval,image segmentation and pattern classi�cation. However, in many such problems,there is little prior information (e.g., statistical models) available about the data andthe decision-maker must make as few assumptions about the data as possible. It isunder these restrictions that clustering methodology is particularly appropriate forthe exploration of interrelationships among the data points to make an assessment(perhaps preliminary) of their structure.The term `clustering' is used in several research communities to describe methodsfor grouping of unlabeled data. These communities have di�erent terminologies andassumptions for the components of the clustering process and the contexts in whichclustering is used. Thus, we face a dilemma regarding the scope of this survey. Theproduction of a truly comprehensive survey would be a monumental task given thesheer mass of literature in this area. The accessibility of the survey might also bequestionable given the need to reconcile very di�erent vocabularies and assumptionsregarding clustering in the various communities.The goal of this paper is to survey the core concepts and techniques in the largesubset of cluster analysis with its roots in statistics and decision theory. Whereappropriate, references will be made to key concepts and techniques arising fromclustering methodology in the machine learning and other communities.The audience of this paper includes practitioners in the pattern recognition andimage analysis communities (who should view it as a summarization of currentpractice), practitioners in the machine learning communities (who should view itas a snapshot of a closely related �eld with a rich history of well-understood tech-niques), and the broader audience of scienti�c professionals (who should view it asan accessible introduction to a mature �eld that is making important contributionsto computing application areas).1.2 Components of a Clustering TaskTypical pattern clustering activity involves the following steps [95]:(1) pattern representation (optionally including feature extraction and/or selec-tion),(2) de�nition of a pattern proximity measure appropriate to the data domain,(3) clustering or grouping,(4) data abstraction (if needed), and(5) assessment of output (if needed).Figure 2 depicts a typical sequencing of the �rst three of these steps, including afeedback path where the grouping process output could a�ect subsequent featureextraction and similarity computations.Pattern representation refers to the number of classes, the number of availablepatterns, and the number, type, and scale of the features available to the clusteringalgorithm. Some of this information may not be controllable by the practitioner.Feature selection is the process of identifying the most e�ective subset of the original
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feedback loopFig. 2. Stages in clustering.features to use in clustering. Feature extraction is the use of one or more trans-formations of the input features to produce new salient features. Either or bothof these techniques can be used to obtain an appropriate set of features to use inclustering.Pattern proximity is usually measured by a distance function de�ned on pairs ofpatterns. A variety of distance measures are in use in the various communities [7;95; 41]. A simple distance measure like the Euclidean distance can often be usedto reect dissimilarity between two patterns, whereas other similarity measures canbe used to characterize the conceptual similarity between patterns [132]. Distancemeasures are discussed in Section 4.The grouping step can be performed in a number of ways. The output clustering(or clusterings) can be hard (a partition of the data into groups) or fuzzy (whereeach pattern has a variable degree of membership in each of the output clusters).Hierarchical clustering algorithms produce a nested series of partitions based on acriterion for merging or splitting clusters based on similarity. Partitional clusteringalgorithms identify the partition that optimizes (usually locally) a clustering cri-terion. Additional techniques for the grouping operation include probabilistic [21]and graph-theoretic [199] clustering methods. The variety of techniques for clusterformation is described in Section 5.Data abstraction is the process of extracting a simple and compact representationof a data set. Here, simplicity is either from the perspective of automatic analysis(so that a machine can perform further processing e�ciently) or it is human-oriented(so that the representation obtained is easy to comprehend and intuitively appeal-ing). In the clustering context, a typical data abstraction is a compact descriptionof each cluster, usually in terms of cluster prototypes or representative patternssuch as the centroid [41].How is the output of a clustering algorithm evaluated? What characterizes a`good' clustering result and a `poor' one? All clustering algorithms will, whenpresented with data, produce clusters { regardless of whether the data containclusters or not. If the data does contain clusters, some clustering algorithms mayobtain `better' clusters than others. The assesssment of a clustering procedure'soutput, then, has several facets. One is actually an assessment of the data domainrather than the clustering algorithm per se { data which do not contain clustersshould not be processed by a clustering algorithm. The study of cluster tendency,wherein the input data are examined to see if there is any merit to a cluster analysisprior to one being performed, is a relatively inactive research area and will not beconsidered further in this survey. The interested reader is referred to [46; 28] forinformation.



Data Clustering: A Review � 5Cluster validity analysis, by contrast, is the assessment of a clustering procedure'soutput. Often this analysis uses a speci�c criterion of optimality; however, these cri-teria are usually arrived at subjectively. Hence, little in the way of `gold standards'exist in clustering except in well-prescribed subdomains. Validity assessments areobjective [47] and are performed to determine whether the output is meaningful.A clustering structure is valid if it cannot reasonably have occurred by chance oras an artifact of a clustering algorithm. When statistical approaches to clusteringare used, validation is accomplished by carefully applying statistical methods andtesting hypotheses. There are three types of validation studies. An external as-sessment of validity compares the recovered structure to an a priori structure. Aninternal examination of validity tries to determine if the structure is intrinsicallyappropriate for the data. A relative test compares two structures and measurestheir relative merit. Indices used for this comparison are discussed in detail in [95;47], and are not discussed further in this paper.1.3 The User's Dilemma and the Role of ExpertiseThe availability of such a vast collection of clustering algorithms in the literature caneasily confound a user attempting to select an algorithm suitable for the problemat hand. In [44], a set of admissibility criteria de�ned by [61] are used to compareclustering algorithms. These admissibility criteria are based on: (1) the mannerin which clusters are formed, (2) the structure of the data, and (3) sensitivity ofthe clustering technique to changes that do not a�ect the structure of the data.However, there is no critical analysis of clustering algorithms dealing with theimportant questions such as|\How should the data be normalized?"|\Which similarity measure is appropriate to use in a given situation?"|\How should domain knowledge be utilized in a particular clustering problem?"|\How can a vary large data set (say, a million patterns) be clustered e�ciently?"These issues have motivated this survey, and its aim is to provide a perspectiveon the state of the art in clustering methodology and algorithms. With such a per-spective, an informed practitioner should be able to con�dently assess the tradeo�sof di�erent techniques and ultimately make a competent decision on a technique orsuite of techniques to employ in a particular application.There is no clustering technique that is universally applicable in uncovering thevariety of structures present in multidimensional data sets. For example, considerthe two-dimensional data set shown in Figure 1(a). Not all clustering techniquescan uncover all the clusters present here with equal facility, because clustering al-gorithms often contain implicit assumptions about cluster shape or multiple-clustercon�gurations based on the similarity measures and grouping criteria used.Humans perform competitively with automatic clustering procedures in two di-mensions, but most real problems involve clustering in higher dimensions. It isdi�cult for humans to obtain an intuitive interpretation of data embedded in ahigh-dimensional space. In addition, data hardly follow the \ideal" structures (e.g.,hyperspherical, linear) shown in Figure 1. This explains the large number of clus-tering algorithms which continue to appear in the literature; each new clustering



6 � A.K. Jain, M.N. Murty and P.J. Flynnalgorithm performs slightly better than the existing ones on a speci�c distributionof patterns.It is essential for the user of a clustering algorithm not only to have a thoroughunderstanding of the particular technique being utilized, but also to know thedetails of the data gathering process and to have some domain expertise; the moreinformation the user has about the data at hand, the more likely the user would beto succeed in assessing its true class structure [95]. This domain information canalso be used to improve the quality of feature extraction, similarity computation,grouping, and cluster representation [139].Appropriate constraints on the data source can be incorporated into a clusteringprocedure. One example of this is mixture resolving [183], wherein it is assumedthat the data are drawn from a mixture of an unknown number of densities (oftenassumed to be multivariate Gaussian). The clustering problem here is to iden-tify the number of mixture components and the parameters of each component.The concept of density clustering and a methodology for decomposition of fea-ture spaces [15] has also been incorporated into traditional clustering methodology,yielding a technique for extracting overlapping clusters.1.4 HistoryEven though there is an increasing interest in the use of clustering methods inpattern recognition [7], image processing [100] and information retrieval [151; 159],clustering has a rich history in other disciplines [95] such as biology, psychiatry,psychology, archaeology, geology, geography, and marketing. Other terms moreor less synonymous with clustering include unsupervised learning [95], numericaltaxonomy [173], vector quantization [143], and learning by observation [132]. The�eld of spatial analysis of point patterns [153] is also related to cluster analysis.The importance and interdisciplinary nature of clustering is evident through itsvast literature.A number of books on clustering have been published [95; 7; 82; 174; 51; 54;13], in addition to some useful and inuential review papers. A survey of the stateof the art in clustering circa 1978 was reported in [45]. A comparison of variousclustering algorithms for constructing the minimal spanning tree and the shortspanning path was given in [122]. Cluster analysis was also surveyed in [103]. Areview of image segmentation by clustering was reported in [100]. Comparisonsof various combinatorial optimization schemes, based on experiments, have beenreported in [133] and [4].1.5 OutlineThis paper is organized as follows. Section 2 presents de�nitions of terms to be usedthroughout the paper. Section 3 summarizes pattern representation, feature extrac-tion, and feature selection. Various approaches to the computation of proximitybetween patterns are discussed in Section 4. Section 5 presents a taxonomy of clus-tering approaches, describes the major techniques in use, and discusses emergingtechniques for clustering incorporating non-numeric constraints and the clusteringof large sets of patterns. Section 6 discusses applications of clustering methodsto image analysis and data mining problems. Finally, Section 7 presents someconcluding remarks.



Data Clustering: A Review � 72. DEFINITIONS AND NOTATIONThe following terms and notation will be used throughout this paper.|A pattern (or feature vector, observation, or datum) x is a single data item usedby the clustering algorithm. It typically consists of a vector of d measurements:x = (x1; : : : xd).|The individual scalar components xi of a pattern x are called features (or at-tributes).|d is the dimensionality of the pattern or of the pattern space.|A pattern set will be denoted X = fx1; : : :xng. The ith pattern in X will bedenoted xi = (xi;1; : : : xi;d). In many cases a pattern set to be clustered is viewedas an n� d pattern matrix.|A class, in the abstract, refers to a state of nature that governs the patterngeneration process in some cases. More concretely, a class can be viewed as asource of patterns whose distribution in feature space is governed by a probabilitydensity speci�c to the class. Clustering techniques attempt to group patterns sothat the classes thereby obtained reect the di�erent pattern generation processesrepresented in the pattern set.|Hard clustering techniques assign a class label li to each patterns xi, identifyingits class. The set of all labels for a pattern set X is L = fl1; : : : lng, with li 2f1; � � � ; kg, where k is the number of clusters.|Fuzzy clustering procedures assign to each input pattern xi a fractional degreeof membership fij in each output cluster j.|A distance measure (a specialization of a proximity measure) is a metric (orquasi-metric) on the feature space used to quantify the similarity of patterns.3. PATTERN REPRESENTATION, FEATURE SELECTION, AND FEATURE EXTRAC-TIONThere are no theoretical guidelines which suggest the appropriate patterns and fea-tures to use in a speci�c situation. Indeed, the pattern generation process is oftennot directly controllable; the user's role in the pattern representation process isto gather facts and conjectures about the data, optionally perform feature selec-tion and extraction, and design the subsequent elements of the clustering system.Because of the di�culties surrounding pattern representation, it is conveniently as-sumed that the pattern representation is available prior to clustering. Nonetheless,a careful investigation of the available features and any available transformations(even simple ones) can yield signi�cantly improved clustering results. A good pat-tern representation can often yield a simple and easily understood clustering; apoor pattern representation may yield a complex clustering whose true structure ifdi�cult or impossible to discern. Figure 3 shows a simple example. The points inthis 2D feature space are arranged in a curvilinear cluster of approximately constantdistance from the origin. If one chooses Cartesian coordinates to represent the pat-terns, many clustering algorithms would be likely to fragment the cluster into twoor more clusters since it is not compact. If, however, one uses a polar coordinaterepresentation for the clusters, the radius coordinate exhibits tight clustering anda one-cluster solution is likely to be easily obtained.
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. .Fig. 3. A curvilinear cluster whose points are approximately equidistant from the origin. Di�erentpattern representations (coordinate systems) would cause clustering algorithms to yield di�erentresults for this data (see text).A pattern can measure either a physical object (e.g., a chair) or an abstract notion(e.g., a style of writing). As noted above, patterns are represented conventionallyas multidimensional vectors, where each dimension is a single feature [49]. Thesefeatures can be either quantitative or qualitative. For example, if weight and colorare the two features used, then (20; black) is the representation of a black objectwith 20 units of weight. The features can be subdivided into the following types [78]:(1) Quantitative features:(a) Continuous values (e.g., weight).(b) Discrete values (e.g., the number of computers).(c) Interval values (e.g., the duration of an event).(2) Qualitative features:(a) Nominal or unordered, (e.g., color).(b) Ordinal (e.g., military rank or qualitative evaluations of temperature (\cool"or \hot") or sound intensity (\quiet" or \loud").Quantitiative features can be measured on a ratio scale (with a meaningful referencevalue, such as temperature), or on nominal or ordinal scales.One can also use structured features [132] which are represented as trees, wherethe parent node represents a generalization of its child nodes. For example, aparent node \vehicle" may be a generalization of children labeled \cars", \buses",\trucks", and \motorcycles." Further, the node \cars" could be a generalizationof cars of the type \Toyota", \Ford", \Benz", etc. A generalized representation ofpatterns, called symbolic objects was proposed in [42]. Symbolic objects are de�nedby a logical conjunction of events. These events link values and features in whichthe features can take one or more values and all the objects need not be de�ned onthe same set of features.It is often valuable to isolate only the most descriptive and discriminatory fea-tures in the input set, and utilize those features exclusively in subsequent analysis.Feature selection techniques identify a subset of the existing features for subsequentuse, while feature extraction techniques compute new features from the original set.In either case, the goal is to improve classi�cation performance and/or computa-tional e�ciency. Feature selection is a well-explored topic in statistical patternrecognition [49]; however, in a clustering context (i.e., lacking class labels for pat-terns), the feature selection process is of necessity ad hoc and might involve atrial-and-error process where various subsets of features are selected, the resulting



Data Clustering: A Review � 9patterns clustered, and the output evaluated using a validity index. In contrast,some of the popular feature extraction processes (e.g., principal components analy-sis [71]) do not depend on labeled data and can be used directly. Reduction of thenumber of features has an additional bene�t, namely the ability to produce outputthat can be visually inspected by a human.4. SIMILARITY MEASURESSince similarity is fundamental to the de�nition of a cluster, a measure of thesimilarity between two patterns drawn from the same feature space is essential tomost clustering procedures. Because of the variety of feature types and scales, thedistance measure (or measures) must be chosen carefully. It is most common tocalculate the dissimilarity between two patterns using a distance measure de�nedon the feature space. We will focus on the well-known distance measures used forpatterns whose features are all continuous.The most popular metric for continuous features is the Euclidean distanced2(xi;xj) =  dXk=1(xi;k � xj;k)2!1=2 = kxi � xjk2;which is a special case (p=2) of the Minkowski metricdp(xi;xj) =  dXk=1 jxi;k � xj;kjp!1=p = kxi � xjkp:The Euclidean distance has an intuitive appeal as it is commonly used to evaluatethe proximity of objects in two or three-dimensional space. It works well when adata set has \compact" or \isolated" clusters [129]. The drawback to direct use ofthe Minkowski metrics is the tendency of the largest-scaled feature to dominate theothers. Solutions to this problem include normalization of the continuous features(to a common range or variance) or other weighting schemes. Linear correlationamong features can also distort distance measures; this distortion can be allevi-ated by applying a whitening transformation to the data or by using the squaredMahalanobis distancedM (xi;xj) = (xi � xj)��1(xi � xj)T ;where the patterns xi and xj are assumed to be row vectors, and � is the samplecovariance matrix of the patterns or the known covariance matrix of the pattern gen-eration process; dM (�; �) assigns di�erent weights to di�erent features based on theirvariances and pairwise linear correlations. Here, it is implicitly assumed that classconditional densities are unimodal and characterized by multidimensional spread,i.e. that the densities are multivariate Gaussian. The regularized Mahalanobisdistance was used in [129] to extract hyperellipsoidal clusters. Recently, several re-searchers [90; 48] have used the Hausdor� distance in a point set matching context.Some clustering algorithms work on a matrix of proximity values instead of onthe original pattern set. It is useful in such situations to precompute all the n(n�1)2pairwise distance values for the n patterns and store them in a (symmetric) matrix.



