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Abstract—In this paper we present a stereovision based 

approach for tracking multiple objects in crowded environments, 

where, typically, the road lane markings are not visible and the 

surrounding infrastructure is not known. The proposed 

technique relies on measurement data provided by an 

intermediate occupancy grid, derived from processing a 

stereovision-based elevation map, and on free-form object 

delimiters extracted from this grid. Unlike other existing methods 

which track rigid objects using also rigid representations, we 

present a particle filter based solution for tracking visual 

appearance based free-form obstacle representations. At each 

step the particle state is described by two components: the 

object’s dynamic parameters and its estimated geometry. In 

order to solve the high dimensionality state space problem a Rao-

Blackwellized Particle Filter is used. By accurately modeling the 

object geometry using the polygonal lines instead of a 3D box, 

and, at the same time, separating the position and speed tracking 

from the geometry tracking at the estimator level, the proposed 

solution combines the efficiency of the rigid model with the 

benefits of a flexible object model. 

 
Index Terms—Object Tracking, Particle Filters, Polygonal 

Models, Rao-Blackwellization, Stereovision. 

 

I. INTRODUCTION 

The surrounding environment of a moving vehicle is filled 

with relevant objects of many types and shapes, all demanding 

the driver’s attention. An advanced driving assistance system, 

which is designed to temporarily fulfill the driver’s duties, 

especially in cases when the human reaction time or the 

human attention span are not up to the task, needs an accurate 

representation of the driving environment, in order to take the 

best decisions. 

The most challenging objects of the driving environment 

are the dynamic ones, and for this reason a considerable 

amount of research has been dedicated to the modeling and 

tracking of these entities [1], [4]. 

A dynamic entity is modeled by a set of parameters 
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representing its geometry, its position and its speed. A 

tracking mechanism estimates the value of these parameters 

over time, relying on features extracted from processing the 

raw data delivered by the available sensors. Despite the 

simplicity of the general idea, there are significant challenges 

in each step of the tracker’s design. The problem of dynamic 

environment representation becomes a difficult task when the 

surrounding world is crowded, where, typically, the road lane 

markings are not visible and the surrounding infrastructure is 

not known. This may include the cases of traffic intersections, 

crowded urban centers, parking lots or off-road scenarios. The 

tracking process must take into account multiple factors, such 

as the unpredictable nature of the obstacles, the measurement 

uncertainties or the occlusions. Also, since the driving 

environment is composed of multiple static and dynamic 

objects that can be observed at the same time, the environment 

tracking system must be able to maintain and update the state 

of multiple objects at the same time, associating to each 

tracked object the proper measurement data. 

There are many choices for the sensorial setup that provides 

the raw data to be analyzed and used as measurement in the 

tracking process. Most tracking techniques rely on the use of 

ultrasound [13], [27], laser [2], [7], [10], monocular [29][30] 

or stereovision sensors [5], [6], [8], [9], [12], [14], [15]. As the 

imaging technology has become more reliable and cheaper, 

vision-based object modeling and tracking has been a very 

active research topic in recent years. In [1], the authors 

provide a survey of the past decade’s progress in the vision-

based vehicle detection for monocular and stereo-vision sensor 

configuration. While the monocular applications process the 

information in the image plane, the stereovision applications 

are able to process the information in 3D space. The 

measurement data can be used as it is, by directly tracking, for 

example, 3D point clouds [5], each point being handled 

independently. Other stereovision based tracking solutions try 

to reduce the computational cost by using intermediate 

representations, transforming the 3D information into Digital 

Elevation Maps [14], octrees [24], Occupancy Grids [28], [31] 

or Stixel Maps [15], [32]. 

When designing tracking solutions, one of the most 

important choices to be made is the choice of the object 

model, the state to be estimated over time. The model has to 

be at the same time representative for the object that is 

tracked, but it also has to be computationally efficient. Related 
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work includes models such as polygonal lines [7], difference 

fronts [8], voxels [10], 2D boxes [2], 3D cuboids [6] or object 

contours [11], [17]. 

The most popular model for a dynamic traffic entity is the 

3D oriented box, which can be thought as a bounding box for 

the real obstacle in the world. This model is highly efficient, 

as it has a low dimensional state vector, its evolution in time 

can be expressed by simple equations, and the measurements 

are easily associated to it. This model, works well in 

simplified driving environments such as the highway, but it is 

less suitable for a complex environment, with many types of 

objects, which have a less cuboidal structure. Using simplified 

models such as the cuboid may lead the tracking process to 

incorrect results when the target pose estimation is affected by 

occlusions or by changes in its visual appearance. In order to 

overcome this problem, various algorithms that account for 

deformable object appearance have been proposed [16], [17], 

[30]. Typically, the model shape is represented implicitly [17], 

or by a set of fixed number of points. In particular, the authors 

in [17] describe a tracking method for slowly deforming and 

moving contours that are represented implicitly. Isard and 

Blake propose the CONDENSATION algorithm [18] for 

tracking parametric spline curves. 

Once the target model is established, a tracking algorithm is 

usually developed starting from a popular probabilistic 

estimator. The problem of tracking is necessarily probabilistic, 

as both the model of the object’s state and the processed 

sensorial data are imperfect bits of knowledge about the 

world. The estimator should take into account the strong and 

the weak points of each information source, and combine them 

for the best result.  

The most popular estimators used for tracking are Kalman 

filters [6], Particle filters [14], [16], [18] or hybrid methods 

[20], [21]. The traditional Kalman filter represents an optimal 

estimator in which the posterior distribution is modeled by a 

Gaussian function.  However, the classical Kalman filter 

solutions are only applicable to linear systems with unimodal 

distributions. The Extended Kalman Filter [25] allows non-

linear transformations for the state evolution and for the 

measurement mapping function, but still assumes that these 

transformations can be approximated linearly, at least in a 

reduced vicinity, and that the state is unimodal. 

As an alternative, the particle filter approaches approximate 

the state space by a collection of N discrete samples, called 

“particles”. Each particle represents a hypothesis about the 

system state. One of the main advantages of the particle filter 

based solutions is the ability to handle non-linear systems and 

multi-modal distributions. However, particle filters are not 

suitable for high-dimensional state spaces as their 

computational complexity tends to grow exponentially with 

the number of state parameters. In order to handle this 

problem, different strategies can be found in the literature. For 

example, in [19] the Unscented Kalman Filter is used to 

propagate the state distribution, so that the number of sampled 

particles is reduced. In [20] the Rao-Blackwellized Particle 

Filter (RBPF) is introduced. The key idea of the RBPF 

approach is that a part of the state space can be updated 

analytically, while another part of the state is sampled. In [21], 

the RBPF is applied for Simultaneous Localization and 

Mapping (SLAM). The robot pose is estimated with a particle 

filter. In addition, the state vector is represented by N 

landmarks. Each landmark position is updated by using a 2x2 

Extended Kalman Filter (EKF).  In [2], a RBPF technique is 

applied for model based vehicle tracking. For simplicity the 

vehicle shape is approximated by a rectangle.  

Our research team at TU Cluj-Napoca has been involved in 

the field of stereovision-based driving environment perception 

since 2001. Using sparse, edge-based stereovision, the 

obstacles’ position, size and speed were tracked using a non-

oriented cuboid model [6], as the limited 3D information was 

not suitable a more detailed perception. When real-time dense 

stereovision solutions became available, they were used for a 

much more detailed perception of the environment. The 

particular characteristics of the driving environment allowed 

us to simplify the dense 3D information, in the shape of 

elevation maps, whose cells could be labeled, based on the 

coordinates, density and other characteristics of the associated 

points, into drivable (road cells), obstacle cells, intermediate 

(sidewalk) cells, and cells with no measurement data [12]. 