10 � A.K. Jain, M.N. Murty and P.J. FlynnComputation of distances between patterns with some or all features being non-continuous is problematic since the di�erent types of features are not comparableand (as an extreme example) the notion of proximity is e�ectively binary-valuedfor nominal-scaled features. Nonetheless, practitioners (especially those in machinelearning, where mixed-type patterns are common) have developed proximity mea-sures for heterogeneous type patterns. A recent example is [195], which proposes acombination of a modi�ed Minkowski metric for continuous features and a distancebased on counts (population) for nominal attributes. A variety of other metrics havebeen reported in [41; 91] for computing the similarity between patterns representedusing quantitative as well as qualitative features.Patterns can also be represented using string or tree structures [112]. Stringsare used in syntactic clustering [69]. Several measures of similarity between stringsare described in [14]. A good summary of similarity measures between trees isgiven by [200]. A comparison of syntactic and statistical approaches for patternrecognition using several criteria was presented in [181] and the conclusion wasthat syntactic methods are inferior in every aspect. Therefore, we do not considersyntactic methods further in this paper.There are some distance measures reported in the literature [77; 105] that takeinto account the e�ect of surrounding or neighboring points. These surroundingpoints are called context in [132]. The similarity between two points xi and xj ,given this context, is given bys(xi;xj) = f(xi;xj ; E);where E is the context (the set of surrounding points). One metric de�ned usingcontext is the mutual neighbor distance (MND), proposed in [77], which is given byMND(xi;xj) = NN(xi;xj) +NN(xj ;xi);where NN(xi;xj) is the neighbor number of xj with respect to xi. Figures 4 and 5give an example. In Figure 4, the nearest neighbor of A is B, and B's nearestneighbor is A. So, NN(A;B) = NN(B;A) = 1 and the MND between A and B is2. However, NN(B;C) = 1 but NN(C;B) = 2, and therefore MND(B;C) = 3:Figure 5 was obtained from Figure 4 by adding three new points D, E, and F. NowMND(B;C) = 3 (as before), but MND(A;B) = 5. The MND between A andB has increased by introducing additional points, even though A and B have notmoved. The MND is not a metric (it does not satisfy the triangle inequality [200]).In spite of this, MND has been successfully applied in several clustering applica-tions [78]. This observation supports the viewpoint that the dissimilarity does notneed to be a metric.Watanabe's theorem of the ugly duckling [192] states:Insofar as we use a �nite set of predicates that are capable of distinguish-ing any two objects considered, the number of predicates shared by anytwo such objects is constant, independent of the choice of objects.This implies that it is possible to make any two arbitrary patterns equally similarby encoding them with a su�ciently large number of features. As a consequence,any two arbitrary patterns are equally similar, unless we use some additional domaininformation. For example, in the case of conceptual clustering [132], the similarity
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Fig. 6. Conceptual similarity between points.between xi and xj is de�ned ass(xi;xj) = f(xi;xj ; C; E);where C is a set of pre-de�ned concepts. This notion is illustrated with the helpof Figure 6. Here, the Euclidean distance between points A and B is less thanthat between B and C. However, B and C can be viewed as \more similar" thanA and B because B and C belong to the same concept (ellipse) and A belongsto a di�erent concept (rectangle). The conceptual similarity measure is the mostgeneral similarity measure. We discuss several pragmatic issues associated with itsuse in Section 5.11.5. CLUSTERING TECHNIQUESDi�erent approaches to clustering data can be described with the help of the hier-archy shown in Figure 7 (other taxonometric representations of clustering method-ology are possible; ours is based on the discussion in [95]). At the top level, thereis a distinction between hierarchical and partitional approaches (hierarchical meth-ods produce a nested series of partitions, while partitional methods produce onlyone). The taxonomy shown in Figure 7 must be supplemented by a discussion ofcross-cutting issues that may (in principle) a�ect all of the di�erent approachesregardless of their placement in the taxonomy.|Agglomerative vs. divisive: This aspect relates to algorithmic structure andoperation. An agglomerative approach begins with each pattern in a distinct(singleton) cluster and successively merges clusters together until a stopping cri-terion is satis�ed. A divisive method begins with all patterns in a single clusterand performs splitting until a stopping criterion is met.|Monothetic vs. polythetic: This aspect relates to the sequential or simultaneoususe of features in the clustering process. Most algorithms are polythetic; thatis, all features enter into the computation of distances between patterns, anddecisions are based on those distances. A simple monothetic algorithm reportedin [7] considers features sequentially to divide the given collection of patterns.This is illustrated in Figure 8. Here, the collection is divided into two groups
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1Fig. 8. Monothetic partitional clustering.using feature x1; the vertical broken line V is the separating line. Each of theseclusters is further divided independently using feature x2, as depicted by thebroken lines H1 and H2. The major problem with this algorithm is that itgenerates 2d clusters where d is the dimensionality of the patterns. For largevalues of d (d > 100 is typical in information retrieval applications [159]), thenumber of clusters generated by this algorithm is so large that the data set isdivided into uninterestingly small and fragmented clusters.|Hard vs. fuzzy: A hard clustering algorithm allocates each pattern to a singlecluster during its operation and in its output. A fuzzy clustering method assignsdegrees of membership in several clusters to each input pattern. A fuzzy cluster-ing can be converted to a hard clustering by assigning each pattern to the clusterwith the largest measure of membership.|Deterministic vs. stochastic: This issue is most relevant to partitional approachesdesigned to optimize a squared error function. This optimization can be accom-
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Fig. 9. Points falling in three clusters.plished using traditional techniques or through a random search of the state spaceconsisting of all possible labelings.|Incremental vs. non-incremental: This issue arises when the pattern set to beclustered is large, and constraints on execution time or memory space a�ectthe architecture of the algorithm. The early history of clustering methodologydoes not contain many examples of clustering algorithms designed to work withlarge data sets, but the advent of data mining has fostered the development ofclustering algorithms that minimize the number of scans through the pattern set,reduce the number of patterns examined during execution, or reduce the size ofdata structures used in the algorithm's operations.A cogent observation in [95] is that the speci�cation of an algorithm for clusteringusually leaves considerable exibilty in implementation.5.1 Hierarchical Clustering AlgorithmsThe operation of a hierarchical clustering algorithm is illustrated using the two-dimensional data set in Figure 9. This �gure depicts seven patterns labeled A, B,C, D, E, F, and G in three clusters. A hierarchical algorithm yields a dendrogramrepresenting the nested grouping of patterns and similarity levels at which groupingschange. A dendrogram corresponding to the seven points in Figure 9 (obtained fromthe single-link algorithm [95]) is shown in Figure 10. The dendrogram can be brokenat di�erent levels to yield di�erent clusterings of the data.Most hierarchical clustering algorithms are variants of the single-link [173], com-plete-link [109], and minimum-variance [191; 137] algorithms. Of these, the single-link and complete-link algorithms are most popular. These two algorithms di�er inthe way they characterize the similarity between a pair of clusters. In the single-link method, the distance between two clusters is the minimum of the distancesbetween all pairs of patterns drawn from the two clusters (one pattern from the �rstcluster, and the other from the second). In the complete-link algorithm, the distancebetween two clusters is the maximum of all pairwise distances between patterns inthe two clusters. In either case, two clusters are merged to form a larger clusterbased on minimum distance criteria. The complete-link algorithm produces tightly
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Fig. 11. Two concentric clusters.bound or compact clusters [14]. The single-link algorithm, by contrast, su�ers froma chaining e�ect [140]. It has a tendency to produce clusters that are straggly orelongated. There are two clusters in Figures 12 and 13 separated by a \bridge" ofnoisy patterns. The single-link algorithm produces the clusters shown in Figure 12,whereas the complete-link algorithm obtains the clustering shown in Figure 13.The clusters obtained by the complete-link algorithm are more compact than thoseobtained by the single-link algorithm; the cluster labeled 1 obtained using thesingle-link algorithm is elongated because of the noisy patterns labeled \*". Thesingle-link algorithm is more versatile than the complete-link algorithm, otherwise.For example, the single-link algorithm can extract the concentric clusters shownin Figure 11 but the complete-link algorithm cannot. However, from a pragmaticviewpoint, it has been observed that the complete-link algorithm produces moreuseful hierarchies in many applications than the single-link algorithm [95].Agglomerative Single-Link Clustering Algorithm(1) Place each pattern in its own cluster. Construct a list of interpattern distancesfor all distinct unordered pairs of patterns, and sort this list in ascending order.(2) Step through the sorted list of distances, forming for each distinct dissimilarityvalue dk a graph on the patterns where pairs of patterns closer than dk areconnected by a graph edge. If all the patterns are members of a connected
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Fig. 12. A single-link clustering of a pattern set containing two classes (1 and 2) connected by achain of noisy patterns (*).graph, stop. Otherwise, repeat this step.(3) The output of the algorithm is a nested hierarchy of graphs which can be cut ata desired dissimilarity level forming a partition (clustering) identi�ed by simplyconnected components in the corresponding graph.Agglomerative Complete-Link Clustering Algorithm(1) Place each pattern in its own cluster. Construct a list of interpattern distancesfor all distinct unordered pairs of patterns, and sort this list in ascending order.(2) Step through the sorted list of distances, forming for each distinct dissimilarityvalue dk a graph on the patterns where pairs of patterns closer than dk areconnected by a graph edge. If all the patterns are members of a completelyconnected graph, stop.(3) The output of the algorithm is a nested hierarchy of graphs which can be cutat a desired dissimilarity level forming a partition (clustering) identi�ed bycompletely connected components in the corresponding graph.Hierarchical algorithms are more versatile than partitional algorithms. For ex-ample, the single-link clustering algorithm works well on data sets containing non-isotropic clusters including well-separated, chain-like, and concentric clusters, whereasa typical partitional algorithm such as the k-means algorithm works well only ondata sets having isotropic clusters [140]. On the other hand, the time and spacecomplexities [38] of the partitional algorithms are typically lower than those ofthe hierarchical algorithms. It is possible to develop hybrid algorithms [138] thatexploit the good features of both categories.Hierarchical Agglomerative Clustering Algorithm(1) Compute the proximity matrix containing the distance between each pair ofpatterns. Treat each pattern as a cluster.(2) Find the most similar pair of clusters using the proximity matrix. Merge thesetwo clusters into one cluster. Update the proximity matrix to reect this mergeoperation.
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Fig. 13. A complete-link clustering of a pattern set containing two classes (1 and 2) connectedby a chain of noisy patterns (*).(3) If all objects are in one cluster, stop. Else, go to step 2.Based on the way the proximity matrix is updated in step 2, a variety of agglom-erative algorithms can be designed. Hierarchical divisive algorithms start with asingle cluster of all the given objects and keep splitting the clusters based on somecriterion to obtain a partition of singleton clusters.5.2 Partitional AlgorithmsA partitional clustering algorithm obtains a single partition of the data instead of aclustering structure, such as the dendrogram produced by a hierarchical technique.Partitional methods have advantages in applications involving large data sets forwhich the construction of a dendrogram is computationally prohibitive. A prob-lem accompanying the use of a partitional algorithm is the choice of the numberof desired output clusters. A seminal paper [46] provides guidance on this key de-sign decision. The partitional techniques usually produce clusters by optimizinga criterion function de�ned either locally (on a subset of the patterns) or globally(de�ned over all of the patterns). Combinatorial search of the set of possible la-belings for an optimum value of a criterion is clearly computationally prohibitive.In practice, therefore, the algorithm is typically run multiple times with di�erentstarting states and the best con�guration obtained from all of the runs is used asthe output clustering.5.2.1 Squared Error Algorithms. The most intuitive and frequently used criterionfunction in partitional clustering techniques is the squared error criterion, whichtends to work well with isolated and compact clusters. The squared error for aclustering L of a pattern set X (containing K clusters) ise2(X ;L) = KXj=1 njXi=1 kx(j)i � cjk2;where x(j)i is the ith pattern belonging to the jth cluster and cj is the centroid ofthe jth cluster.