Significant improvements to the elevation map as a model for 

dynamic environments, which include modeling and tracking 

the speed of each map cell and additional grayscale 

information that enhance the perception of the 3D 

environment, are presented in [39] and [40]. 

The cells labeled as obstacles in the elevation map signal 

obstacle areas in a 2D, bird-eye view of the road environment, 

and can be regarded as an unfiltered, raw occupancy grid. 

From this point, two directions of research have been 

followed. One direction consists in grid tracking at cell level, 

trying to refine, for each cell, the probability that it is an 

obstacle cell (occupancy probability), and computing a speed 

vector for it, either using the raw occupancy grid directly [28], 

or speeding up the computation by using difference fronts 

between raw grids [8].  

The other direction is model-based object tracking using the 

obstacle cells of the grid as measurement data. A particle 

based solution for tracking objects modeled as non-oriented 

cuboids using the obstacle cells of the elevation map is 

presented in [41]. This model was, however, quite limited 

compared to the quality of the measurement information, and 

therefore methods for taking advantage of the shape 

information were devised. The paper [9] presents a method for 

extracting individual objects from the occupied elevation map 

cells, in the shape of polygonal lines. The approach presented 

in [3] tracks these delimiters using the Iterative Closest Point 

for association between past and present contours. The 

solution proposed in [43] tries to improve the representation 

consistency by taking into account the persistence of occupied 

grid cells. Both tracking methods use Kalman filter for state 

update, but does not allow the shape of the object to change – 

the geometry of the object is assumed fixed. 

The method described in [33] is able to track the object’s 

geometry along with its position and speed, by using a set of 

Kalman Filters for the control points (landmarks) of the 
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object’s contour, which define the object’s shape, and one 

Kalman filter for tracking the motion of the whole object.  

There are two problems with the Kalman filter: the 

unimodal nature of the approximation of the probability 

density of the target’s state, and the need of data association. 

In face of these problems, a particle filter presents itself as the 

natural alternative. However, modeling the whole state of the 

object (position, speed and geometry) by means of particle 

filters would require a large number of particles, and therefore 

a mixed solution, combining the efficient Kalman filter for 

tracking the object’s geometry, and the versatile particle filter 

for tracking the position and speed, is the solution described in 

this paper, an extended version of [42]. 

The method presented in this paper is designed to estimate 

the position, the speed and the geometry of objects from noisy 

stereo depth data. The modeling and tracking solution relies 

on measurement information provided by an intermediate 

occupancy grid and on free-form object delimiters extracted 

from this grid. The intermediate representation is derived from 

processing a stereovision-based elevation map, while the 

attributed polygonal object representations are obtained by 

radial scanning this map by using the BorderScanner 

algorithm. Unlike other existing methods which track rigid 

objects using also rigid representations, we present a particle 

filter based solution for tracking visual appearance based free-

form obstacle representations. In order to increase the object 

model flexibility, each particle is described by two 

components: the object’s dynamic parameters and its 

estimated geometry represented by a vector of control points. 

Another essential contribution of the proposed approach is that 

the high-dimensionality state-space problem is solved by 

adopting a Rao-Blackwellized Particle Filter is used.  

The proposed method takes into consideration the stereo 

uncertainties. By accurately modeling the object geometry 

using the free-form polygonal lines instead of a 3D box, and, 

at the same time, separating the geometry tracking from 

position and speed tracking at the estimator level, the 

proposed solution combines the efficiency of a rigid model 

(small state space, simple state equations, simple prediction, 

compact representation) with the benefits of a flexible object 

model (a model that is able to adapt its shape according to the 

most recent measurement). 

The paper is structured as follows: the next chapter presents 

the overall system architecture, the object model is described 

in the chapter III, the proposed multiple object tracking 

approach and its main steps are detailed in the chapter IV, 

while the last two sections show the experimental results and 

the conclusion about this work.  

II. SYSTEM OVERVIEW 

The overall system architecture is based on two main 

modules: Preprocessing and Tracking (see Fig. 1).  

The Preprocessing module involves some operations that 

are performed before the obstacle tracking such as image 

acquisition or stereo reconstruction tasks.  The stereo 

reconstruction is performed either offline or onboard. For the 

offline stereo reconstruction we use a SGM technique that is 

implemented on GPU [35], [38]. As the onboard system is 

constrained by power requirements, the online stereo 

reconstruction is performed with a dedicated TYZX board 

[26]. The reconstructed stereo data is used to generate a more 

compact 2.5D grid-based representation [12] in which each 

cell is classified based on its height value as obstacle, traffic 

isle or road (see Fig. 2.b and d). The ground plane projection 

of this intermediate representation is used to extract free-form 

Fig. 1. Multiple Object Tracking. System Architecture. 

Fig. 2. a) Grayscale left image. b) Digital Elevation Map with classified cells 

as road (blue), object (red) and traffic isle (yellow). c) Object delimiters. d) 

The Elevation Map is projected on the ground plane. (top view). The 

extracted delimiters are illustrated with green.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4

object delimiters (see Fig. 2.c and d) and to compute a 

probabilistic measurement model.  

The Tracking module performs optimal state estimation for 

each individual object. First, the data association is applied in 

order to assign new measurements to the existing tracks and to 

initialize new ones. Then, for each existing target, the 

following processing tasks are performed: state prediction, 

Kalman filtering of object geometry, particle weighting, 

estimation, resampling and injection. These steps will be 

detailed in the next sections. 

III. OBJECT MODEL 

Even the most tracked obstacles in a driving environment 

are considered to be rigid (cars, poles, walls, side fences etc.), 

their estimated visual appearance is changing over time. This 

is caused by several factors. For example, the same obstacle 

can be seen from different observation points (when the ego 

vehicle is moving), the obstacles gradually appear or disappear 

from the visibility area of the ego-vehicle or because the 

objects are partially occluded by other crossing obstacles.  

Therefore the shape of a tracked object may be adapted 

according to the most recent measurements. In order to 

provide a better flexibility, each object is represented by a 

free-form model (see Fig. 3) with the following attributes:  

1) The object position described by a reference point 

),( refrefref zxP  in the coordinate system of the camera. 

Initially, the reference point is set to be in the center of 

mass of the occupancy grid blob that describes the object. 

Its position is recursively updated by the tracking 

algorithm. The reference point remains fixed in the world 

coordinate system when dealing with static obstacles and 

is updated with the estimated translations when dealing 

with dynamic obstacles. It must be noted that the 

coordinate system has its origin in front of the ego-

vehicle, with X axis oriented towards the right and Z axis 

pointing towards the moving direction of the host vehicle. 

2) The obstacle velocity ),( zx vvV
r

. 

3) A list of control points describing the obstacle shape

]}..1[|),({
c

i

c

i

c

i

c
NizxP = . In the initialization step the 

control points are determined by choosing N points that 

are uniformly distributed along the object contour. The 

number of control points is fixed, and is the same for all 

obstacles. Each control point ),( i

c

i

c

i

c
zxP  is defined by its 

relative position ),( i

z

i

x

i llL  to the object reference point
refP

. At each frame, the control points are updated by the 

tracking mechanism with the new measurements extracted 

by using the BorderScanner algorithm. More details are 

given in section IV.E 

Having the parameters described above, the overall object 

state at time t can be represented as: 

 TN

zxrefreft LLLvvzxS ],...,,,,,,[ 21=   (1) 

being described by two main components: the object dynamic 

part T

zxrefreft vvzxX ],,,[=  and its geometry component 

TN

t
LLLG ],...,,[ 21= : 

 T

ttt
GXS ],[=  (2) 

IV. OBSTACLE TRACKING 

A Bayesian solution to the tracking problem consists in 

estimating, recursively in time, the current object state St, 

given all observations }...,,{ 21:1 tt ZZZZ =
 
collected up to the 

current time t: 

 ∫
−

−−−=

1

)|()|()|()|( 1:111:1

tS

tttttttt ZSpSSpSZpZSp η  (3) 

where )|( tt SZp  describes the observation model, the 

)|( 1−tt SSp  term denotes the state transition probability from 

1−tS  to 
t

S , and η  represents the normalization constant. 

A. Rao-Blackwellized Particle Filter 

In a particle-based filtering solution [16], [18] the object 

state probability is approximated by a set of N weighted 

particles ]}..1[,,{)( NiwSSp i

t

i

tt
=≈ . Each particle i

tS  

represents a hypothesis of the state of the object at a given 

time t. Therefore, object tracking consists in estimating the 

best state by evaluating the samples i

t
S  and their attached 

weights i

t
w , given a motion model and a measurement model. 

A disadvantage of the classical particle filtering algorithm is 

that it is not suitable for high-dimensional state spaces. 

Usually, its computational complexity grows exponentially 

with the number of state parameters. The “Rao-

Blackwellization” process consists in estimating a part of the 

object state analytically, thus reducing the number of 

dimensions and the computational cost of the particle filter 

mechanism. By dividing the full object state St into a dynamic 

component 
tX  and a geometry part 

t
G , the entire posterior 

density )|( :1 tt ZSp  is defined as:  

 )|,()|( :1:1 ttttt ZGXpZSp =  (4) 

and can be factored as: 

Fig. 3. Left: the Classified Occupancy Grid and the extracted Object 

Delimiters (top view). Right: the Object Model. An object from the traffic 

scene is represented by N control points Pc
i
 (polygonal vertices), and a 

reference point Pref . 
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 )|(),|()|( :1:1:1 ttttttt ZXpZXGpZSp =  (5) 

The first probability density )|( :1 tt ZXp  denotes the object 

position and velocity, and is approximated by a set of 

weighted samples ]}..1[,,,{ NiGwX i

t

i

t

i

t
= . The second density 

),|( :1 ttt ZXGp  represents the obstacle geometry posterior 

distribution conditioned on its position, speed and all 

observations up to the time t. Each control point in 
tG  is 

represented by a mean jL̂  and a covariance matrix j∑  and is 

estimated analytically by applying a 2x2 Kalman filter. The 

particle set can be now defined as: 

 })],ˆ),...(,ˆ(,,[|{
11 Tjji

t

i

t

i

t

i

t LLwXqq ∑∑=  (6) 

where ]..1[ Ni =  and ]..1[ cNj = . For each individual target, 

the proposed tracking solution can be decomposed into several 

steps. In the first phase, the tracked obstacle’s dynamic 

parameters (position and speed) are estimated based on the 

new observations through the particle filtering. In the second 

phase, using Kalman filters, the key point positions of each 

particle are recursively updated by taking into account the new 

estimated dynamic state. In the last phase each key point 

position is estimated by using a weighted average. The 

weights are provided by the associated particles. Next, we will 

present the main steps involved in our object tracking solution. 

B. Data Association 

In the data association step, the task is to assigning new 

measurements to the existing individual trackers, and to create 

new ones.  

Before applying the data association, we also must take into 

account the ego-car motion in order to separate its speed from 

the independent motion of the tracked participants. In our 

case, the velocity v and the yaw rate ψ&  information are 

provided by the host vehicle sensors. Therefore, the position 

state parameters ),( refref zx  of each particle are transformed 

by applying the ego-car motion model with constant speed and 

constant yaw rate: 

 
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t
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z

x
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_

_  (7) 

where t∆  is the time delay between two frames and t∆=ψψ &  

represents the vehicle rotation angle around the Y axis and 
Tego

z

ego

x
ttT ],[=  is the ego-car translation. 

Next, the data association is performed by computing 

overlapping scores wij between grid blobs at consecutive 

frames. We define a blob as a collection of connected grid 

cells that are occupied. For each blob entity A from the 

previous frame and for each blob B from the current frame the 

following distance metric is calculated: 

 ∑∑
= =

=∩=
A BN

i

N

j

jiAB baOBAw
1 1

),(||  (8) 

where ),( ji baO denotes the overlap function between two 

cells from A and B, NA represents the number of cells in the 

blob A, and NB is the number of cells in the blob B. The value 

of ),( ji baO  is 1 when the two points ai and bj overlap and 0 

otherwise. 

As the result, a score matrix }{ ijw=W  is generated. Given 

the matrix W, two types of association are determined: 

forward association (the most likely association from A to B): 

 

A

AB

BB N

w
ABpAAssoc maxarg)|(maxarg)( ==  (9) 

and backward association (the most likely association from B 

to A) 

 

B

AB

AA N

w
BApBAssoc maxarg)|(maxarg)( ==  (10) 

This double association allows us to consider the cases 

when larger object’s blobs are split into multiple disjoint sets 

or vice versa.  

Having the two sets of blobs described as 

]}..1[|{ MiAS iA ∈= and ]}..1[|{ NjBS jB ∈= , the final list S 

of distinct association hypotheses is defined as: 

]}..1[],..1[,)(,)(|),{(

]}..1[],..1[,)(|),{(

NjMiBAAssocABAssocAB

NjMiBAAssocBAS

jiijij

jiji

∈∈≠=

∪∈∈== (11) 

As the aim of association is to generate a set of distinct 

hypotheses pairs, associations from B to A must not repeat the 

associations from A to B, but rather gather the association 

pairs that have not been generated when searching from set A 

to set B. For this we introduced an extra constraint in the 

second part of the equation (11), 
ji BAAssoc ≠)(  . 

C. Initialization 

The initialization step is applied when new association 

hypotheses (not tracked objects) are detected. This is achieved 

by comparing the list of associated blobs with the existing list 

of individual trackers. The object state is initialized as follows: 

1) Initializing the object speed 

 The motion parameters describing the initial state are 

estimated by applying a fast pairwise alignment of the 

associated delimiter pairs (from the previous and current 

frames). For this, we use the Iterative Closest Point (ICP) 

algorithm, previously described in [3]. For each association 

hypothesis we define two set of points: a model set P={p1,p2, 

..., pM} that describes the object delimiters in the previous 

frame, and a data set Q={q1,q2, ..., qK} that describes the object 

delimiter  in the current frame. For each point qj from Q the 

corresponding closest point pi from P is determined. Having a 

set of corresponding points (pi, qj), an optimal rotation R and 

translation T is computed by minimizing the alignment error: 

 ∑
=

−+=
N

i

ii qpE
1

2
),( TRTR  (12) 

where N is the number of point-to-point correspondences. The 

number of corresponding points varies depending on the 

length of the two contours P and Q (model and data contour).  