18 � A.K. Jain, M.N. Murty and P.J. FlynnThe k-means algorithm is the simplest and most commonly used algorithm em-ploying a squared error criterion [126]. It starts with a random initial partition andkeeps on reassigning the patterns to clusters based on the similarity between thepattern and the cluster centers until a convergence criterion is met (e.g., there is noreassignment of any pattern from one cluster to another, or the squared error ceasesto decrease signi�cantly after some number of iterations). The k-means algorithmis popular because it is easy to implement and its time complexity is O(n), where nis the number of patterns. A major problem with this algorithm is that it is sensi-tive to the selection of the initial partition and may converge to a local minimum ofthe criterion function value if the initial partition is not properly chosen. Figure 14shows seven two-dimensional patterns. If we start with patterns A, B, and C asthe initial means around which the 3 clusters are built, then we end up with thepartition ffAg, fB, Cg, fD, E, F, Ggg shown by ellipses. The squared error crite-rion value is much larger for this partition than for the best partition ffA, B, Cg,fD, Eg, fF, Ggg shown by rectangles, which yields the global minimum value ofthe squared error criterion function for a clustering containing three clusters. Thecorrect three-cluster solution is obtained by choosing, for example, A, D, and F asthe initial cluster means.Squared Error Clustering Method(1) Select an initial partition of the patterns with a �xed number of clusters andcluster centers.(2) Assign each pattern to its closest cluster center and compute the new clustercenters as the centroids of the clusters. Repeat this step until convergence isachieved, i.e., until the cluster membership is stable.(3) Merge and split clusters based on some heuristic information, optionally re-peating step 2. k-Means Clustering Algorithm(1) Choose k cluster centers to coincide with k randomly-chosen patterns or krandomly de�ned points inside the hypervolume containing the pattern set.(2) Assign each pattern to the closest cluster center.(3) Recompute the cluster centers using the current cluster memberships.(4) If a convergence criterion is not met, go to step 2. Typical convergence criteriaare: no (or minimal) reassignment of patterns to new cluster centers, or minimaldecrease in squared error.Several variants [7] of the k-means algorithm have been reported in the literature.Some of them attempt to select a good initial partition so that the algorithm ismore likely to �nd the global minimum value. Another variation is to permitsplitting and merging of the resulting clusters. Typically, a cluster is split when itsvariance is above a pre-speci�ed threshold and two clusters are merged when thedistance between their centroids is below another pre-speci�ed threshold. Using thisvariant, it is possible to obtain the optimal partition starting from any arbitraryinitial partition, provided proper threshold values are speci�ed. The well-knownISODATA [16] algorithm employs this technique of merging and splitting clusters.If ISODATA is given the \ellipse" partitioning shown in Figure 14 as an initial
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1Fig. 15. Using the minimal spanning tree to form clusters.partitioning, it will produce the optimal three-cluster partitioning. ISODATA will�rst merge the clusters fAg and fB,Cg into one cluster because the distance betweentheir centroids is small and then split the cluster fD,E,F,Gg (which has a largevariance), into two clusters fD,Eg and fF,Gg.Another variation of the k-means algorithm involves selecting a di�erent criterionfunction altogether. The dynamic clustering algorithm (which permits representa-tions other than the centroid cl for each cluster) was proposed in [40], and [180]describes a dynamic clustering approach obtained by formulating the clusteringproblem in the framework of maximum-likelihood estimation. The regularized Ma-halanobis distance was used in [129] to obtain hyperellipsoidal clusters.5.2.2 Graph-Theoretic Clustering. The most well-known graph-theoretic divisiveclustering algorithm is based on the construction of the minimal spanning tree(MST) of the data [199] and then deleting the MST edges with the largest lengthsto generate more clusters. Figure 15 depicts the MST obtained from nine two-dimensional points. By breaking the link labeled CD with a length of 6 units (theedge with the maximum Euclidean length), two clusters (fA, B, Cg and fD, E, F,G, H, Ig) are obtained. The second cluster can be further divided into two clustersby breaking the edge EF which has a length of 4.5 units.



20 � A.K. Jain, M.N. Murty and P.J. FlynnThe hierarchical approaches are also related to graph-theoretic clustering. Single-link clusters are subgraphs of the minimum spanning tree of the data [79] which arealso the connected components [75]. Complete-link clusters are maximal completesubgraphs [75] and are related to the node colorability of graphs [12]. The max-imal complete subgraph was considered the strictest de�nition of a cluster in [8]and [150]. A graph-oriented approach for non-hierarchical structures and over-lapping clusters is presented in [145]. The Delaunay graph (DG) is obtained byconnecting all the pairs of points that are Voronoi neighbors. The DG contains allthe neighborhood information contained in the MST and the relative neighborhoodgraph (RNG) [184].5.3 Mixture Resolving and Mode-Seeking AlgorithmsThe mixture resolving approach to cluster analysis has been addressed in a numberof ways. The underlying assumption is that the patterns to be clustered are drawnfrom one of several distributions, and the goal is to identify the parameters ofeach and (perhaps) their number. Most of the work in this area has assumed thatthe individual components of the mixture density are Gaussian, and in this casethe parameters of the individual Gaussians are to be estimated by the procedure.Traditional approaches to this problem involve obtaining (iteratively) a maximumlikelihood estimate of the parameter vectors of the component densities [95].More recently, the Expectation Maximization (EM) algorithm (a general-purposemaximum likelihood algorithm [39] for missing-data problems) has been applied tothe problem of parameter estimation. A recent book [134] provides an accessibledescription of the technique. In the EM framework, the parameters of the compo-nent densities are unknown, as are the mixing parameters, and these are estimatedfrom the patterns. The EM procedure begins with an initial estimate of the pa-rameter vector and iteratively rescores the patterns against the mixture densityproduced by the parameter vector. The rescored patterns are then used to updatethe parameter estimates. In a clustering context, the scores of the patterns (whichessentially measure their likelihood of being drawn from particular components ofthe mixture) can be viewed as hints at the class of the pattern. Those patterns,placed (by their scores) in a particular component, would therefore be viewed asbelonging to the same cluster.Nonparametric techniques for density-based clustering have also been devel-oped [95]. Inspired by the Parzen window approach to nonparametric density esti-mation, the corresponding clustering procedure searches for bins with large countsin a multidimensional histogram of the input pattern set. Other approaches includethe application of another partitional or hierarchical clustering algorithm using adistance measure based on a nonparametric density estimate.5.4 Nearest Neighbor ClusteringSince proximity plays a key role in our intuitive notion of a cluster, nearest-neighbordistances can serve as the basis of clustering procedures. An iterative procedurewas proposed in [123]; it assigns each unlabeled pattern to the cluster of its nearestlabeled neighbor pattern, provided the distance to that labeled neighbor is belowa threshold. The process continues until all patterns are labeled or no additionallabelings occur. The mutual neighborhood value (described earlier in the context



Data Clustering: A Review � 21of distance computation) can also be used to grow clusters from near neighbors.5.5 Fuzzy ClusteringTraditional clustering approaches generate partitions; in a partition, each patternbelongs to one and only one cluster. Hence, the clusters in a hard clustering aredisjoint. Fuzzy clustering extends this notion to associate each pattern with everycluster using a membership function [198]. The output of such algorithms is aclustering, but not a partition. We give a high-level partitional fuzzy clusteringalgorithm below. Fuzzy Clustering Algorithm(1) Select an initial fuzzy partition of the N objects into K clusters by selectingthe N �K membership matrix U. An element uij of this matrix represents thegrade of membership of object xi in cluster cj . Typically, uij 2 [0; 1].(2) Using U, �nd the value of a fuzzy criterion function, e.g. a weighted squarederror criterion function, associated with the corresponding partition. One pos-sible fuzzy criterion function isE2(X ;U) = NXi=1 KXk=1uijkxi � ckk2;where ck =PNi=1 uikxi is the kth fuzzy cluster center.Reassign patterns to clusters to reduce this criterion function value and recom-pute U.(3) Repeat step 2 until entries in U do not change signi�cantly.In fuzzy clustering, each cluster is a fuzzy set of all the patterns. Figure 16illustrates the idea. The rectangles enclose two \hard" clusters in the data: H1 =f1; 2; 3; 4; 5g and H2 = f6; 7; 8; 9g. A fuzzy clustering algorithm might producethe two fuzzy clusters F1 and F2 depicted by ellipses. The patterns will havemembership values in [0,1] for each cluster. For example, fuzzy cluster F1 could becompactly described asf(1; 0:9); (2; 0:8); (3; 0:7); (4; 0:6); (5; 0:55); (6; 0:2); (7; 0:2); (8; 0:0); (9; 0:0)gand F2 could be described asf(1; 0:0); (2; 0:0); (3; 0:0); (4; 0:1); (5; 0:15); (6; 0:4); (7; 0:35); (8; 1:0); (9; 0:9)gThe ordered pairs (i; �i) in each cluster represent the ith pattern and its member-ship value to the cluster �i. Larger membership values indicate higher con�dencein the assignment of the pattern to the cluster. A hard clustering can be obtainedfrom a fuzzy partition by thresholding the membership value.Fuzzy set theory was initially applied to clustering in [158]. The book byBezdek [18] is a good source for material on fuzzy clustering. The most popu-lar fuzzy clustering algorithm is the fuzzy c-means (FCM) algorithm [18]. Eventhough it is better than the hard k-means algorithm in avoiding local minima,FCM can still converge to local minima of the squared error criterion. The designof membership functions is the most important problem in fuzzy clustering; di�er-ent choices include those based on similarity decomposition [18] and centroids of
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Fig. 16. Fuzzy clusters.clusters. A generalization of the FCM algorithm was proposed by [18] through afamily of objective functions. A fuzzy c-shell algorithm and an adaptive variant fordetecting circular and elliptical boundaries was presented in [36].5.6 Representation of ClustersIn applications where the number of classes or clusters in a data set must be discov-ered, a partition of the data set is the end product. Here, a partition gives an ideaabout the separability of the data points into clusters and whether it is meaningfulto employ a supervised classi�er that assumes a given number of classes in thedata set. However, in many other applications that involve decision making, theresulting clusters have to be represented or described in a compact form to achievedata abstraction. Even though the construction of a cluster representation is animportant step in decision making, it has not been examined closely by researchers.The notion of cluster representation was introduced in [51] and was subsequentlystudied in [41] and [131]. They suggested the following representation schemes:(1) Represent a cluster of points by their centroid or by a set of distant points inthe cluster. Figure 17 depicts these two ideas.(2) Represent clusters using nodes in a classi�cation tree. This is illustrated inFigure 18.(3) Represent clusters by using conjunctive logical expressions. For example, theexpression [X1 > 3][X2 < 2] in Figure 18 stands for the logical statement `X1is greater than 3' and `X2 is less than 2'.Use of the centroid to represent a cluster is the most popular scheme. It workswell when the clusters are compact or isotropic. However, when the clusters areelongated or non-isotropic, then this scheme fails to represent them properly. Insuch a case, the use of a collection of boundary points in a cluster captures itsshape well. The number of points used to represent a cluster should increase asthe complexity of its shape increases. The two di�erent representations illustratedin Figure 18 are equivalent. Every path in a classi�cation tree from the root nodeto a leaf node corresponds to a conjunctive statement. An important limitation of
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Fig. 18. Representation of clusters by a classi�cation tree or by conjunctive statements.the typical use of the simple conjunctive concept representations is that they candescribe only rectangular or isotropic clusters in the feature space.Data abstraction is useful in decision making because of the following:(1) It gives a simple and intuitive description of clusters which is easy for humancomprehension [132]. In both conceptual clustering [132] and symbolic cluster-ing [78] this representation is obtained without using an additional step. Thesealgorithms generate the clusters as well as their descriptions. A set of fuzzyrules can be obtained from fuzzy clusters of a data set. These rules can be usedto build fuzzy classi�ers and fuzzy controllers.(2) It helps in achieving data compression that can be exploited further by a com-puter [138]. Figure 19(a) shows samples belonging to two chain-like clusterslabeled 1 and 2. A partitional clustering like the k-means algorithm cannotseparate these two structures properly. The single-link algorithm works wellon this data, but is computationally expensive. So, a hybrid approach may beused to exploit the desirable properties of both these algorithms. We obtain 8subclusters of the data by using the (computationally e�cient) k-means algo-rithm. Each of these subclusters can be represented by their centroids as shownin Figure 19(a). Now the single-link algorithm can be applied on these cen-troids alone to cluster them into 2 groups. The resulting groups are shown inFigure 19(b). Here, a data reduction is achieved by representing the subclustersby their centroids.
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Fig. 19. Data compression by clustering.(3) It increases the e�ciency of the decision making task. In a cluster-based doc-ument retrieval technique [159], a large collection of documents is clusteredand each of the clusters is represented using its centroid. In order to retrievedocuments relevant to a query, the query is matched with the cluster centroidsrather than with all the documents. This helps in retrieving relevant documentse�ciently. Also in several applications involving large data sets, clustering isused to perform indexing, which helps in e�cient decision making [43].5.7 Arti�cial Neural Networks for ClusteringArti�cial neural networks (ANNs) [84] are motivated by biological neural networks.ANNs have been used extensively over the past three decades for both classi�cationand clustering [168; 99]. Some of the features of the ANNs that are important inpattern clustering are:(1) ANNs process numerical vectors and so require patterns to be represented usingquantitative features only.(2) ANNs are inherently parallel and distributed processing architectures.(3) ANNs may learn their interconnection weights adaptively [101; 144]. Morespeci�cally, they can act as pattern normalizers and feature selectors by appro-priate selection of weights.Competitive (or winner-take-all) neural networks [101] are often used to clusterinput data. In competitive learning, similar patterns are grouped by the networkand represented by a single unit (neuron). This grouping is done automaticallybased on data correlations. Well-known examples of ANNs used for clusteringinclude Kohonen's learning vector quantization (LVQ) and self-organizing map(SOM) [114], and adaptive resonance theory models [24]. The architectures ofthese ANNs are simple: they are single-layered. Patterns are presented at theinput and are associated with the output nodes. The weights between the inputnodes and the output nodes are iteratively changed (this is called learning) untila termination criterion is satis�ed. Competitive learning has been found to existin biological neural networks. However, the learning or weight update proceduresare quite similar to those in some classical clustering approaches. For example, therelationship between the k-means algorithm and LVQ is addressed in [147]. Thelearning algorithm in ART models is similar to the leader clustering algorithm [136].