2) Initializing the object position 

A set of initial random object hypotheses are generated 

around the measurement position: 
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 ]}..1[,],,[|{ 00000 NiGwXqq Tiiiii ==  (13)  

3) Initializing the object geometry 

Each particle is initialized with the object geometry
0G that 

is extracted from the measurement delimiters. It must be noted 

that a small amount of new particles (including new 

hypotheses for object position and geometry) are added in the 

Injection step.  

D. Prediction 

The prediction task consists in generating the new 

population of particles at time t from the previous set 
1−tS

given a state transition model )|( 1−tt SSp . First, the particles 

are moved by applying a deterministic drift based on the target 

dynamics. Then, each predicted sample state is altered 

according to a random noise. 

Each particle’s position and speed T

zxrefreft vvzxX ],,,[=  is 

predicted by using the standard constant velocity model: 
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 (14) 

The matrix multiplication describes the deterministic drift 

component. The stochastic part is defined by the random noise

),0(~ QNw which is drawn from a zero mean Gaussian 

distribution having the covariance matrix Q. As in our case we 

use a constant velocity model, the covariance matrix Q is 

selected considering an experimentally adjusted covariance 

accounting for the obstacles’ possible acceleration. 

E. Measurement update 

The purpose of this stage is to assign new weights to the 

predicted particles and to update the object geometry for each 

particle. First, the raw object delimiters are extracted from the 

current occupancy grid. Then, the new particle weights are 

computed by evaluating the alignment error between the 

measurement and the predicted hypotheses. Finally, the key 

point positions of each individual particle are updated taking 

into account the new estimated dynamic state. 

1) Object Delimiter Extraction 

The obstacle delimiters are extracted from the occupancy 

grid, at each frame, by using the BorderScanner algorithm 

previously described in [9] (see Fig. 4). The main idea of the 

BorderScanner technique is to extract a contour Cmeas for each 

object by accumulating the most visible grid cells ci that are 

occupied:  

 { }]..1[,)(| ciimeas MitruecOcccC ∈==  (15) 

This is achieved by using a virtual ray which extends from the 

ego-car position and traverses the grid map in a radial 

direction with fixed steps. The closest cells that are occupied 

are collected into the contour list Cmeas. In equation (15), Mc is 

the number of extracted contour points, and Occ(ci) is the 

occupancy state of the measurement grid cell ci. 

2) Computing Stereo Uncertainties 

The next step is to compute the stereo uncertainties. As 

suggested by [37], we can approximate the lateral 
xσ error and 

the longitudinal error 
zσ as: 

 
z

x

fb

z z
x

d
z

⋅
=

⋅

⋅
=

σ
σ

σ
σ ,

2

 (16) 

where x and z are the 3D coordinates of a point, 
dσ  denotes 

the disparity error in pixels, f is the focal distance, and b 

defines the distance between the left and right cameras 

(baseline). 

3) Computing the distance to the measurement 

The aim of this step is to determine a distance metric 

between any occupancy grid cell and a corresponding 

measurement point. First, for each obstacle we select a region 

of interest (ROI) covering all generated particles around the 

measurement contour Cmeas. Then, for each cell ),( dmdmdm zxm
 

in the ROI we compute two parameters: a distance 
md  to the 

closest measurement cell ),( deldelj zxc , and its position, where 

dm represents the index of a given cell in the local map, and 

del is the index of the closest delimiter point. The resulted 

values are stored in a Distance Map. 

 The probability density map (see Fig. 4.d) can be 

determined now by converting the distance values 
md  of each 

point 
dmm  according to: 
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Fig. 4. a) Left camera image. b) The occupancy grid projected on the ground 

plane. The obstacle delimiters are colored with green. c) The Distance 

Transform of the extracted delimiters. d) The density map is generated by 

taking into account stereo uncertainties and distances to the closest delimiter 
points. High intensities indicate high measurement probability. 
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where 
xσ  and 

zσ represent the stereo uncertainties of the 

corresponding measurement point. As each cell has its own 

uncertainty, the 
x

σ
 
and 

zσ
 
errors are determined for each 

measurement cell according to the equation (16) considering 

that the disparity error is about 0.25 pixels in the case of a 

good stereo-reconstruction system. Both parameters define the 

confidence of the system in the measurement model. The 

confidence of the results is inversely correlated with the value 

of these parameters. All computed weights are stored in a 

Density Map.  

4)  Weighting 

This step consists in assigning new weights i

t
w  to the 

delimiter hypotheses i

tq  based on their likelihood: 

 ),|( i

tt

i

ttt
GGXXZp ==  (18) 

First, we need to define a distance metric between a given 

particle and a given observation. This is achieved by 

estimating an alignment error between object hypotheses and 

the measurement data. For each control point jL  from the 

particle i

tq  we determine the closest corresponding point 
kc  

from the measurement 
measC : 

 ),(min),(
}..1{

k

j

Mk
meas

j
cLdCLd

c∈
=  (19) 

where Mc is the number of measurement points in 
measC . In 

order to consider the stereo uncertainties we also assign a 

density value j

Lπ  to each corresponding pair ),(
k

j cL . The 

Euclidean distance ),( meas

j
CLd  and the weight j

Lπ  metrics 

are determined by superimposing the particle model on the 

two maps estimated in the previous step (see Fig. 5). The 

alignment error is computed according to: 

 ∑
∑=

=

⋅
=

c

c

N

j
N

k

k

L

meas

jj

L
alignment

CLd
D

1

1

),(

π

π  (20) 

Finally, the overall particle weight i

t
w  is computed as follows: 

 
2

2

2

1

2

1
D

alignmentD

D

i

t ew
σ

πσ

−

=  (21) 

5) Kalman Filtering 

Having a population of weighted particles describing the 

belief about the object position and speed, we also need to 

update the belief about the object shape as soon as new 

observations are available. Given an individual particle i

tq , its 

geometry component i

tG  is described by a list of control 

points. Therefore, for each control point we apply a 2x2 

Kalman filter to estimate its state [ ]Tj

z

j

x

j llL ,ˆ =  and 

covariance j∑ .  The Kalman filter input measurements are 

determined by choosing N equidistant points along the 

measurement contour extracted in the step 1. The 

measurement covariance matrix R of each control point is 

computed, by considering the stereo uncertainties 
xσ
 
and 

zσ
 
 

defined in the step 2.  

F. Estimation 

The current mean state at time t is estimated by using a 

weighted average of the particle states: 

 i

t

N

i

i

t SwS ∑
=

=
1

ˆ  (22) 

G. Resampling and Injection 

The resampling step consists in drawing from the previous 

particle set with a sampling probability proportional to the 

assigned weights. Thus, the particles with low importance are 

removed while the samples with large weights are replicated. 

However, there are cases when sharp changes in the traffic 

scene may lead to the estimation of erroneous states. This may 

happen due to the fact that there are no sufficient hypotheses 

in the vicinity of the true. This is also known as the particle 

deprivation problem. As a solution, we introduced an Injection 

step where a small amount of particles with low importance 

are replaced with new completely random samples that are 

drawn around the measurement, a common approach for 

preventing particle deprivation, as described in [36]. Through 

the Injection step we also introduce new hypotheses for object 

geometry. 

V. EXPERIMENTAL RESULTS 

The proposed multiple object tracking solution has been 

tested on various sequences of urban traffic situations, 

acquired in Cluj-Napoca, Romania. We have conducted two 

types of evaluations: qualitative assessment and quantitative 

assessment. For both types of tests we used an Intel Core 2 

Duo Computer at 2.66GHz and 4GB of RAM. The size of the 

occupancy grid used in our method is 240 rows x 500 columns 

(0.1 m x 0.1 m cells). In order to evaluate the accuracy of the 

tracking method we have performed two types of experiments. 

In the first case the ground-truth measurements are provided 

by high-performance GNSS receivers mounted on the ego 

vehicle and on the target vehicle. The second set of 

experiments is performed on the KITTI raw dataset [34].  

Fig. 5. The Euclidean distance and the weight metrics are determined by 

superimposing the particle model on the two maps: Distance Transform Map 
and Probability Density Map. 
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A. Qualitative Evaluation 

The qualitative assessment was performed on various real-

traffic scenarios. In order to prove the ability of the system to 

correctly identify the speed of the objects, each individual 

obstacle is labeled according to the estimated speed by 

following the Middlebury color coding style [22]. As 

presented in Fig. 6, the color hue describes the orientation of a 

moving obstacle while the saturation describes its magnitude 

(e.g. blue – for outgoing objects, yellow – for incoming 

objects). Each static or dynamic object is represented by a 

free-form delimiter and a speed vector (orange). The free form 

delimiter’s projection in the road plane is a polygonal line, and 

the height of the obstacle is the maximum height of the 

object’s associated elevation map cells. 

Fig. 8 illustrates the results of the proposed multiple object 

tracking approach, including intermediate frames with the 

particle distributions and the labeled obstacles. Fig. 8.e 

presents the case when all new objects’ trackers are initialized 

for the first time. Usually, this occurs at the beginning of a 

sequence, when the list of individual trackers is empty. It can 

be seen that the initial random hypotheses are clustered around 

each individual object (Fig. 8.f). Moreover, the resulted 

particle distributions converge over time (Fig. 8.g and h).  The 

estimated mean state is colored with light blue. The predicted 

samples are colored with magenta. The picture also shows the 

influence of weighting and resampling steps (dark blue) on the 

predicted population of particles. Fig. 8.i presents a particular 

case when the initialization step is applied to a newly activated 

tracker. A set of initial random object hypotheses (red) are 

drawn around the measurement position. 

Fig. 7. presents some results from real traffic scenes, 

emphasizing the following specific cases: 

• Dynamic objects of different size: two buses and a car 

(see Fig. 7.a). 

• Two objects moving in a roundabout (see Fig. 7.b) 

• Partially visible objects: moving in an intersection (see 

Fig. 7.c), outgoing (see Fig. 7.e) or incoming (see Fig. 

7.f). 

• Obstacles of different types: static walls and a moving 

object (see Fig. 7.d). 

It can be observed that the particle population for each 

object (dark blue contours) is spread out according to the 

uncertainties of the stereo measurement process, but the 

estimation generated from the particles (depicted with light 

 

Fig. 7. Tracking multiple objects in various traffic scenarios. 

Fig. 6 Left: Color encoding of object speed. Color hue describes the 

orientation of a moving obstacle while the saturation describes its magnitude. 

Right: an example with labeled obstacles according to their speeds. 
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blue) follows closely the real contour of the object. 

Fig. 9 shows comparative results between the frame by 

frame measurement delimiters, obtained by applying the 

Border Scanner algorithm (blue) and the resulted estimated 

object geometry after tracking (colored with red). 

Fig. 10 and Fig. 11 show how the object position and 

geometry are updated over time (red) by taking into account 

the sequence of noisy measurements (blue). It can be observed 

that the shape of the tracked model is gradually changing as 

the target vehicle is moving along its trajectory. 

B.  Numerical evaluation by using high-accuracy GNSS 

receivers 

In order to be able to quantify the performance of the 

proposed method we have used the ground-truth information 

provided by two high-accuracy Novatel GNSS receivers with 

RTK support [23]. We mounted one GNSS unit on the ego 

vehicle and one unit on the target car. The installed receivers 

were able to provide ground truth for the 3D positioning and 

speed of the two cars with centimeter-level accuracy. 

In Fig. 12, the target vehicle is represented by an oriented 

cuboid of fixed size. The box position and orientation are 

determined by using ground truth measurements and 

converting them into the camera coordinate system. 

For numerical evaluation we included two types of 

scenarios: a real urban traffic scenario and a controlled 

situation. The first test case implies a sequence of an urban 

traffic scene, where the ego car follows a target car. 

Figures 13, 14 and 15 show the results for a sample of 270 

frames of city driving (at 10 frames per second), following the 

Fig. 8. Multiple object tracking.  (a) An image of a traffic scene. (b), (c) The result of the static and dynamic object representation, 10 and 25 frames later. (d) The 

measurement occupancy grid projected on the ground plane. (e) Particle population after initialization. (f)-(h) Individual object tracker particles, evolving in time. 

(i) The initialization step applied to a newly detected tracker corresponding to the tree in figure (c). 

 

Fig. 9. Single frame object shape measurements (blue delimiters) vs. tracked geometry (red). 
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target vehicle through several maneuvers, at a distance varying 

from 10 to 25 meters. The target’s speed ranged from 10 to 40 

km/h, and the target’s relative orientation to the coordinate 

system of the ego vehicle changes as a left turn is executed. 

The estimated speed is compared to the ground truth speed, 

obtained from the high accuracy GNSS device, as shown in 

Fig. 13. The mean absolute error of the speed estimation was 

found to be 1.85 km/h. 

Fig. 14 shows the comparison between the estimated 

relative orientation of the target vehicle with respect to the ego 

vehicle’s axis of elongation. The tracker correctly perceives 

the changes in orientation of the target, with a mean absolute 

error of 2.88 degrees. 

The comparison of the estimated distance between the 

 

Fig. 11. The evolution of the object shape estimation in time. (a) An 

outgoing vehicle. (b) The car trajectory (top view) described by a sequence 

of single frame measurements (blue color). (c) The tracked model (red). The 
object position and its geometry are gradually updated over time. 

 

Fig. 10. The evolution of the object shape estimation in time. (a) An 

incoming vehicle. (b) The car trajectory (top view) described by a sequence 

of single frame measurements (blue color). (c) The tracked model (red). The 

object position and its geometry are gradually updated over time. 

Fig. 12.  A 3D box is generated using Ground Truth data from the High 

Accuracy GNSS receivers that were mounted on the Ego Car and on the 

Target Car. The target box is fitted over the detected obstacle (right). 

Fig. 13. Top: an urban traffic scenario including the target car (blue, indicating 

an outgoing motion). The 3D box (green) is generated by using ground-truth 

information and is fitted over the target vehicle.  Bottom:  the estimated target 
speed is shown with red. The ground truth speed is illustrated with green. 

Fig. 14.  The estimated target orientation is shown with red. The ground truth 

is illustrated with green. 

Fig. 15.  The estimated distance to the target vehicle. The ground truth 

distance is illustrated with green. 
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target and the ego vehicle with the ground truth distance (the 

Euclidean distance between the accurate GNSS points 

retrieved for the ego vehicle and the target), is shown in Fig. 

15. The mean absolute error of distance estimation is 1.3 

meters, which includes the uncertainty related to the position 

of the estimated reference point for the target, as the true 

shape and size of the target is not known a priori by the 

tracker, and is continuously updated.  