Data Clustering: A Review � 25The SOM gives an intuitively appealing two-dimensional map of the multidimen-sional data set, and it has been successfully used for vector quantization and speechrecognition [114]. However, like its sequential counterpart, the SOM generates asub-optimal partition if the initial weights are not chosen properly. Further, itsconvergence is controlled by various parameters such as the learning rate and aneighborhood of the winning node in which learning takes place. It is possible thata particular input pattern can �re di�erent output units at di�erent iterations; thisbrings up the stability issue of learning systems. The system is said to be stable ifno pattern in the training data changes its category after a �nite number of learningiterations. This problem is closely associated with the problem of plasticity, whichis the ability of the algorithm to adapt to new data. For stability, the learning rateshould be decreased to zero as iterations progress and this a�ects the plasticity.The ART models are supposed to be stable and plastic [24]. However, ART netsare order-dependent; that is, di�erent partitions are obtained for di�erent orders inwhich the data is presented to the net. Also the size and number of clusters gener-ated by an ART net depend on the value chosen for the vigilance threshold, whichis used to decide whether a pattern is to be assigned to one of the existing clustersor start a new cluster. Further, both SOM and ART are suitable for detecting onlyhyper-spherical clusters [84]. A two-layer network that employs regularized Ma-halanobis distance to extract hyperellipsoidal clusters was proposed in [129]. Allthese ANNs use a �xed number of output nodes which limit the number of clustersthat can be produced.5.8 Evolutionary Approaches for ClusteringEvolutionary approaches, motivated by natural evolution, make use of evolutionaryoperators and a population of solutions to obtain the globally optimal partition ofthe data. Candidate solutions to the clustering problem are encoded as chromo-somes. The most commonly used evolutionary operators are: selection, recombi-nation, and mutation. Each transforms one or more input chromosomes into oneor more output chromosomes. A �tness function evaluated on a chromosome de-termines a chromosome's likelihood of surviving into the next generation. We givebelow a high-level description of an evolutionary algorithm applied to clustering.An Evolutionary Algorithm for Clustering(1) Choose a random population of solutions. Each solution here corresponds toa valid k-partition of the data. Associate a �tness value with each solution.Typically, �tness is inversely proportional to the squared error value. A solutionwith a small squared error will have a larger �tness value.(2) Use the evolutionary operators selection, recombination and mutation to gen-erate the next population of solutions. Evaluate the �tness values of thesesolutions.(3) Repeat step 2 until some termination condition is satis�ed.The best known evolutionary techniques are genetic algorithms (GAs) [88; 73],evolution strategies (ESs) [164], and evolutionary programming (EP) [65]. Out ofthese three approaches, GAs have been most frequently used in clustering. Typi-cally, solutions are binary strings in GAs. In GAs, a selection operator propagates
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Fig. 20. Crossover operation.solutions from the current generation to the next generation based on their �tness.Selection employs a probabilistic scheme so that solutions with higher �tness havea higher probability of getting reproduced.There are a variety of recombination operators in use; crossover is the most pop-ular. Crossover takes as input a pair of chromosomes (called parents) and outputs anew pair of chromosomes (called children or o�spring) as depicted in Figure 20. InFigure 20, a single point crossover operation is depicted. It exchanges the segmentsof the parents across a crossover point. For example, in Figure 20, the parents arethe binary strings `10110101' and `11001110'. The segments in the two parents afterthe crossover point (between the fourth and �fth locations) are exchanged to pro-duce the child chromosomes. Mutation takes as input a chromosome and outputsa chromosome by complementing the bit value at a randomly selected location inthe input chromosome. For example, the string `11111110' is generated by applyingthe mutation operator to the second bit location in the string `10111110' (start-ing at the left). Both crossover and mutation are applied with some pre-speci�edprobabilities which depend on the �tness values.GAs represent points in the search space as binary strings and rely on the cross-over operator to explore the search space. Mutation is used in GAs for the sakeof completeness, that is, to make sure that no part of the search space is leftunexplored. ESs and EP di�er from the GAs in solution representation and type ofthe mutation operator used; EP does not use a recombination operator, but onlyselection and mutation. Each of these three approaches have been used to solve theclustering problem by viewing it as a minimization of the squared error criterion.Some of the theoretical issues such as the convergence of these approaches werestudied in [64].GAs perform a globalized search for solutions whereas most other clustering pro-cedures perform a localized search. In a localized search, the solution obtainedat the `next iteration' of the procedure is in the vicinity of the current solution.In this sense, the k-means algorithm, fuzzy clustering algorithms, ANNs used forclustering, various annealing schemes (see below), and tabu search are all localizedsearch techniques. In the case of GAs, the crossover and mutation operators canproduce new solutions that are completely di�erent from the current ones. We
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Fig. 21. GAs perform globalized search.illustrate this fact in Figure 21. Let us assume that the scalar X is coded using a5-bit binary representation, and let S1 and S2 be two points in the one-dimensionalsearch space. The decimal values of S1 and S2 are 8 and 31 respectively. Theirbinary representations are S1 = 01000 and S2 = 11111. Let us apply the single-point crossover to these strings with the crossover site falling between the secondand third most signi�cant bits as shown below.01!00011!111This will produce a new pair of points or chromosomes S3 and S4 as shown inFigure 21. Here, S3 = 01111 and S4 = 11000. The corresponding decimal valuesare 15 and 24, respectively. Similarly, by mutating the most signi�cant bit in thebinary string 01111 (decimal 15), the binary string 11111 (decimal 31) is generated.These jumps or gaps between points in successive generations are much larger thanthose produced by other approaches.Perhaps the earliest paper on the use of GAs for clustering is [149], where aGA was used to minimize the squared error of a clustering. Here, each point orchromosome represents a partition of N objects into K clusters and is representedby a K-ary string of length N . For example, consider six patterns A, B, C, D, E,and F and the string 101001. This six-bit binary (K = 2) string corresponds toplacing the six patterns into two clusters. This string represents a two-partition,where one cluster has the �rst, third, and sixth patterns and the second cluster hasthe remaining patterns. In other words, the two clusters are fA,C,Fg and fB,D,Eg(the six-bit binary string 010110 represents the same clustering of the six patterns).When there are K clusters, there are K! di�erent chromosomes corresponding toeach K-partition of the data. This increases the e�ective search space size bya factor of K!. Further, if crossover is applied on two good chromosomes, theresulting o�spring may be inferior in this representation. For example, let fA,B,Cgand fD,E,Fg be the clusters in the optimal 2-partition of the six patterns consideredabove. The corresponding chromosomes are 111000 and 000111. By applying single-point crossover at the location between the third and fourth bit positions on these



28 � A.K. Jain, M.N. Murty and P.J. Flynntwo strings, we get 111111 and 000000 as o�spring and both correspond to aninferior partition. These problems have motivated researchers to design betterrepresentation schemes and crossover operators.In [19], an improved representation scheme is proposed, where an additional sep-arator symbol is used along with the pattern labels to represent a partition. Letthe separator symbol be represented by *. Then the chromosome ACF*BDE cor-responds to a 2-partition fA,C,Fg and fB,D,Eg. Using this representation permitsthem to map the clustering problem into a permutation problem such as the trav-eling salesman problem which can be solved by using the permutation crossoveroperators [73]. This solution also su�ers from permutation redundancy. There are72 equivalent chromosomes (permutations) corresponding to the same partition ofthe data into the two clusters fA,C,Fg and fB,D,Eg.More recently, [107] investigated the use of edge-based crossover [194] to solve theclustering problem. Here, all patterns in a cluster are assumed to form a completegraph by connecting them with edges. O�spring are generated from the parentsso that they inherit the edges from their parents. It is observed that this cross-over operator takes O(K6 + N) time for N patterns and K clusters ruling outits applicability on practical data sets having more than 10 clusters. In a hybridapproach proposed in [9], the GA is used only to �nd good initial cluster centers andthe k-means algorithm is applied to �nd the �nal partition. This hybrid approachperformed better than the GA.A major problem with GAs is their sensitivity to the selection of various param-eters such as population size, crossover and mutation probabilities, etc. Grefen-stette [80] has studied this problem and suggested guidelines for selecting thesecontrol parameters. However, these guidelines may not yield good results on spe-ci�c problems like pattern clustering. It was reported in [107] that hybrid geneticalgorithms incorporating problem-speci�c heuristics are good for clustering. A sim-ilar claim is made in [37] about the applicability of GAs to other practical problems.Another issue with GAs is the selection of an appropriate representation which islow in order and short in de�ning length.It is possible to view the clustering problem as an optimization problem thatlocates the optimal centroids of the clusters directly rather than �nding an optimalpartition using a GA. This view permits the use of ESs and EP because centroids canbe coded easily in both these approaches as they support the direct representationof a solution as a real-valued vector. In [10], ESs were used on both hard and fuzzyclustering problems and EP has been used to evolve fuzzy min-max clusters [63]. Ithas been observed that they perform better than their classical counterparts, the k-means algorithm and the fuzzy c-means algorithm. However, all of these approachessu�er (as do GAs and ANNs) from sensitivity to control parameter selection. Foreach speci�c problem, one has to tune the parameter values to suit the application.5.9 Search-Based ApproachesSearch techniques used to obtain the optimum value of the criterion function aredivided into deterministic and stochastic search techniques. Deterministic searchtechniques guarantee an optimal partition by performing exhaustive enumeration.On the other hand, the stochastic search techniques generate a near-optimal par-tition reasonably quickly and guarantee convergence to optimal partition asymp-



Data Clustering: A Review � 29totically. Among the techniques considered so far, evolutionary approaches arestochastic and the remainder are deterministic. Other deterministic approaches toclustering include the branch and bound technique adopted in [113] and [26] forgenerating optimal partitions. This approach generates the optimal partition ofthe data at the cost of excessive computational requirements. In [154], a deter-ministic annealing approach was proposed for clustering. This approach employsan annealing technique in which the error surface is smoothed, but convergenceto the global optimum is not guaranteed. The use of deterministic annealing inproximity-mode clustering (where the patterns are speci�ed in terms of pairwiseproximities rather than multidimensional points) was explored in [86]; later workapplied the deterministic annealing approach to texture segmentation [87].The deterministic approaches are typically greedy descent approaches, whereasthe stochastic approaches permit perturbations to the solutions in non-locally-optimal directions also with nonzero probabilities. The stochastic search techniquesare either sequential or parallel, while evolutionary approaches are inherently par-allel. The simulated annealing approach (SA) [110] is a sequential stochastic searchtechnique, whose applicability to clustering is discussed in [111]. Simulated anneal-ing procedures are designed to avoid (or recover from) solutions which correspondto local optima of the objective functions. This is accomplished by accepting withsome probability a new solution for the next iteration of lower quality (as measuredby the criterion function). The probability of acceptance is governed by a criti-cal parameter called the temperature (by analogy with annealing in metals) whichis typically speci�ed in terms of a starting (�rst iteration) and �nal temperaturevalue. Selim and Al-Sultan [166] studied the e�ects of control parameters on theperformance of the algorithm, and [14] used SA to obtain near-optimal partition ofthe data. SA is statistically guaranteed to �nd the global optimal solution [1]. Ahigh-level outline of a SA based algorithm for clustering is given below.Clustering Based on Simulated Annealing(1) Randomly select an initial partition and P0, and compute the squared errorvalue, EP0 . Select values for the control parameters, initial and �nal tempera-tures T0 and Tf .(2) Select a neighbor P1 of P0 and compute its squared error value, EP1 . If EP1 islarger than EP0 , then assign P1 to P0 with a temperature-dependent probability.Else assign P1 to P0. Repeat this step for a �xed number of iterations.(3) Reduce the value of T0, i.e. T0 = cT0, where c is a predetermined constant. IfT0 is greater than Tf , then go to step 2. Else stop.The SA algorithm can be slow in reaching the optimal solution because opti-mal results require the temperature to be decreased very slowly from iteration toiteration.Tabu search [72], like SA, is a method designed to cross boundaries of feasibilityor local optimality and to systematically impose and release constraints to permitexploration of otherwise forbidden regions. Tabu search was used to solve theclustering problem in [3].



30 � A.K. Jain, M.N. Murty and P.J. Flynn5.10 A Comparison of TechniquesIn this section we have examined various deterministic and stochastic search tech-niques to approach the clustering problem as an optimization problem. A majorityof these methods use the squared error criterion function. Hence, the partitionsgenerated by these approaches are not as versatile as those generated by hierar-chical algorithms. The clusters generated are typically hyper-spherical in shape.Evolutionary approaches are globalized search techniques, whereas the rest of theapproaches are localized search technique. ANNs and GAs are inherently paralleland so they can be implemented using parallel hardware to improve their speed.Evolutionary approaches are population-based; that is, they search using more thanone solution at a time and the rest are based on using a single solution at a time.ANNs, GAs, SA, and Tabu search (TS) are all sensitive to the selection of variouslearning/control parameters. In theory, all these four methods are weak meth-ods [152] in that they do not use explicit domain knowledge. An important featureof the evolutionary approaches is that they can �nd the optimal solution even whenthe criterion function is discontinuous.An empirical study of the performance of the following heuristics for clusteringwas presented in [133]; SA, GA, TS, randomized branch and bound (RBA) [133],and hybrid search (HS) strategies [94] were evaluated. The conclusion was that GAperforms well in the case of one-dimensional data, while its performance on highdimensional data sets is not impressive. The performance of SA is not attractivebecause it is very slow. RBA and TS performed best. HS is good for high dimen-sional data. However, none of the methods was found to be superior to others by asigni�cant margin. An empirical study of k-means, SA, TS, and GA was presentedin [4]. TS, GA and SA were judged comparable in terms of solution quality and allwere better than k-means. However, the k-means method is the most e�cient interms of execution time; other schemes took more time (by a factor of 500 to 2500)to partition a data set of size 60 into 5 clusters. Further, GA encountered the bestsolution faster than TS and SA; SA took more time than TS to encounter the bestsolution. However, GA took the maximum time for convergence, that is to obtain apopulation of only the best solutions, followed by TS and SA. An important obser-vation is that in both [133] and [4] the sizes of the data sets considered are small,that is, fewer than 200 patterns.A two-layer network was employed in [129], with the �rst layer including a numberof principal component analysis subnets, and the second layer using a competitivenet. This network performs partitional clustering using the regularizedMahalanobisdistance. This net was trained using a set of 1000 randomly selected pixels froma large image and then used to classify every pixel in the image. Reference [11]proposed a stochastic connectionist approach (SCA) and compared its performanceon standard data sets with both the SA and k-means algorithms. It was observedthat SCA is superior to both SA and k-means in terms of solution quality. Evolu-tionary approaches are good only when the data size is less than 1000 and for lowdimensional data.In summary, only the k-means algorithm and its ANN equivalent, the Kohonennet [129], have been applied on large data sets; other approaches have been tested,typically, on small data sets. This is because obtaining suitable learning/control



Data Clustering: A Review � 31parameters for ANNs, GAs, TS, and SA is di�cult and their execution times arevery high for large data sets. However, it has been shown [165] that the k-meansmethod converges to a locally optimal solution. This behavior is linked with theinitial seed selection in the k-means algorithm. So, if a good initial partition can beobtained quickly using any of the other techniques, then k-means would work welleven on problems with large data sets. Even though various methods discussed inthis section are weak, it was revealed through experimental studies that combiningdomain knowledge would improve their performance. For example, ANNs workbetter in classifying images represented using extracted features than with rawimages and hybrid classi�ers work better than ANNs [135]. Similarly, using domainknowledge to hybridize a GA improves its performance [107]. So, it may be usefulin general to use domain knowledge along with approaches like GA, SA, ANN, andTS. However, these approaches (speci�cally, the criteria functions used in them)have a tendency to generate a partition of hyperspherical clusters and this could bea limitation. For example, in cluster-based document retrieval, it was observed thatthe hierarchical algorithms performed better than the partitional algorithms [151].5.11 Incorporating Domain Constraints in ClusteringAs a task, clustering is subjective in nature. The same data set may need to bepartitioned di�erently for di�erent purposes. For example, consider a whale, anelephant, and a tuna �sh [192]. Whales and elephants form a cluster of mammals.However, if the user is interested in partitioning them based on the concept ofliving in water, then whale and tuna �sh are clustered together. Typically, thissubjectivity is incorporated into the clustering criterion by incorporating domainknowledge in one or more phases of clustering.Every clustering algorithm uses some type of knowledge either implicitly or ex-plicitly. Implicit knowledge plays a role in (1) selecting a pattern representationscheme (e.g., using one's prior experience to select and encode features), (2) choos-ing a similarity measure (e.g., using the Mahalanobis distance instead of the Eu-clidean distance to obtain hyperellipsoidal clusters), and (3) selecting a groupingscheme (e.g., specifying the k-means algorithm when it is known that clusters arehyperspherical). Domain knowledge is used implicitly in ANNs, GAs, TS, and SAto select the control/learning parameter values that a�ect the performance of thesealgorithms.It is also possible to use explicitly available domain knowledge to constrain orguide the clustering process. Such specialized clustering algorithms have been usedin several applications. Domain concepts can play several roles in the clusteringprocess, and a variety of choices are available to the practitioner. At one extreme,the available domain concepts might easily serve as an additional feature (or sev-eral), and the remainder of the procedure might be otherwise una�ected. At theother extreme, domain concepts might be used to con�rm or veto a decision ar-rived at independently by a traditional clustering algorithm, or used to a�ect thecomputation of distance in a clustering algorithm employing proximity. The incor-poration of domain knowledge into clustering consists mainly of ad hoc approacheswith little in common; accordingly, our discussion of the idea will consist mainly ofmotivational material and a brief survey of past work. Machine learning researchand pattern recognition research intersect in this topical area, and the interested