The second experiment was conducted in a controlled 

scenario, where the target vehicle is moving in front of the 

ego-car and is in the field of view for only a short period of 

time. The target vehicle passes in front of the ego vehicle, 

from left to right, having an accelerated motion which varies 

its speed during the observation time from 20 km/h to 30 

km/h. We have evaluated the accuracy of speed, orientation 

and distance estimation. Four tracking solutions are compared: 

a particle filter based tracking solution that does not take into 

account the variable geometry of the perceived object (PF-no 

geometry), a Kalman Filter based tracking techique which 

uses Iterative Closest Point (ICP)  for motion extraction and 

providing the information of free-form delimiter position, 

speed and its geometry (KF-ICP) [33], the Rao-Blackwellized 

particle filter including the variable geometry (RBPF), and the 

refined version of RBPF, the Rao-Blackwellized Particle Filter 

using Iterative Closest Point for speed initialization (RBPF-

ICP). 

The results of speed estimation are shown in Fig. 16. It is 

apparent that even though all tracking solutions eventually 

converge to the correct speed estimation, the use of a variable 

geometry model helps the tracker converge faster, and the 

speed convergence is sped up even more by ICP initialization. 

Fig. 17 shows the estimation of the target object’s 

orientation, using the four tracking solutions. All the solutions 

converge rapidly to the correct orientation , the best 

performance being achieved again by the RBPF-ICP method. 

Fig. 18 shows the evaluation of the distance measurement 

results relative to the ego vehicle. While the lag in estimation 

convergence is much lower than for speed and orientation, as 

the distance can be assessed directly from the stereo data, 

there are some initial systematic errors. The cause for these 

errors is that the target’s reference point is initially estimated 

nearer to the ego vehicle than its true position, as the whole 

target is not yet fully observable. As the target vehicle gets 

closer and its true shape is estimated, the distance estimation 

gets significantly closer to the ground truth data. As overall 

performance, the RBPF combined with ICP method again 

proves to be the best choice. 

Tables I, II and III show the error assessment for the speed, 

orientation and distance estimation using the four tracking 

methods. 

C. Numerical evaluation using a public dataset 

Another set of experiments were performed using a publicly 

available and well known benchmark database for driving 

assistance sensing and tracking applications, the KITTI dataset 

compiled and maintained by the Karlsruhe Institute of 

Technology, and described in [34]. For our tests, we used the 

raw data sequences “2011_09_26_drive_0017” and 

“2011_09_26_drive_0018”, from the “city” category. The 

sequences include rectified color and grayscale image pairs 

suitable for stereo reconstruction, 3D point clouds generated 

by a Velodyne laser scanner, Ego-Car 3D GPS/IMU data, and 

object annotations, including position and occlusion status. 

The rectified image pairs were processed using an SGM 

stereo reconstruction algorithm described in [35] and [38], and 

then the higher level detection and tracking algorithms were 

applied.  

The following tracking algorithms were tested on this 

dataset: cuboid based tracking using Kalman Filter 

(CUBOIDS, [6]), particle based occupancy grid tracking 

followed by cell grouping into individual objects (PF-GRID, 

[28]), Kalman Filter geometry tracking combined with ICP 

based position tracking (KF-ICP, [33]) and the currently 

proposed RBPF based tracking solution. A summary of the 

characteristics of each method is presented in Table IV. 

Fig. 16.  Speed Estimation in a controlled scenario. 

Fig. 17.  The car orientation estimation in a controlled scenario. 
 

Fig. 18.  Estimating the distance to the target. The target position is 

represented by its reference point.  
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The tests were aimed at assessing the accuracy of speed and 

orientation estimation for two types of objects: fully visible 

objects and partially visible (or partially occluded) objects. 

The results of speed accuracy estimation are shown in Table 

V, and the results of orientation accuracy estimation are 

shown in Table VI. From these results, one can see that the 

proposed method, RBPF-ICP, brings considerable 

improvement in accuracy, compared with the other methods, 

especially in the case of partially visible objects. 

D. Algorithm complexity and time performance 

The complexity of the algorithm is linear with the number 

of tracked objects, the number of used particles per object and 

the number of control points per model. At particle level, the 

processing time is mostly dedicated to computing the 

particle’s weight, which means testing the control points 

against the measurement data. Therefore, the particle time is 

linear with the number of control points. At object level, the 

processing time of the measurement is the sum of the 

weighting time for each particle, thus the object’s processing 

time is linear with the number of particles. The same 

reasoning applies for the entire scene, composed of objects. 

The number of control points per particle is fixed, and the 

number of particles per object is also fixed, and therefore the 

total running time is dependent only on the number of objects 

in the scene. 

In our traffic scenario test sequences, the average number of 

tracked objects was 6. For each object we set up a fixed 

number of 80 particles and a fixed number of 20 control points 

per sample. The average processing time of the algorithm was 

about 99.83 ms / frame, or about 10 fps.  

VI. CONCLUSION 

In this paper we proposed a stereovision based approach for 

tracking multiple objects in crowded urban traffic scenarios. 

The solution relies on measurement information provided by 

an intermediate occupancy grid and on free-form object 

delimiters extracted from this grid. In order to track visual 

appearance based free-form obstacle representations we adopt 

a particle filter based mechanism, in which each particle state 

is described by two components: the object dynamic 

parameters (position and speed), and its estimated geometry (a 

set of key points). The high-dimensionality state-space 

problem is solved by using a Rao-Blackwellized solution, 

where the obstacle dynamic properties are estimated by 

TABLE I 

SPEED ESTIMATION ACCURACY 

Accuracy 

Metrics 

PF (NO 

GEOMETRY) 
KF-ICP RBPF RBPF-ICP 

MAE (km/h) 3.42 2.25 1.43 1.33 

STDEV (km/h) 5.07 1.06 1.06 0.90 

 
TABLE II 

ORIENTATION ESTIMATION ACCURACY 

Accuracy 

Metrics 

PF (NO 

GEOMETRY) 
KF-ICP RBPF RBPF-ICP 

MAE (deg) 5.33 4.07 3.16 1.72 

STDEV (deg) 5.07 3.65 3.04 3.02 

 
TABLE III 

DISTANCE ESTIMATION ACCURACY 

Accuracy 

Metrics 

PF (NO 

GEOMETRY) 
KF-ICP RBPF RBPF-ICP 

MAE (km/h) 3.48 3.54 3.05 2.23 

STDEV (km/h) 0.78 0.43 0.49 0.30 

 

TABLE IV 

COMPARISON OF TRACKING APPROACHES TESTED ON KITTI DATASET 

 
USED 

MODELS 

FILTERING 

TECHNIQUE 

STATE 

PARAMETERS 

OBJECT 

SHAPE 

FLEXIBILITY 

CUBOIDS 

[6] 

3D Oriented 

boxes 

Kalman 

Filter 

Position and 

Speed 
No 

PF-GRID 

[28] 

Dynamic 

Grid Cells 

Particle 

Filter 

Position and 

Speed 
Yes 

KF-ICP 

[33] 

Attributed 

Polygonal 

Models 

Kalman 

Filter 

Position, 

Speed and 

Geometry 

Yes 

RBPF-ICP 

Attributed 

Polygonal 

Models 

Particle 

Filter and 

Kalman 

Filters 

Position, 

Speed and 

Geometry 

Yes 

 

Fig. 19.  Tracking results on KITTI dataset. (a) The static and dynamic objects 

represented as free-form attributed polygonal models. The object speed vector 

is illustrated with yellow. The colors of the detected objects encode their 

speed, using the Middlebury convention (b) The 3D Virtual view including the 

classified Elevation Map, the static (green) and dynamic (red) objects. (c) The 
results are projected on the ground plane. 

TABLE V 

COMPARISON OF SPEED ESTIMATION ACCURACY ON KITTI DATASET 

 
FULLY VISIBLE 

OBJECTS 

PARTIALLY VISIBLE 

OBJECTS 

Method 
MAE 

(km/h) 

STDEV 

(km/h) 

MAE 

(km/h) 

STDEV 

(km/h) 

CUBOIDS [6]
*
  2.54 2.63 3.78 4.10 

PF-GRID [28] 1.88 1.65 3.96 3.07 

KF-ICP [33]
*
 2.59 1.18 3.55 2.56 

RBPF-ICP
*
 1.90 1.31 2.45 2.55 

* - methods working in real-time on the specified hardware configuration. 

TABLE VI 

COMPARISON OF ORIENTATION ESTIMATION ACCURACY ON KITTI DATASET 

 
FULLY VISIBLE 

OBJECTS 

PARTIALLY VISIBLE 

OBJECTS 

Method 
MAE  

(deg) 

STDEV 

(deg) 

MAE 

(deg) 

STDEV 

(deg) 

CUBOIDS [6]
 *
 5.77 4.94 9.12 5.70 

PF-GRID [28]
 
 4.57 4.70 8.95 1.84 

KF-ICP [33]
 *
 4.54 2.92 7.72 3.70 

RBPF-ICP
*
 3.72 2.65 5.49 2.56 

* - methods working in real-time on the specified hardware configuration. 
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importance sampling while the geometric properties are 

computed analytically by using a Kalman Filter for each key 

point. The presented probabilistic tracking approach takes into 

consideration the stereo uncertainties introduced by the 

sensorial system. 

In order to evaluate the accuracy of the tracking method we 

have performed two types of experiments. In the first case the 

ground-truth measurements were provided by high-accuracy 

GNSS receivers mounted on the ego vehicle and on the target 

vehicle. The second set of experiments was performed on the 

public raw dataset. The proposed solution works in real-time 

and, compared with the other methods, it was able to estimate 

with high accuracy the position, the speed and the geometry of 

objects from noisy stereo depth data.  

As future work, we propose to improve the accuracy of our 

solution by including the intensity information, as in the 

optical flow techniques. We also intend to improve the system 

processing time by further optimizations.  

REFERENCES 

[1] S. Sivaraman, M. M. Trivedi, "Looking at Vehicles on the Road: A 

Survey of Vision-Based Vehicle Detection, Tracking, and Behavior 

Analysis," IEEE Transactions on Intelligent Transportation Systems, 

vol.14, no.4, pp.1773-1795, Dec. 2013. 

[2] A. Petrovskaya and S. Thrun, “Model based vehicle detection and 

tracking for autonomous urban driving”, Autonomous Robots, vol. 26, 

no. 2-3, pp. 123-139, 2009. 

[3] A. Vatavu and S. Nedevschi, "Real-time modeling of dynamic 

environments in traffic scenarios using a stereo-vision system", in Proc. 

of IEEE ITSC 2012, pp.722-727, 16-19 Sept, 2012. 

[4] Z. Sun, G. Bebis, and R. Miller, "On-road vehicle detection: A review", 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 694–711, 

May 2006. 

[5] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of 

stereo and motion for robust environment perception,” in 27th Annual 

Meeting of the German Association for Pattern Recognition DAGM ’05, 

2005, pp. 216-223. 

[6] R. Danescu, S. Nedevschi, M.M. Meinecke,  and T. Graf, “Stereovision 

Based Vehicle Tracking in Urban Traffic Environments”, in Proc. of 

IEEE  ITSC 2007, Seattle, USA, 2007 

[7] C.C. Wang, C. Thorpe, M. Hebert, S. Thrun, and H. Durrant-Whyte, 

“Simultaneous localization, mapping and moving object tracking”, in 

International Journal of Robotics Research, vol. 26, no. 9, pp. 889-916, 

September 2007. 

[8] A. Vatavu, R. Danescu, S. Nedevschi, "Real-time dynamic environment 

perception in driving scenarios using difference fronts", in Proc of IEEE 

IV 2012, 3-7 June 2012, pp.717-722. 

[9] A. Vatavu, S. Nedevschi, and F. Oniga, “Real Time Object Delimiters 

Extraction for Environment Representation in Driving Scenarios”, In 

Proc. of ICINCO-RA 2009, Milano, Italy, 2009, pp 86-93. 

[10] A. Azim, O. Aycard, "Detection, classification and tracking of moving 

objects in a 3D environment," in Proc. of IEEE Intelligent Vehicles 

Symposium (IV), 3-7 June 2012, pp.802-807. 

[11] Q. Chen, Q.-S. Sun, P.-A. Heng, and D.-S. Xia, "Two-stage object 

tracking method based on kernel and active contour," IEEE Transactions 

on Circuits and Systems for Video Technology, vol. 20, no. 4, pp. 605-

609, 2010. 

[12] F. Oniga and S. Nedevschi, “Processing Dense Stereo Data Using 

Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection”, 

IEEE Transactions on Vehicular Technology, vol. 59, vo. 3, March 

2010, pp. 1172-1182. 

[13] A. Elfes, “A Sonar-Based Mapping and Navigation System”, in Proc. of 

IEEE ICRA, April 1986, pp. 1151-1156. 

[14] R. Danescu, F. Oniga, S. Nedevschi, M-M. Meinecke, “Tracking 

Multiple Objects Using Particle Filters and Digital Elevation Maps”, in 

Proc. of the IEEE-IV 2009, Xi’An, China, June 2009, pp. 88-93. 

[15] D. Pfeiffer, U. Franke,  "Modeling Dynamic 3D Environments by Means 

of The Stixel World," IEEE Intelligent Transportation Systems 

Magazine, vol.3, no.3, pp.24,36, 2011. 

[16] Y. Rathi, N. Vaswani, A. Tannenbaum, A. Yezzi, "Particle filtering for 

geometric active contours with application to tracking moving and 

deforming objects", in Proc. of the IEEE Computer Vision and Pattern 

Recognition, CVPR 2005, Vol. 2, 20-25 June 2005, pp. 2-9. 

[17] J. D. Jackson, A. J. Yezzi, S. Soatto, “Tracking deformable moving 

objects under severe occlusions”, in Proc. of 43rd IEEE Conference on 

Decision and Control, CDC, Vol.3, 2004, pp.2990-2995. 

[18] M. Isard and A. Blake. Condensation, “Conditional density propagation 

for visual tracking”, International Journal of Computer Vision, vol. 29, 

no. 1, pp. 5–28, 1998. 

[19] R. Merwe, A. Doucet, N. Freitas, E. Wan, “The Unscented Particle 

Filter”, Advances in Neural Information Processing Systems, vol. 8, 

2000, pp 351-357. 

[20] A. Doucet, N. De Freitas, K. Murphy, S. Russell, "Rao–Blackwellised 

particle filtering for dynamic Bayesian networks" in Proc. of the 

Sixteenth conference on Uncertainty in artificial intelligence, 2000, pp. 

176–183. 

[21] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, "FastSLAM: A 

factored solution to the simultaneous localization and mapping 

problem", in Proc. of the AAAI National Conference on Artificial 

Intelligence, pp. 593–598, 2002. 

[22] S. Baker, S. Roth, D. Scharstein, M. Black, J. Lewis, and R. Szeliski, “A 

database and evaluation methodology for optical flow”, in proc of ICCV 

2007, pp. 1-8. 

[23] NovaTel Inc., “High Precision GPS & GNSS receivers”, online at 

http://www.novatel.com/products/gnss-receivers/ , Accessed 2013 

December 11. 