32 � A.K. Jain, M.N. Murty and P.J. Flynnreader is referred to the prominent journals in machine learning (e.g., MachineLearning, J. of AI Research, or Arti�cial Intelligence) for a fuller treatment of thistopic.As documented in [27], rules in an expert system may be clustered to reduce thesize of the knowledge base. This modi�cation of clustering was also explored in thedomains of universities, congressional voting records, and terrorist events by [119].5.11.1 Similarity Computation. Conceptual knowledge was used explicitly in thesimilarity computation phase in [132]. It was assumed that the pattern representa-tions were available and the dynamic clustering algorithm [40] was used to grouppatterns. The clusters formed were described using conjunctive statements in predi-cate logic. It was stated in [178; 132] that the groupings obtained by the conceptualclustering are superior to those obtained by the numerical methods for clustering.A critical analysis of that work appears in [35] and it was observed that monotheticdivisive clustering algorithms generate clusters that can be described by conjunc-tive statements. For example, consider Figure 8. Four clusters in this �gure, thatare obtained using a monothetic algorithm, can be described by using conjunctiveconcepts as shown below:Cluster1: [X � a] ^ [Y � b]Cluster2: [X � a] ^ [Y > b]Cluster3: [X > a] ^ [Y > c]Cluster4: [X > a] ^ [Y � c],where ^ is the Boolean conjunction (`and') operator, and a, b and c are constants.5.11.2 Pattern Representation. It was shown in [176] that by using knowledgein the pattern representation phase, as is implicitly done in numerical taxonomyapproaches, it is possible to obtain the same partitions as those generated by con-ceptual clustering. In this sense, conceptual clustering and numerical taxonomyare not diametrically opposite, but are equivalent. In the case of conceptual clus-tering, domain knowledge is explicitly used in interpattern similarity computation,whereas in numerical taxonomy it is implicitly assumed that pattern representationsare obtained using the domain knowledge.5.11.3 Cluster Descriptions. Typically, in knowledge-based clustering, both theclusters and their descriptions or characterizations [58] are generated. There aresome exceptions [78] where only clustering is performed and no descriptions aregenerated explicitly. In conceptual clustering [132], a cluster of objects is describedby a conjunctive logical expression. Even though a conjunctive statement is one ofthe most common descriptive forms used by humans, it is a limited form. In [169],functional knowledge of objects was used to generate more intuitively appealingcluster descriptions that employ the Boolean implication operator. A system thatrepresents clusters probabilistically was described in [59]; these descriptions aremore general than conjunctive concepts, and are well-suited to hierarchical clas-si�cation domains (e.g. the animal species hierarchy). A conceptual clusteringsystem in which clustering is done �rst is described in [58]. These clusters are then
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electric        ...                             water ... metallic ... Fig. 22. Functional knowledge.described using probabilities. A similar scheme was described in [139], but thedescriptions are logical expressions that employ both conjunction and disjunction.An important characteristic of conceptual clustering is that it is possible to groupobjects represented by both qualitative and quantitative features if the clusteringleads to a conjunctive concept. For example, the concept cricket ball might berepresented as[color = red] ^ [shape = sphere] ^ [make = leather] ^ [radius = 1.4 inches];where radius is a quantitative feature and the rest are all qualitative features.This description is used to describe a cluster of cricket balls. In [178], a graph(the goal dependency network) was used to group structured objects. In [169]functional knowledge was used to group man-made objects. Functional knowledgewas represented using and/or trees [152]. For example, the function cooking, shownin Figure 22, can be decomposed into functions like holding and heating the materialin a liquid medium. Each man-made object has a primary function for which it isproduced. Further, based on its features it may serve additional functions. Forexample, a book is meant for reading, but if it is heavy then it can also be used asa paper weight. In [179] object functions were used to construct generic recognitionsystems.5.11.4 Pragmatic Issues. Any implementation of a system that explicitly incor-porates domain concepts into a clustering technique has to address the followingimportant pragmatic issues:(1) Representation, availability and completeness of domain concepts.(2) Construction of inferences using the knowledge.(3) Accommodation of changing or dynamic knowledge.In some domains, complete knowledge is available explicitly. For example, theACM Computing Reviews classi�cation tree used in [139] is complete and is ex-plicitly available for use. In several domains, knowledge is incomplete and is notavailable explicitly. Typically, machine learning techniques are used to automat-ically extract knowledge, which is a di�cult and challenging problem. The mostprominently used learning method is \learning from examples" [148]. This is aninductive learning scheme used to acquire knowledge from examples of each of theclasses in di�erent domains. Even if the knowledge is available explicitly, it is di�-cult to �nd out whether it is complete and sound. Further, it is extremely di�cult



34 � A.K. Jain, M.N. Murty and P.J. Flynnto verify soundness and completeness of knowledge extracted from practical datasets because such knowledge cannot be represented in propositional logic. It ispossible that both the data and knowledge keep changing with time. For example,in a library, new books might get added and some old books might be deleted fromthe collection with time. Also, the classi�cation system (knowledge) employed bythe library is updated periodically.A major problem with knowledge-based clustering is that it has not been appliedto large data sets or in domains with large knowledge bases. Typically, the numberof objects grouped was less than 1000 and number of rules used as a part of theknowledge was less than 100. The most di�cult problem is to use a very largeknowledge base for clustering objects in several practical problems including datamining, image segmentation, and document retrieval.5.12 Clustering Large Data SetsThere are several applications where it is necessary to cluster a large collectionof patterns. The de�nition of `large' has varied (and will continue to do so) withchanges in technology (e.g., memory and processing time). In the 1960s, `large'meant several thousand patterns [157]; now, there are applications where millionsof patterns of high dimensionality have to be clustered. For example, to segmentan image of size 500� 500 pixels, the number of pixels to be clustered is 250,000.In document retrieval and information �ltering, millions of patterns with a dimen-sionality of more than 100 have to be clustered to achieve data abstraction. Amajority of the approaches and algorithms proposed in the literature cannot han-dle such large data sets. Approaches based on genetic algorithms, tabu search andsimulated annealing are optimization techniques and are restricted to reasonablysmall data sets. Implementations of conceptual clustering optimize some criterionfunctions and are typically computationally expensive.The convergent k-means algorithm and its ANN equivalent, the Kohonen net,have been used to cluster large data sets [129]. The reasons behind the popularityof the k-means algorithm are:(1) Its time complexity is O(nkl), where n is the number of patterns, k is thenumber of clusters, and l is the number of iterations taken by the algorithmto converge. Typically, k and l are �xed in advance and so the algorithm haslinear time complexity in the size of the data set [38].(2) Its space complexity is O(k+ n). It requires additional space to store the datamatrix. It is possible to store the data matrix in a secondary memory and accesseach pattern based on need. However, this scheme requires a huge access timebecause of the iterative nature of the algorithm and as a consequence processingtime increases enormously.(3) It is order-independent; for a given initial seed set of cluster centers, it generatesthe same partition of the data irrespective of the order in which the patternsare presented to the algorithm.However, the k-means algorithm is sensitive to initial seed selection and even in thebest case, it can produce only hyperspherical clusters.Hierarchical algorithms are more versatile. But they have the following disad-vantages:



Data Clustering: A Review � 35Table 1. Complexity of Clustering AlgorithmsClustering Time Complexity Space ComplexityAlgorithmleader O(kn) O(k)k-means O(nkl) O(k)ISODATA O(nkl) O(k)shortest spanning path O(n2) O(n)single-link O(n2 log n) O(n2)complete-link O(n2 log n) O(n2)(1) The time complexity of hierarchical agglomerative algorithms isO(n2 logn) [117].It is possible to obtain single-link clusters using an MST of the data, which canbe constructed in O(n log2 n) time for two-dimensional data [30].(2) The space complexity of agglomerative algorithms is O(n2). This is becausea similarity matrix of size n � n has to be stored. To cluster every pixel in a100 � 100 image, approximately 200 megabytes of storage would be required(assuning single-precision storage of similarities). It is possible to compute theentries of this matrix based on need instead of storing them (but this wouldincrease the algorithm's time complexity [7]).Table 1 lists the time and space complexities of several well-known algorithms.Here, n is the number of patterns to be clustered, k is the number of clusters, andl is the number of iterations.A possible solution to the problem of clustering large data sets while only marginallysacri�cing the versatility of clusters is to implement more e�cient variants of clus-tering algorithms. A hybrid approach was used in [157], where a set of referencepoints is chosen as in the k-means algorithm and each of the remaining data pointsis assigned to one or more reference points or clusters. Minimal spanning trees(MST) are obtained for each group of points separately. These MSTs are mergedto form an approximate global MST. This approach computes similarities betweenonly a fraction of all possible pairs of points. It was shown that the number ofsimilarities computed for 10,000 patterns using this approach is the same as thetotal number of pairs of points in a collection of 2,000 points. Reference [17] con-tains an algorithm that can compute an approximate MST in O(n logn) time. Ascheme to generate an approximate dendrogram incrementally in O(n logn) timewas presented in [203], while [188] proposes an algorithm to speed up the ISODATAclustering algorithm. A study of the approximate single-linkage cluster analysis oflarge data sets was reported in [52]. In that work, an approximate MST was usedto form single-link clusters of a data set of size 40,000.The emerging discipline of data mining (discussed as an application in Sec-tion 6.4) has spurred the development of new algorithms for clustering large datasets. Two algorithms of note are the CLARANS algorithm developed by Ng andHan [141] and the BIRCH algorithm proposed by Zhang et al. [202]. CLARANS(Clustering Large Applications based on RANdom Search) identi�es candidate clus-ter centroids through analysis of repeated random samples from the original data.Because of the use of random sampling, the time complexity is O(n) for a pat-tern set of n elements. The BIRCH algorithm (Balanced Iterative Reducing andClustering) stores summary information about candidate clusters in a dynamic tree



36 � A.K. Jain, M.N. Murty and P.J. FlynnTable 2. Number of Distance Computations (n) for the single-link clustering algorithm and atwo-level divide and conquer algorithm.n single-link p two-level100 4,950 5 1200500 124,750 20 10,7501000 499,500 40 31,50010,000 49,995,000 100 1,013,750data structure. This tree hierarchically organizes the clusterings represented at theleaf nodes. The tree can be rebuilt when a threshold specifying cluster size is up-dated manually, or when memory constraints force a change in this threshold. Thisalgorithm, like CLARANS, has a time complexity linear in the number of patterns.The algorithms discussed above work on large data sets, where it is possibleto accommodate the entire pattern set in the main memory. However, there areapplications where the entire data set cannot be stored in the main memory becauseof its size. For example, to store a million patterns, each with 100 features, a mainmemory size of 100 megabytes is required which is not available on most of theexisting computers. There are currently three possible approaches to solve thisproblem.(1) The pattern set can be stored in a secondary memory and subsets of this dataclustered independently, followed by a merging step to yield a clustering of theentire pattern set. We call this approach the divide and conquer approach.(2) An incremental clustering algorithm can be employed. Here, the entire datamatrix is stored in a secondary memory and data items are transferred to themain memory one at a time for clustering. Only the cluster representations arestored in the main memory to alleviate the space limitations.(3) A parallel implementation of a clustering algorithm may be used. We discussthese approaches in the next three subsections.5.12.1 Divide and Conquer Approach. Here, we store the entire pattern matrixof size n � d in a secondary storage space (e.g., a disk �le). We divide this datainto p blocks, where an optimum value of p can be chosen based on the clusteringalgorithm used [138]. Let us assume that we have n=p patterns in each of the blocks.We transfer each of these blocks to the main memory and cluster it into k clustersusing a standard algorithm. One or more representative samples from each of theseclusters are stored separately; we have pk of these representative patterns if wechoose one representative per cluster. These pk representative are further clusteredinto k clusters and the cluster labels of these representative patterns are used torelabel the original pattern matrix. We depict this two-level algorithm in Figure 23.It is possible to extend this algorithm to any number of levels; more levels arerequired if the data set is very large and the main memory size is very small [138].If the single-link algorithm is used for obtaining 5 clusters, then there is a substantialsavings in the number of computations as shown in Table 2 for optimally chosen pwhen the number of clusters is �xed at 5. However, this algorithm works well onlywhen the points in each block are reasonably homogeneous which is often satis�edby image data.
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Fig. 23. Divide and conquer approach to clustering.A two-level strategy for clustering a data set containing 2,000 patterns was de-scribed in [177]. In the �rst level, the data set is loosely clustered into a largenumber of clusters using the leader algorithm. Representatives from these clusters,one per cluster, are the input to the second level clustering, which is obtained usingWard's hierarchical method.5.12.2 Incremental Clustering. Incremental clustering is based on the assump-tion that it is possible to consider patterns one at a time and assign them toexisting clusters. Here, a new data item is assigned to a cluster without a�ectingthe existing clusters signi�cantly. A high level description of a typical incrementalclustering algorithm is given below.An Incremental Clustering Algorithm(1) Assign the �rst data item to a cluster.(2) Consider the next data item. Either assign this item to one of the existingclusters or assign it to a new cluster. This assignment is done based on somecriterion, e.g. the distance between the new item and the existing clustercentroids.(3) Repeat step 2 till all the data items are clustered.The major advantage with the incremental clustering algorithms is that it isnot necessary to store the entire pattern matrix in the memory. So, the spacerequirements of incremental algorithms are very small. Typically, they are non-iterative. So, their time requirements are also small. There are several incrementalclustering algorithms:(1) The leader clustering algorithm [82] is the simplest in terms of time complexitywhich is O(nk). It has gained popularity because of its neural network imple-mentation, the ART network [24]. It is very easy to implement as it requiresonly O(k) space.(2) The shortest spanning path (SSP) algorithm [172] was originally proposedfor data reorganization and was successfully used in automatic auditing ofrecords [121]. Here, SSP algorithm was used to cluster 2000 patterns using18 features. These clusters are used to estimate missing feature values in dataitems and to identify erroneous feature values.(3) The cobweb system [59] is an incremental conceptual clustering algorithm. Ithas been successfully used in engineering applications [60].
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Fig. 24. The leader algorithm is order dependent.(4) An incremental clustering algorithm for dynamic information processing waspresented in [23]. The motivation behind this work is that, in dynamic databases,items might get added and deleted over time. These changes should be reectedin the partition generated without signi�cantly a�ecting the current clusters.This algorithm was used to cluster incrementally an INSPEC database of 12,684documents corresponding to computer science and electrical engineering.Order-independence is an important property of clustering algorithms. An algo-rithm is order-independent if it generates the same partition for any order in whichthe data is presented. Otherwise, it is order-dependent. Most of the incremental al-gorithms presented above are order-dependent. We illustrate this order-dependentproperty in Figure 24 where there are 6 two-dimensional objects labeled 1 to 6. Ifwe present these patterns to the leader algorithm in the order 2,1,3,5,4,6 then thetwo clusters obtained are shown by ellipses. If the order is 1,2,6,4,5,3, then we geta two-partition as shown by the triangles. The SSP algorithm, cobweb, and thealgorithm in [23] are all order-dependent.5.12.3 Parallel Implementation. Recent work [108] demonstrates that a combi-nation of algorithmic enhancements to a clustering algorithm and distribution ofthe computations over a network of workstations can allow an entire 512 � 512image to be clustered in a few minutes. Depending on the clustering algorithm inuse, parallelization of the code and replication of data for e�ciency may yield largebene�ts. However, a global shared data structure, namely the cluster membershiptable, remains and must be managed centrally or replicated and synchronized peri-odically. The presence or absence of robust, e�cient parallel clustering techniqueswill determine the success or failure of cluster analysis in large-scale data miningapplications in the future.6. APPLICATIONSClustering algorithms have been used in a large variety of applications [95; 151;143; 60]. In this section, we describe several applications where clustering has beenemployed as an essential step. These areas are: (1) image segmentation, (2) objectand character recognition, (3) document retrieval, and (4) data mining.
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Fig. 25. Feature representation for clustering. Image measurements and positions are trans-formed to features. Clusters in feature space correspond to image segments.6.1 Image Segmentation Using ClusteringImage segmentation is a fundamental component in many computer vision applica-tions, and can be addressed as a clustering problem [155]. The segmentation of theimage(s) presented to an image analysis system is critically dependent on the sceneto be sensed, the imaging geometry, con�guration, and sensor used to transduce thescene into a digital image, and ultimately the desired output (goal) of the system.The applicability of clustering methodology to the image segmentation problemwas recognized over three decades ago, and the paradigms underlying the initialpioneering e�orts are still in use today. A recurring theme is to de�ne feature vectorsat every image location (pixel) composed of both functions of image intensity andfunctions of the pixel location itself. This basic idea, depicted in Figure 25, hasbeen successfully used for intensity images (with or without texture), range (depth)images and multispectral images.6.1.1 Segmentation. An image segmentation is typically de�ned as an exhaustivepartitioning of an input image into regions, each of which is considered to be ho-mogeneous with respect to some image property of interest (e.g., intensity, color,or texture) [104]. If I = fxij ; i = 1 : : :Nr; j = 1 : : :Ncgis the input image with Nr rows and Nc columns and measurement value xij atpixel (i; j), then the segmentation can be expressed as S = fS1; : : : Skg, with thelth segment Sl = f(il1 ; jl1); : : : (ilNl ; jlNl )gconsisting of a connected subset of the pixel coordinates. No two segments shareany pixel locations (Si \ Sj = ; 8i 6= j), and the union of all segments coversthe entire image ([ki=1Si = f1 : : :Nrg � f1 : : :Ncg). Jain and Dubes [95] after Fuand Mui [70], identi�ed three techniques for producing segmentations from inputimagery: region-based, edge-based, or cluster-based.Consider the use of simple gray level thresholding to segment a high-contrastintensity image. Figure 26(a) shows a grayscale image of a textbook's bar code
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Fig. 26. Binarization via thresholding. (a): Original grayscale image. (b): Gray-level histogram.(c): Results of thresholding.scanned on a atbed scanner. Part (b) shows the results of a simple thresholdingoperation designed to separate the dark and light regions in the bar code area.Binarization steps like this are often performed in character recognition systems.Thresholding in e�ect `clusters' the image pixels into two groups based on the one-dimensional intensity measurement [156; 50]. A postprocessing step separates theclasses into connected regions. While simple gray level thresholding is adequate insome carefully controlled image acquisition environments and much research hasbeen devoted to appropriate methods for thresholding [193; 185], complex imagesrequire more elaborate segmentation techniques.Many segmenters use measurements which are both spectral (e.g., the multispec-tral scanner used in remote sensing) and spatial (based on the pixel's location inthe image plane). The measurement at each pixel hence corresponds directly toour concept of a pattern.6.1.2 Image Segmentation Via Clustering. The application of local feature clus-tering to segment gray-scale images was documented in [163]. This paper empha-sized the appropriate selection of features at each pixel rather than the clusteringmethodology, and proposed the use of image plane coordinates (spatial informa-