[24] N. Fairfield, G. A. Kantor, and D. Wettergreen, "Real-Time SLAM with 

Octree Evidence Grids for Exploration in Underwater Tunnels",  Journal 

of Field Robotics, vol. 24, no. 1-2, pp. 3-21, 2007. 

[25] D. Simon, Optimal State Estimation, Wiley, New York, 2006. 

[26] J. I. Woodill, G. Gordon, and R. Buck, “Tyzx deepsea high speed stereo 

vision system”, in Proc. of IEEE Computer Society Workshop on Real 

Time 3-D Sensors and Their Use, Washington, DC, 2004. 

[27] F. Pletzer, R. Tusch, L. Boszormenyi, B. Rinner, O. Sidla, M. Harrer, T. 

Mariacher, "Feature-based level of service classification for traffic 

surveillance," in proc. of IEEE ITSC 2011, pp.1015-1020, 5-7 Oct. 2011.  

[28] R. Danescu, F. Oniga, S. Nedevschi, "Modeling and Tracking the 

Driving Environment With a Particle-Based Occupancy Grid," IEEE 

Transactions on Intelligent Transportation Systems, vol.12, no. 4, 

pp.1331-1342, Dec. 2011. 

[29] S. Sivaraman and M. Trivedi, "A general active-learning framework for 

on-road vehicle recognition and tracking", IEEE Trans. Intell. Transp. 

Syst., vol. 11, no. 2, pp. 267–276, Jun. 2010. 

[30] H. Tehrani Niknejad, A. Takeuchi, S. Mita, and D.McAllester, "On-road 

multivehicle tracking using deformable object model and particle filter 

with improved likelihood estimation", IEEE Transactions on Intelligent 

Transportation Systems, vol. 13, no. 2, pp. 748–758, Jun. 2012. 

[31] M. Perrollaz, J.-D. Yoder, A. Nègre, A. Spalanzani, and C. Laugier, "A 

visibility-based approach for occupancy grid computation in disparity 

space", IEEE Transactions on Intelligent Transportation Systems, vol. 

13, no. 3, pp. 1383–1393, Sep. 2012. 

[32] F. Erbs, A. Barth, and U. Franke, "Moving vehicle detection by optimal 

segmentation of the dynamic stixel world", in Proc. of IEEE IV 2011, 

Jun. 2011, pp. 951–956. 

[33] A. Vatavu and S. Nedevschi, "Vision-based tracking of multiple objects 

in dynamic unstructured environments using free-form obstacle 

delimiters", in proc. of 2013 European Conference on Mobile Robots 

(ECMR’13), Barcelona, Catalonia, Spain, 2013, pp. 367–372, 25-27 

Sept. 2013. 

[34] A. Geiger, P. Lenz, C. Stiller, R. Urtasun, "Vision meets robotics: The 

KITTI dataset", International Journal of Robotics Research, 32 (11), pp. 

1231-1237, 2013. 

[35] C. Pantilie, S. Nedevschi, “SORT-SGM: Sub-pixel Optimized Real-

Time Semi-Global Matching for Intelligent Vehicles”, in IEEE 

Transactions on Vehicular Technology, vol. 61, no. 3, 2012, pp. 1032-

1042. 

[36] S. Thrun, W. Burgard, and D. Fox, "Probabilistic robotics", in MIT 

press, 2005. 

[37] O. Faugeras, Three-Dimensional Computer Vision: A Geometric 

Viewpoint: Mit Press, 1993. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

14

[38] I. Haller , S. Nedevschi, "Design of Interpolation Functions for Sub-

Pixel Accuracy Stereo-Vision Systems”, IEEE Transactions on Image 

Processing, vol. 21, no. 2, 2012, pp. 889-898. 

[39] R. Danescu, S. Nedevschi, "A Particle-Based Solution for Modeling and 

Tracking Dynamic Digital Elevation Maps", IEEE Transactions on 

Intelligent Transportation Systems, vol. 15, No. 3, June 2014, pp. 1002-

1015. 

[40] R. Danescu, S. Nedevschi, "A Flexible Solution for Modeling and 

Tracking Generic Dynamic 3D Environments", in Proc. of the IEEE 

Intelligent Transportation Systems Conference 2013 (IEEE-ITSC 2013), 

October 2013, The Hague, The Netherlands, pp. 1686-1692. 

[41] R. Danescu, F. Oniga, S. Nedevschi, M-M. Meinecke, "Tracking 

Multiple Objects Using Particle Filters and Digital Elevation Maps", in 

Proc. of the IEEE Intelligent Vehicles Symposium (IEEE-IV 2009), June 

2009, Xi’An, China, pp. 88-93. 

[42] A. Vatavu, R. Danescu, S. Nedevschi, "Tracking Multiple Objects in 

Traffic Scenarios Using Free-Form Obstacle Delimiters and Particle 

Filters", in Proc. of 2013 16th IEEE Intelligent Transportation Systems 

Conference (ITSC-2013), The Hague, The Netherlands, October, 2013, 

pp. 1346-1351. 

[43] A. Vatavu, S. Nedevschi, "Modeling Unstructured Environments with 

Dynamic Persistence Grids and Object Delimiters in Urban Traffic 

Scenarios", in Proceedings of IEEE Intelligent Vehicles Symposium 

2013 (IV 2013), Gold Coast, Australia, 23-26 June, 2013, pp. 505 – 510. 

 

 

 
Andrei Vatavu (M’12) received the M.S. degree in computer science, from 

Technical University of Cluj-Napoca, Cluj-Napoca, Romania, in 2008. He is 

currently working toward the Ph.D. degree in computer science at Technical 

University of Cluj-Napoca, specializing in stereovision systems for intelligent 

vehicles. He is a Ph.D. Student at Faculty of Automation and Computer 

Science, Technical University of Cluj-Napoca. His research interests include 

stereovision based environment representation, occupancy grid analysis, 

object tracking. 

 

Radu Danescu (M’11) received the Diploma Engineer degree in Computer 

Science in 2002 from the Technical University of Cluj-Napoca, Romania, 

followed by the M.S. degree in 2003 and the PhD (Computer Science) degree 

in 2009, from the same university. He is an Associate Professor with the 

Computer Science Department, TUCN, teaching Image Processing, Pattern 

Recognition, and Design with Microprocessors. His main research interests 

are stereovision and probability based tracking, with applications in driving 

assistance. He is a member of the Image Processing and Pattern Recognition 

Research Laboratory at TUCN. 

 

 

Sergiu Nedevschi (M’99) received the M.S. and PhD degrees in Electrical 

Engineering from the Technical University of Cluj-Napoca (TUCN), Cluj-

Napoca, Romania, in 1975 and 1993, respectively. From 1976 to 1983, he was 

with the Research Institute for Computer Technologies, Cluj-Napoca, as 

researcher. In 1998, he was appointed Professor in computer science and 

founded the Image Processing and Pattern Recognition Research Laboratory 

at the TUCN. From 2000 to 2004, he was the Head of the Computer Science 

Department, TUCN, and from 2004 to 2012 the Dean of the Faculty of 

Automation and Computer Science. Prof. Nedevschi is now Vice-President in 

charge with scientific research of TUCN. He has published hundreds of 

scientific papers and has edited multiple volumes, including books and 

conference proceedings. His research interests include Image Processing, 

Pattern Recognition, Computer Vision, Intelligent Vehicles, Signal 

Processing, and Computer Architecture. 

 