Data Clustering: A Review � 41tion) as additional features to be employed in clustering-based segmentation. Thegoal of clustering was to obtain a sequence of hyperellipsoidal clusters starting withcluster centers positioned at maximum density locations in the pattern space, andgrowing clusters about these centers until a �2 test for goodness of �t was vio-lated. A variety of features were discussed and applied to both grayscale and colorimagery.An agglomerative clustering algorithm was applied in [170] to the problem ofunsupervised learning of clusters of coe�cient vectors for two image models thatcorrespond to image segments. The �rst image model is polynomial for the observedimage measurements; the assumption here is that the image is a collection of severaladjoining graph surfaces, each a polynomial function of the image plane coordinates,which are sampled on the raster grid to produce the observed image. The algorithmproceeds by obtaining vectors of coe�cients of least-squares �ts to the data in Mdisjoint image windows. An agglomerative clustering algorithm merges (at eachstep) the two clusters which yield a minimum global between-cluster Mahalanobisdistance. The same framework was applied to segmentation of textured images,but for such images the polynomial model was inappropriate and a parameterizedMarkov Random Field model was assumed instead.Reference [196] describes the application of the principles of network ow tounsupervised classi�cation, yielding a novel hierarchical algorithm for clustering.In essence, the technique views the unlabeled patterns as nodes in a graph, wherethe weight of an edge (i.e., its capacity) is a measure of similarity between thecorresponding nodes. Clusters are identi�ed by removing edges from the graphto produce connected disjoint subgraphs. In image segmentation, pixels whichare 4-neighbors or 8-neighbors in the image plane share edges in the constructedadjacency graph, and the weight of a graph edge is based on the strength of ahypothesized image edge between the pixels involved (this strength is calculatedusing simple derivative masks). Hence, this segmenter works by �nding closedcontours in the image and is best labeled edge-based rather than region-based.In [189], two neural networks are designed to perform pattern clustering whencombined. A two-layer network operates on a multidimensional histogram of thedata to identify `prototypes' which are used to classify the input patterns intoclusters. These prototypes are fed to the classi�cation network, another two-layernetwork operating on the histogram of the input data, but trained to have di�eringweights from the prototype selection network. In both networks, the histogramof the image is used to weight the contributions of patterns neighboring the oneunder consideration to the location of prototypes or the ultimate classi�cation; assuch, it is likely to be more robust when compared to techniques which assume anunderlying parametric density function for the pattern classes. This architecturewas tested on gray-scale and color segmentation problems.Reference [106] describes a process for extracting clusters sequentially from theinput pattern set by identifying hyperellipsoidal regions (bounded by loci of con-stant Mahalanobis distance) which contain a speci�ed fraction of the unclassi�edpoints in the set. The extracted regions are compared against the best-�tting mul-tivariate Gaussian density through a Kolmogorov-Smirnov test, and the �t qualityis used as a �gure of merit for selecting the `best' region at each iteration. Theprocess continues until a stopping criterion is satis�ed. This procedure was applied



42 � A.K. Jain, M.N. Murty and P.J. Flynnto the problems of threshold selection for multithreshold segmentation of intensityimagery and segmentation of range imagery.Clustering techniques have also been successfully used for the segmentation ofrange images, which are a popular source of input data for three-dimensional ob-ject recognition systems [98]. Range sensors typically return raster images with themeasured value at each pixel being the coordinates of a 3D location in space. De-pending on the sensor's con�guration, these 3D positions can be understood as thelocations where rays emerging from the image plane locations in either a parallelbundle or a perspective cone intersect the objects in front of the sensor.The local feature clustering concept is particularly attractive for range image seg-mentation since (unlike intensity measurements) the measurements at each pixelhave the same units (length); this would make ad hoc transformations or normal-izations of the image features unnecessary if their goal is to impose equal scalingon those features. However, range image segmenters often add additional measure-ments to the feature space, removing this advantage.A range image segmentation system described in [85] employs squared error clus-tering in a six-dimensional feature space as a source of an \initial" segmentationwhich is re�ned (typically by merging segments) into the output segmentation.The technique was enhanced in [62] and used in a recent systematic comparison ofrange image segmenters [89]; as such, it is probably one of the longest-lived rangesegmenters which has performed well on a large variety of range images.This segmenter works as follows. At each pixel (i; j) in the input range image,the corresponding 3D measurement is denoted (xij ; yij ; zij), where typically xij isa linear function of j (the column number) and yij is a linear function of i (the rownumber). A k� k neighborhood of (i; j) is used to estimate the 3D surface normalnij = (nxij ; nyij ; nzij) at (i; j), typically by �nding the least-squares planar �t to the3D points in the neighborhood. The feature vector for the pixel at (i; j) is the six-dimensional measurement (xij ; yij ; zij ; nxij ; nyij ; nzij), and a candidate segmentationis found by clustering these feature vectors. For practical reasons, not every pixel'sfeature vector is used in the clustering procedure; typically 1000 feature vectors arechosen by subsampling.The CLUSTER algorithm [95] was used to obtain segment labels for each pixel.CLUSTER is an enhancement of the k-means algorithm; it has the ability to identifyseveral clusterings of a data set, each with a di�erent number of clusters. Ho�manand Jain also experimented with other clustering techniques (e.g., complete-link,single-link, graph-theoretic, and other squared error algorithms) and found CLUS-TER to provide the best combination of performance and accuracy. An additionaladvantage of CLUSTER is that it produces a sequence of output clusterings (i.e.,a 2-cluster solution up through a Kmax-cluster solution where Kmax is speci�ed bythe user and is typically 20 or so); each clustering in this sequence yields a cluster-ing statistic which combines between-cluster separation and within-cluster scatter.The clustering that optimizes this statistic is chosen as the best one. Each pixel inthe range image is assigned the segment label of the nearest cluster center. Thisminimum distance classi�cation step is not guaranteed to produce segments whichare connected in the image plane; therefore, a connected components labeling algo-rithm allocates new labels for disjoint regions that were placed in the same cluster.Subsequent operations include surface type tests, merging of adjacent patches us-
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(a) (b)

(c) (d)Fig. 27. Range image segmentation using clustering. (a): Input range image. (b): Surfacenormals for selected image pixels. (c): Initial segmentation (19 cluster solution) returned byCLUSTER using 1000 six-dimensional samples from the image as a pattern set. (d): Finalsegmentation (8 segments) produced by postprocessing.ing a test for the presence of crease or jump edges between adjacent segments, andsurface parameter estimation.Figure 27 shows this processing applied to a range image. Part (a) of the �gureshows the input range image; part (b) shows the distribution of surface normals. Inpart (c), the initial segmentation returned by CLUSTER and modi�ed to guaranteeconnected segments is shown. Part (d) shows the �nal segmentation produced bymerging adjacent patches which do not have a signi�cant crease edge between them.The �nal clusters reasonably represent distinct surfaces present in this complexobject.The analysis of textured images has been of interest to researchers for severalyears. Texture segmentation techniques have been developed using a variety oftexture models and image operations. In [142], texture image segmentation was
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(a) (b)Fig. 28. Texture image segmentation results. (a): Four-class texture mosaic. (b): Four-clustersolution produced by CLUSTER with pixel coordinates included in the feature set.addressed by modeling the image as a hierarchy of two Markov Random Fields,obtaining some simple statistics from each image block to form a feature vector, andclustering these blocks using a fuzzy K-means clustering method. The clusteringprocedure here is modi�ed to jointly estimate the number of clusters as well as thefuzzy membership of each feature vector to the various clusters.A system for segmenting texture images was described in [96]; there, Gabor �lterswere used to obtain a set of 28 orientation- and scale-selective features that charac-terize the texture in the neighborhood of each pixel. These 28 features are reducedto a smaller number through a feature selection procedure, and the resulting fea-tures are preprocessed and then clustered using the CLUSTER program. An indexstatistic [46] is used to select the best clustering. Minimum distance classi�cation isused to label each of the original image pixels. This technique was tested on severaltexture mosaics including the natural Brodatz textures and synthetic images. Fig-ure 28(a) shows an input texture mosaic consisting of four of the popular Brodatztextures [22]. Part (b) shows the segmentation produced when the Gabor �lterfeatures are augmented to contain spatial information (pixel coordinates). ThisGabor �lter based technique has proven very powerful and has been extended tothe automatic segmentation of text in documents [97] and segmentation of objectsin complex backgrounds [102].Clustering can be used as a preprocessing stage to identify pattern classes forsubsequent supervised classi�cation. References [182; 124] describe a partitionalclustering algorithm and a manual labeling technique to identify material classes(e.g., cerebrospinal uid, white matter, striated muscle, tumor) in registered imagesof a human head obtained at �ve di�erent magnetic resonance imaging channels(yielding a �ve-dimensional feature vector at each pixel). A number of clusteringswere obtained and combined with domain knowledge (human expertise) to identifythe di�erent classes. Decision rules for supervised classi�cation were based on these
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(a) (b)Fig. 29. Multispectral Medical Image Segmentation. (a): A single channel of the input image.(b): 9-cluster segmentation.

(a) (b)Fig. 30. LANDSAT image segmentation. (a): Original image ( cESA/EURIMAGE/Sattelit-bild). (b): Clustered scene.obtained classes. Figure 29(a) shows one channel of an input multispectral image;part (b) shows the 9-cluster result.The k-means algorithm was applied to the segmentation of LANDSAT imageryin [175]. Initial cluster centers were chosen interactively by a trained operator,and correspond to land-use classes such as urban areas, soil (vegetation-free) ar-eas, forest, grassland, and water. Figure 30(a) shows the input image rendered asgrayscale; part (b) shows the result of the clustering procedure.6.1.3 Summary. In this section, the application of clustering methodology to im-age segmentation problems has been motivated and surveyed. The historical recordshows that clustering is a powerful tool for obtaining classi�cations of image pixels.



46 � A.K. Jain, M.N. Murty and P.J. FlynnKey issues in the design of any clustering-based segmenter are the choice of pixelmeasurements (features) and dimensionality of the feature vector (i.e., should thefeature vector contain intensities, pixel positions, model parameters, �lter outputs,etc?), a measure of similarity which is appropriate for the selected features and theapplication domain, the identi�cation of a clustering algorithm, the developmentof strategies for feature and data reduction (to avoid the \curse of dimensional-ity" and the computational burden of classifying large numbers of patterns and/orfeatures), and the identi�cation of necessary pre- and post-processing techniques(e.g., image smoothing and minimum distance classi�cation). The use of clusteringfor segmentation dates back to the 1960s and new variations continue to emerge inthe literature. Challenges to the more successful use of clustering include the highcomputational complexity of many clustering algorithms and their incorporation ofstrong assumptions (often multivariate Gaussian) about the multidimensional shapeof clusters to be obtained. The ability of new clustering procedures to handle con-cepts and semantics in classi�cation (in addition to numerical measurements) willbe important for certain applications [132; 139].6.2 Object and Character Recognition6.2.1 Object Recognition. The use of clustering to group views of 3D objects forthe purposes of object recognition in range data was described in [43]. The termview refers to a range image of an unoccluded object obtained from any arbitraryviewpoint. The system under consideration employed a viewpoint dependent (orview-centered) approach to the object recognition problem; each object to be rec-ognized was represented in terms of a library of range images of that object.There are many possible views of a 3D object and one goal of that work was toavoid matching an unknown input view against each image of each object. A com-mon theme in the object recognition literature is indexing, wherein the unknownview is used to select a subset of views of a subset of the objects in the database forfurther comparison, and rejects all other views of objects. One of the approachesto indexing employs the notion of view classes; a view class is the set of qualita-tively similar views of an object. In that work, the view classes were identi�ed byclustering and the rest of this subsection outlines the technique.Object views were grouped into classes based on the similarity of shape spectralfeatures. Each input image of an object viewed in isolation yields a feature vectorwhich characterizes that view. The feature vector contains the �rst ten centralmoments of a normalized shape spectral distribution, �H(h), of an object view. Theshape spectrum of an object view is obtained from its range data by constructinga histogram of shape index values (which are related to surface curvature values)and accumulating all the object pixels that fall into each bin. By normalizing thespectrum with respect to the total object area, the scale (size) di�erences that mayexist between di�erent objects are removed. The �rst moment m1 is computed asthe weighted mean of �H(h): m1 =Xh (h) �H(h): (1)



Data Clustering: A Review � 47The other central moments, mp, 2 � p � 10 are de�ned as:mp =Xh (h�m1)p �H(h): (2)Then, the feature vector is denoted as R = (m1;m2; � � � ;m10), with the range ofeach of these moments being [�1; 1].Let O = fO1; O2; � � � ; Ong be a collection of n 3D objects whose views are presentin the model database, MD. The ith view of the jth object, Oij in the database isrepresented by hLij ; Riji, where Lij is the object label and Rij is the feature vector.Given a set of object representations Ri = fhLi1; Ri1i; � � � ; hLim; Rimig that describesm views of the ith object, the goal is to derive a partition of the views, P i =fCi1; Ci2; � � � ; Cikig. Each cluster in P i contains those views of the ith object thathave been adjudged similar based on the dissimilarity between the correspondingmoment features of the shape spectra of the views. The measure of dissimilarity,between Rij and Rik, is de�ned asD(Rij ; Rik) = 10Xl=1 �Rijl �Rikl�2 : (3)6.2.2 Clustering Views. A database containing 3,200 range images of 10 di�erentsculpted objects with 320 views per object is used [43]. The range images from320 possible viewpoints (determined by the tessellation of the view-sphere usingthe icosahedron) of the objects were synthesized. Figure 31 shows a subset ofthe collection of views of Cobra used in the experiment. The shape spectrumof each view is computed and then its feature vector is determined. The viewsof each object are clustered based on the dissimilarity measure D between theirmoment vectors using the complete-link hierarchical clustering scheme [95]. Thehierarchical grouping obtained with 320 views of the Cobra object is shown inFigure 32. The view grouping hierarchies of the other nine objects are similar tothe dendrogram in Figure 32. This dendrogram is cut at a dissimilarity level of 0.1 orless to obtain compact and well-separated clusters. The clusterings obtained in thismanner demonstrate that the views of each object fall into several distinguishableclusters. The centroid of each of these clusters was determined by computing themean of the moment vectors of the views falling into the cluster. Dorai and Jaindemonstrated that this clustering-based view grouping procedure facilitates objectmatching in terms of classi�cation accuracy and the number of matches necessaryfor correct classi�cation of test views. Object views are grouped into compactand homogeneous view clusters, thus demonstrating the power of the cluster-basedscheme for view organization and e�cient object matching.6.2.3 Character Recognition. Clustering was employed in [33] to identify lexemesin handwritten text for the purposes of writer-independent handwriting recogni-tion. The success of a handwriting recognition system is vitally dependent on itsacceptance by potential users. Writer-dependent systems provide a higher level ofrecognition accuracy than writer-independent systems, but require a large amountof training data. A writer-independent system, on the other hand, must be ableto recognize a wide variety of writing styles in order to satisfy an individual user.As the variability of the writing styles that must be captured by a system increase,



48 � A.K. Jain, M.N. Murty and P.J. Flynn

Fig. 31. A subset of views of Cobra chosen from a set of 320 views.
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Fig. 32. Hierarchical grouping of 320 views of Cobra.



50 � A.K. Jain, M.N. Murty and P.J. Flynnit becomes more and more di�cult to discriminate between di�erent classes dueto the amount of overlap in the feature space. One solution to this problem is toseparate the data from these disparate writing styles for each class into di�erentsubclasses, known as lexemes. These lexemes represent portions of the data whichare more easily separated from the data of classes other than that to which thelexeme belongs.In this system, handwriting is captured by digitizing the (x; y) position of thepen and the state of the pen point (up or down) at a constant sampling rate.Following some resampling, normalization, and smoothing, each stroke of the pen isrepresented as a variable-length string of points. A metric based on elastic templatematching and dynamic programming is de�ned to allow the distance between twostrokes to be calculated.Using the distances calculated in this manner, a proximity matrix is constructedfor each class of digits (i.e., 0 through 9). Each matrix measures the intra-classdistances for a particular digit class. Digits in a particular class are clustered inan attempt to �nd a small number of prototypes. Clustering is done using theCLUSTER program described above [95], in which the feature vector for a digit isits N proximities to the digits of the same class. CLUSTER attempts to producethe best clustering for each value of K over some range, where K is the number ofclusters into which the data is to be partitioned. As expected, the mean squarederror (MSE) decreases monotonically as a function of K. The \optimal" value ofK is chosen by identifying a \knee" in the plot of MSE versus K.When representing a cluster of digits by a single prototype, the best on-linerecognition results were obtained by using the digit that is closest to that cluster'scenter. Using this scheme, a correct recognition rate of 99.33% was obtained.6.3 Information RetrievalInformation retrieval (IR) is concerned with automatic storage and retrieval of doc-uments [151]. Many university libraries use IR systems to provide access to books,journals, and other documents. Libraries use the Library of Congress Classi�cation(LCC) scheme for e�cient storage and retrieval of books. The LCC scheme consistsof classes labeled A to Z [118] which are used to characterize books belonging todi�erent subjects. For example, label Q corresponds to books in the area of scienceand the subclass QA is assigned to mathematics. Labels QA76 to QA76.8 are usedfor classifying books related to computers and other areas of computer science.There are several problems associated with the classi�cation of books using theLCC scheme. Some of these are listed below:(1) When a user is searching for books in a library which deal with a topic ofinterest to him, the LCC number alone may not be able to retrieve all the relevantbooks. This is because the classi�cation number assigned to the books or thesubject categories that are typically entered in the database do not contain su�cientinformation regarding all the topics covered in a book. To illustrate this point, letus consider the book `Algorithms for Clustering Data' by Jain and Dubes [95].Its LCC number is `QA 278.J35'. In this LCC number, QA 278 corresponds tothe topic `cluster analysis', J corresponds to the �rst author's name and 35 is theserial number assigned by the Library of Congress. The subject categories forthis book provided by the publisher (which are typically entered in a database to



Data Clustering: A Review � 51facilitate search) are cluster analysis, data processing and algorithms. There is achapter in this book [95] that deals with computer vision, image processing, andimage segmentation. So, a user looking for literature on computer vision and, inparticular, image segmentation will not be able to access this book by searching thedatabase with the help of either the LCC number or the subject categories providedin the database. The LCC number for computer vision books is TA 1632 [118] whichis very di�erent from the number QA 278.J35 assigned to this book.(2) There is an inherent problem in assigning LCC numbers to books in a rapidlydeveloping area. For example, let us consider the area of neural networks. Initially,category `QP' in LCC scheme was used to label books and conference proceedingsin this area. For example, Proceedings of the International Joint Conference onNeural Networks [IJCNN '91] [92] was assigned the number `QP 363.3'. But, mostof the recent books on neural networks are given a number using the categorylabel `QA'; Proceedings of the IJCNN '92 [93] is assigned the number `QA 76.87'.Multiple labels for books dealing with the same topic will force them to be placedon di�erent stacks in a library. Hence, there is a need to update the classi�cationlabels from time to time in an emerging discipline.(3) Assigning a number to a new book is a di�cult problem. A book may dealwith topics corresponding to two or more LCC numbers and, therefore, assigninga unique number to such a book is di�cult.Reference [139] describes a knowledge-based clustering scheme to group represen-tations of books which are obtained using the ACM CR (Association for ComputingMachinery Computing Reviews) classi�cation tree [2]. This tree is used by the au-thors contributing to various ACM publications to provide keywords in the form ofACM CR category labels. This tree consists of 11 nodes at the �rst level. Thesenodes are labeled A to K. Each node in this tree has a label that is a string of oneor more symbols. These symbols are alphanumeric characters. For example, I515is the label of a fourth-level node in the tree.6.3.1 Pattern Representation. Each book is represented as a generalized list [162]of these strings using ACM CR classi�cation tree [2]. The fourth-level nodes in theACM CR classi�cation tree are labeled using numerals 1 to 9 and characters A toZ, for the sake of brevity in representation. For example, the children nodes of I.5.1(models) are labeled I.5.1.1 to I.5.1.6. Here, I.5.1.1 corresponds to the node labeleddeterministic and I.5.1.6 stands for the node labeled structural. In a similar fashion,all the fourth-level nodes in the tree can be labeled as necessary. From now on, thedots in between successive symbols will be omitted to simplify the representation.For example, I.5.1.1 will be denoted as I511.We illustrate this process of representation with the help of the book by Jainand Dubes [95]. There are �ve chapters in this book. For simplicity of processing,we consider only the information in the chapter contents. There is a single entryin the table of contents for chapter 1, `Introduction', and so we do not extract anykeywords from this. Chapter 2, labeled `Data Representation', has section titlesthat correspond to the labels of the nodes in the ACM CR classi�cation tree [2]which are given below:(1) (a) I522 (feature evaluation and selection),(2) (b) I532 (similarity measures), and



52 � A.K. Jain, M.N. Murty and P.J. Flynn(3) (c) I515 (statistical).Based on the above analysis, Chapter 2 of Jain and Dubes book can be characterizedby the weighted disjunction (( I522 _ I532 _ I515)(1,4)). The weights (1,4) denotethat it is one of the four chapters which plays a role in the representation of thebook. Based on the table of contents, we can use one or more of the strings I522,I532, and I515 to represent chapter 2. In a similar manner, we can represent otherchapters in this book as weighted disjunctions based on the table of contents and theACM CR classi�cation tree. The representation of the entire book, the conjunctionof all these chapter representations, is given by(((I522 _ I532 _ I515)(1,4)) ^ (( I515 _ I531)(2,4)) ^ ((I541 _ I46 _ I434)(1,4))).Currently, these representations are generated manually by scanning the table ofcontents of books in computer science area as ACM CR classi�cation tree providesknowledge of computer science books only. The details of the collection of booksused in this study are available in [139].6.3.2 Similarity Measure. The similarity between two books is based on the simi-larity between the corresponding strings. Two of the well-known distance functionsbetween a pair of strings are [14] the Hamming distance and the edit distance.Neither of these two distance functions can be meaningfully used in this applica-tion. The following example illustrates the point. Consider three strings I242, I233,and H242. These strings are labels (predicate logic for knowledge representation,logic programming, and distributed database systems) of three fourth-level nodesin the ACM CR classi�cation tree. Nodes I242 and I233 are the grandchildren ofthe node labeled I2 (arti�cial intelligence) and H242 is a grandchild of the nodelabeled H2 (database management). So, the distance between I242 and I233 shouldbe smaller than that between I242 and H242. However, Hamming distance andedit distance [14] both have a value 2 between I242 and I233 and a value of 1 be-tween I242 and H242. This limitation motivates the de�nition of a new similaritymeasure that correctly captures the similarity between the above strings. The simi-larity between two strings is de�ned as the ratio of the length of the largest commonpre�x [139] between the two strings to the length of the �rst string. For example,the similarity between strings I522 and I51 is 0.5. The proposed similarity measureis not symmetric because the similarity between I51 and I522 is 0.67. The mini-mum and maximum values of this similarity measure are 0.0 and 1.0, respectively.The knowledge of the relationship between nodes in the ACM CR classi�cationtree is captured by the representation in the form of strings. For example, nodelabeled pattern recognition is represented by the string I5, whereas the string I53corresponds to the node labeled clustering. The similarity between these two nodes(I5 and I53) is 1.0. A symmetric measure of similarity [139] is used to construct asimilarity matrix of size 100x100 corresponding to 100 books used in experiments.6.3.3 An Algorithm for Clustering Books. The clustering problem can be statedas follows. Given a collection, B, of books, we need to obtain a set, C, of clusters.A proximity dendrogram [95] using the complete-link agglomerative clustering al-gorithm for the collection of 100 books is shown in Figure 33. Seven clusters areobtained by choosing a threshold (�) value of 0.12. It is well-known that di�erentvalues for � might give di�erent clusterings [95]. This threshold value is chosen
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54 � A.K. Jain, M.N. Murty and P.J. Flynnbecause the "gap" in the dendrogram between the levels at which six and sevenclusters are formed is the largest. An examination of the subject areas of thebooks [139] in these clusters revealed that the clusters obtained are indeed mean-ingful. Each of these clusters is represented using a list of string, s, and frequency,sf , pairs, where sf is the number of books in the cluster in which s is present. Forexample, cluster c1 contains 43 books belonging to pattern recognition, neural net-works, arti�cial intelligence, and computer vision and a part of its representationR(C1) is given below.R(C1) =((B718, 1), (C12, 1), (D0, 2), (D311, 1), (D312, 2), (D32, 3), (D321, 1), (D322,1), (D329, 1), � � � (I46, 3), (I461, 2), (I462, 1), (I463, 3), � � � (J26, 1), (J6, 1),(J61, 7), (J71,1))These clusters of books and the corresponding cluster descriptions can be used asfollows. If a user is searching for books, say, on image segmentation (I46), then weselect cluster C1 because its representation alone contains the string I46. Note thatbooks B2 (Neurocomputing) and B18 (Sensory Neural Networks: Lateral Inhibition)are both members of cluster C1 even though their LCC numbers are quite di�erent(B2 is QA76.5.H4442, B18 is QP363:3:N33).Four additional books labeled B101; B102; B103, and B104 have been used tostudy the problem of assigning classi�cation numbers to new books. The LCCnumbers of these books are: (B101) Q335.T39, (B102) QA76.73.P356C57, (B103)QA76.5.B76C.2, and (B104) QA76.9.D5W44. These books are assigned to clustersbased on nearest neighbor classi�cation. The nearest neighbor of B101, a book onarti�cial intelligence, is B23 and so B101 is assigned to cluster C1. It is observed thatthe assignment of these four books to the respective clusters is meaningful, demon-strating that knowledge-based clustering is useful in solving problems associatedwith document retrieval.6.4 Data MiningRecent years have seen ever increasing volumes of collected data of all sorts. With somuch data available, it is necessary to develop algorithms which can extract mean-ingful information from the vast stores. Searching for useful nuggets of informationamong huge amounts of data has become the �eld of data mining.Data mining can be applied to relational, transaction, and spatial databases, aswell as large stores of unstructured data such as the World Wide Web. There aremany data mining systems in use today, and applications include the U.S. Trea-sury detecting money laundering, National Basketball Association coaches detect-ing trends and patterns of play for individual players and teams, and categorizingpatterns of children in the foster care system [83]. Several journals have had recentspecial issues on data mining [31], [34], [190].6.4.1 Data Mining Approaches. Data mining, like clustering, is an exploratoryactivity, so clustering methods are well suited for data mining. Clustering is oftenan important initial step of several in the data mining process [57]. Some of thedata mining approaches which use clustering are database segmentation, predictivemodeling, and visualization of large databases.



Data Clustering: A Review � 55Segmentation. Clustering methods are used in data mining to segment databasesinto homogeneous groups. This can serve purposes of data compression (workingwith the clusters rather than individual items), or to identify characteristics ofsubpopulations which can be targeted for speci�c purposes (eg, marketing aimedat senior citizens).A continuous k{means clustering algorithm [55] has been used to cluster pixelsin Landsat images [56]. Each pixel originally has 7 values from di�erent satellitebands, including infra{red. These 7 values are di�cult for humans to assimilateand analyze without assistance. Pixels with the 7 feature values are clustered into256 groups, then each pixel is assigned the value of the cluster centroid. The imagecan then be displayed with the spatial information intact. Human viewers can lookat a single picture and identify a region of interest, (e.g., highway or forest) andlabel it as a concept. The system then identi�es other pixels in the same cluster asan instance of that concept.Predictive Modeling. Statistical methods of data analysis usually involve hypoth-esis testing of a model the analyst already has in mind. Data mining can aid theuser in discovering potential hypotheses prior to using statistical tools. Predictivemodeling uses clustering to group items, then infer rules to characterize the groupsand suggest models. For example, magazine subscribers can be clustered based on anumber of factors (age, sex, income, etc.), then the resulting groups characterizedin an attempt to �nd a model which will distinguish those subscribers that willrenew their subscriptions from those that will not [171].Visualization. Clusters in large databases can be used for visualization, in or-der to aid human analysts in identifying groups and subgroups that have similarcharacteristics. WinViz [120] is a data mining visualization tool in which derivedclusters can be exported as new attributes which can then be characterized by thesystem. For example, breakfast cereals are clustered according to calories, protein,fat, sodium, �ber, carbohydrate, sugar, potassium, and vitamin content per serv-ing. Upon seeing the resulting clusters, the user can export the clusters to WinVizas attributes. The system shows that one of the clusters is characterized by highpotassium content, and the human analyst recognizes the individuals in the clusteras belonging to the \bran" cereal family, leading to a generalization that \brancereals are high in potassium".6.4.2 Mining large unstructured databases. Data mining has often been performedon transaction and relational databases which have well{de�ned �elds which can beused as features, but there has been recent research on large unstructured databasessuch as the World Wide Web [53].Examples of recent attempts to classify Web documents using words or functionsof words as features include [125] and [25]. However, relatively small sets of la-beled training samples and very large dimensionality limit the ultimate success ofautomatic Web document categorization based on words as features.Rather than grouping documents in a word feature space, [197] clusters the wordsfrom a small collection of World Wide Web documents in the document space.The sample data set consisted of 85 documents from the manufacturing domainin 4 di�erent user{de�ned categories (labor, legal, government, design). These 85



56 � A.K. Jain, M.N. Murty and P.J. Flynndocuments contained 5190 distinct word stems after common words (the, and, of)were removed. Since the words are certainly not uncorrelated, they should fall intoclusters where words used in a consistent way across the document set have similarvalues of frequency in each document.K-means clustering was used to group the 5190 words into 10 groups. Onesurprising result was that an average of 92% of the words fell into a single cluster,which could then be discarded for data mining purposes. The smallest clusterscontained terms which to a human seem semantically related. The 7 smallestclusters from a typical run are shown in Figure 34.Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7employe applic action cadmaz cfr amend animfmla claim a�rm consult contain bankruptci commodleav �le american copyright cosmet code cpginvent discrimin custom ey court exceptpatent job design hair creditor fatprovision minor manag ingredi debtor feopportun project label petition foodpeopl sect manufactur properti fruitwomen servic product section levelregul secur ppmtruste refertopvegetFig. 34. The seven smallest clusters found in the document set. These are stemmed words.Terms which are used in ordinary contexts, or unique terms which do not occuroften across the training document set will tend to cluster into the large 4000 mem-ber group. This takes care of spelling errors, proper names which are infrequent,and terms which are used in the same manner throughout the entire document set.Terms used in speci�c contexts (such as �le in the context of �ling a patent, ratherthan a computer �le) will appear in the documents consistently with other termsappropriate to that context (patent, invent) and thus will tend to cluster together.Among the groups of words, unique contexts stand out from the crowd.After discarding the largest cluster, the smaller set of features can be used to con-struct queries for seeking out other relevant documents on the Web using standardWeb searching tools (e.g., Lycos [204], AltaVista [205], OpenText [206]).Searching the Web with terms taken from the word clusters allows discovery of�ner grained topics (e.g., family medical leave) within the broadly de�ned categories(e.g., labor).6.4.3 Data Mining in Geological Databases. Database mining is a critical re-source in oil exploration and production. It is common knowledge in the oil industrythat the typical cost of drilling a new o�shore well is in the range of $30-40 million,but the chance of that site being an economic success is 1 in 10. More informedand systematic drilling decisions can signi�cantly reduce overall production costs.Advances in drilling technology and data collection methods have led to oil com-panies and their ancillaries collecting large amounts of geophysical/geological data



Data Clustering: A Review � 57from production wells and exploration sites, and then organizing them into largedatabases. Data mining techniques has recently been used to derive precise analyticrelations between observed phenomena and parameters These relations can then beused to quantify oil and gas reserves.In qualitative terms, good recoverable reserves have high hydrocarbon saturationthat are trapped by highly porous sediments (reservoir porosity) and surroundedby hard bulk rocks that prevent the hydrocarbon from leaking away. A largevolume of porous sediments is crucial to �nding good recoverable reserves, therefore,developing reliable and accurate methods for estimation of sediment porosities fromthe collected data is key to estimating hydrocarbon potential.The general rule of thumb experts use for porosity computation is that it is aquasi-exponential function of depth:Porosity = K � e�F (x1;x2;:::;xm)�Depth: (4)A number of factors, such as rock types, structure, and cementation, as param-eters of function F confound this relationship. This necessitates the de�nition ofproper contexts in which to attempt discovery of porosity formulae. Geological con-texts are expressed in terms of geological phenomena, such as geometry, lithology,compaction, and subsidence, associated with a region. It is well known that thegeological context changes from basin to basin (di�erent geographical areas in theworld) and also from region to region within a basin[5; 20]. Furthermore, the un-derlying features of contexts may vary greatly. Simple model matching techniques,which work in engineering domains where behavior is constrained by man-madesystems and well-established laws of physics, may not apply in the hydrocarbonexploration domain. To address this, data clustering was used to identify the rel-evant contexts, and then equation discovery was carried out within each context.The goal was to derive the subset x1; x2; :::; xm from a larger set of geological fea-tures, and the functional relationship F that best de�ned the porosity function ina region.The overall methodology illustrated in Fig. 35, consists of two primary steps:(i) Context de�nition using unsupervised clustering techniques, and (ii) Equationdiscovery by regression analysis [1995 ]. Real exploration data collected from a re-gion in the Alaska basin was analyzed using the methodology developed. The dataobjects (patterns) are described in terms of 37 geological features, such as porosity,permeability, grain size, density, and sorting, amount of di�erent mineral fragments(e.g., quartz, chert, feldspar) present, nature of the rock fragments, pore character-istics, and cementation. All these feature-values are numeric measurements madeon samples obtained from well-logs during exploratory drilling processes.The k-means clustering algorithm was used to identify a set of homogeneousprimitive geological structures (g1; g2; :::; gm). These primitives were then mappedonto the unit code versus stratigraphic unit map. Figure 36 depicts a partial map-ping for a set of wells and four primitive structures. The next step in the discoveryprocess identi�ed sections of wells regions that were made up of the same sequenceof geological primitives. Every such sequence de�ned a context Ci. From the par-tial mapping of Figure 36, the context C1 = g2 � g1 � g2 � g3 was identi�ed intwo well regions (the 300 and 600 series). After the contexts were de�ned, datapoints belonging to each context were grouped together for equation derivation.



58 � A.K. Jain, M.N. Murty and P.J. Flynn(1) Context De�nition1.1 discover primitive structures (g1; g2; :::; gm) by clustering,1.2 de�ne context in terms of the relevant sequences of primitive structures, i.e., Ci =gi1 � gi2�; :::;�gik,1.3 group data according to the context de�nition to form homogeneous data groups,1.4 for each relevant data group, determine the set of relevant variables (x1; x2; :::; xk) forporosity.(2) Equation Derivation2.1 select possible base models (equations) using domain theory,2.2 use the least squares method to generate coe�cient values for each base model,2.3 use the component plus residual plot (cprp) heuristic to dynamically modify the equationmodel to better �t the data,Fig. 35. Description of the Knowledge-based Scienti�c Discovery Process.
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Fig. 36. Area Code versus Stratigraphic Unit Map for Part of the Studied RegionThe derivation procedure employed multiple regression analysis [167].This method was applied to a data set of about 2600 objects correspondingto sample measurements collected from wells is the Alaskan Basin. The k-meansclustered this data set into seven groups. As an illustration, we selected a set of 138objects representing a context for further analysis. The features that best de�nedthis cluster were selected, and experts surmised that the context represented a lowporosity region, which was modeled using the regression procedure.



Data Clustering: A Review � 597. SUMMARYThere are several applications where decision making and exploratory pattern anal-ysis have to be performed on large data sets. For example, in document retrieval,a set of relevant documents has to be found among several millions of documentsof dimensionality more than 1000. It is possible to handle these problems if someuseful abstraction of the data is obtained and is used in decision making ratherthan directly using the entire data set. By data abstraction, we mean a simple andcompact representation of the data. This simplicity helps the machine in e�cientprocessing or a human in comprehending the structure in data easily. Clusteringalgorithms are ideally suited for achieving data abstraction.In this paper, we have examined various steps in clustering: (1) pattern repre-sentation, (2) similarity computation, (3) grouping process, and (4) cluster rep-resentation. Also we have discussed statistical, fuzzy, neural, evolutionary, andknowledge-based approaches to clustering. We have described four applications ofclustering: (1) image segmentation, (2) object recognition, (3) document retrieval,and (4) data mining.Clustering is a process of grouping data items based on a measure of similarity.Clustering is a subjective process; the same set of data items often needs to be par-titioned di�erently for di�erent applications. This subjectivity makes the process ofclustering hard. This is because a single algorithm or approach is not adequate tosolve every clustering problem. A possible solution lies in reecting this subjectiv-ity in the form of knowledge. This knowledge is used either implicitly or explicitlyin one or more phases of clustering. Knowledge-based clustering algorithms usedomain knowledge explicitly.The most challenging step in clustering is feature extraction or pattern represen-tation. Pattern recognition researchers conveniently avoid this step by assumingthat the pattern representations are available as input to the clustering algorithm.In small size data sets, pattern representations can be obtained based on previousexperience of the user with the problem. However, in the case of large data sets, itis di�cult for the user to keep track of the importance of each feature in clustering.A solution is to make as many measurements on the patterns as possible and usethem in pattern representation. But it is not possible to use a large collection ofmeasurements directly in clustering because of computational costs. So, severalfeature selection/extraction approaches have been designed to obtain linear or non-linear combinations of these measurements which can be used to represent patterns.Most of the schemes proposed for feature extraction/selection are typically iterativein nature and cannot be used on large data sets due to prohibitive computationalcosts.The second step in clustering is similarity computation. A variety of schemeshave been used to compute similarity between two patterns. They use knowledgeeither implicitly or explicitly. Most of the knowledge-based clustering algorithmsuse explicit knowledge in similarity computation. However, if patterns are not rep-resented using proper features, then it is not possible to get a meaningful partitionirrespective of the quality and quantity of knowledge used in similarity computa-tion. There is no universally acceptable scheme for computing similarity betweenpatterns represented using a mixture of both qualitative and quantitative features.



60 � A.K. Jain, M.N. Murty and P.J. FlynnDissimilarity between a pair of patterns is represented using a distance measurethat may or may not be a metric.The next step in clustering is the grouping step. There are broadly two groupingschemes: hierarchical and partitional schemes. The hierarchical schemes are moreversatile and the partitional schemes are less expensive. The partitional algorithmsaim at maximizing the squared error criterion function. Motivated by the failure ofthe squared error partitional clustering algorithms in �nding the optimal solutionto this problem, a large collection of approaches have been proposed and used toobtain the global optimal solution to this problem. However, these schemes arecomputationally prohibitive on large data sets. ANN based clustering schemes areneural implementations of the clustering algorithms and they share the undesiredproperties of these algorithms. However, ANNs have the capability to automaticallynormalize the data and extract features. An important observation is that even if ascheme can �nd the optimal solution to the squared error partitioning problem, itmay still fall short of the requirements because of the possible non-isotropic natureof the clusters.In some applications, for example in document retrieval, it may be useful to havea clustering that is not a partition. This means clusters are overlapping. Fuzzyclustering and functional clustering are ideally suited for this purpose. Also fuzzyclustering algorithms can handle mixed data types. However, a major problemwith fuzzy clustering is that it is di�cult to obtain the membership values. Ageneral approach may not work because of the subjective nature of clustering. Itis required to represent clusters obtained in a suitable form to help the decisionmaker. Knowledge-based clustering schemes generate intuitively appealing descrip-tions of clusters. They can be used even when the patterns are represented usinga combination of qualitative and quantitative features, provided knowledge linkinga concept and the mixed features is available. However, implementations of theconceptual clustering schemes are computationally expensive and are not suitablefor grouping large data sets.The k-means algorithm and its neural implementation, the Kohonen net, are mostsuccessfully used on large data sets. This is because k-means algorithm is simpleto implement and computationally attractive because of its linear time complexity.However, it is not feasible to use even this linear time algorithm on large data sets.Incremental algorithms like leader and its neural implementation, the ART network,can be used to cluster large data sets. But they tend to be order-dependent. Divideand conquer is a heuristic that has been rightly exploited by computer algorithmdesigners to reduce computational costs. However, it should be judiciously used inclustering to achieve meaningful results.In summary, clustering is an interesting, useful and challenging problem. It hasgreat potential in applications like object recognition, image segmentation, andinformation �ltering and retrieval. However, it is possible to exploit this potentialonly after making several design choices carefully.AcknowledgementsThe authors wish to acknowledge the generosity of several colleagues who readmanuscript drafts, made suggestions, and provided summaries of emerging applica-tion areas which we have incorporated into this paper. Gautam Biswas and Cen Li
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