
Appendix II. Image processing using OpenCV library

114

Appendix II. Image processing using the OpenCV library

1. Introduction

OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-

licensed library that includes several hundreds of computer vision algorithms of image

processing at pixel level to complex methods such as camera calibration, object detection,

optical flow, stereovision etc. It also includes tools for data storage and manipulation and

graphical user interface functions. The OpenCV library package is freely available and can be

downloaded (http://opencv.org/). The online documentation for the various editions of the

library is available here: http://docs.opencv.org/ [1].

A framework based on the OpenCV library, called OpenCVApplication is available (you can

download it from the personal web pages of the teaching staff). The framework is

personalized for several versions of the Visual Studio (C++) development environments and

several editions of the OpenCV library. The application includes some basic examples for

opening and processing images and video streams. It can be used independently (without

installing the OpenCV kit).

In the following, some basic data structures and image processing functions of the library are

presented, as described in the 2.4.x API documentation (2.x API is essentially a C++ API).

In the OpenCV API, all the classes and functions are placed into the cv namespace. To access

them from your code, use the cv:: specifier or using namespace cv; directive:

...

cv::Mat src_gray, dst;

cv::equalizeHist(src_gray, dst);

...

or
using namespace cv;

...

Mat src_gray, dst;

equalizeHist(src_gray, dst);

...

Some of the current or future OpenCV external names may conflict with STL or other

libraries. In this case, use explicit namespace specifiers to resolve the name conflicts:

2. Basic data structures in OpenCV

The Point_ class

Point_ is a template class that specifies a 2D point by coordinates x and y. You can perform

most of the unary and binary operations between Point type operators:

pt1 = pt2 + pt3;

pt1 = pt2 - pt3;

pt1 = pt2 * a;

pt1 = a * pt2;

pt1 += pt2;

pt1 -= pt2;

http://opencv.org/
http://opencv.org/
http://docs.opencv.org/

Appendix II. Image processing using OpenCV library

115

pt1 *= a;

double value = norm(pt); // L2 norm

pt1 == pt2;

pt1 != pt2;

You can use specific types for the coordinates and there is a cast operator to convert point

coordinates to the specified type. The following type aliases are defined:

typedef Point_<int> Point2i;

typedef Point2i Point;

typedef Point_<float> Point2f;

typedef Point_<double> Point2d;

The Point3_ class

Point3_ is a template class that specifies a 3D point by coordinates x, y and z. It supports all

the vector arithmetic and comparison operations (same as for the Point_ class). You can use

specific types for the coordinates and there is a cast operator to convert point coordinates to

the specified type. The following type aliases are defined:

typedef Point3_<int> Point3i;

typedef Point3_<float> Point3f;

typedef Point3_<double> Point3d;

The Size_ class

Size_ is a template class that specifies the size of an image or rectangle. The class includes

two members called width and height. The same arithmetic and comparison operations as

for Point_ class are available.

The Rect_ class

 Rect_ is the template class for 2D rectangles, described by the following parameters:

 Coordinates of the top-left corner: Rect_::x and Rect_::y

 Rectangle width (Rect_::width) and height (Rect_::height).

The following type allias is defined:

typedef Rect_<int> Rect;

The following operations on rectangles are implemented:

 shift: rect = rect ± point

 expand/shrink: rect = rect ± size

 augmenting operations: rect += pont, rect -= pont, rect += size, rect -=
size

 intersection: rect = rect1 & rect2, rect &= rect1

 minimum area rectangle containing 2 rectangles: rect = rect1 | rect2, rect |=
rect1

 rectangle comparission: rect == rect1, rect != rect1

Appendix II. Image processing using OpenCV library

116

The Vec class

The Vec class is commonly used to describe pixel types of multi-channel arrays. For example

to describe a RGB 24 image pixel the following type can be used:

typedef Vec<uchar, 3> Vec3b;

The following vector operations are implemented:

v1 = v2 + v3

v1 = v2 - v3

v1 = v2 * scale

v1 = scale * v2

v1 = -v2

v1 += v2 and other augmenting operations
v1 == v2, v1 != v2

norm(v1) (Euclidean norm)

The Scalar_ class

Scalar_ is a template class for a 4-element vector derived from Vec.

The Mat class

The Mat class represents an n-dimensional single-channel or multi-channel array. It can be

used to store real or complex vectors and matrices, grayscale or color images, histograms etc.

2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-

plane, and so on.

class CV_EXPORTS Mat

{

public:

 // ... a lot of methods ...

 ...

 //! the array dimensionality, >= 2

 int dims;

 //! the number of rows and columns or

 // (-1, -1) when the array has more than 2 dimensions

 int rows, cols;

 //! pointer to the data

 uchar* data;

 // other members

 ...

};

The most common ways to create a Mat object are

create(nrows, ncols, type) or

using one of the constructors: Mat(nrows, ncols, type[, fillValue])

Examples:
Mat m1,m2;

// create a 100x100 3 channel byte matrix

m1.create(100,100,CV_8UC(3));

// create a 5x5 complex matrix filled with (1-2j)

Mat m2(5,5,CV_32FC2,Scalar(1,-2));

Appendix II. Image processing using OpenCV library

117

// create a 640x480 1 channel byte matrix filled with 0

Mat src(480,640,CV_8UC1, 0);

Accessing the elements of a matrix can be done in several ways. Supposing that src is a gray-

scale image with 480 rows and 640 columns (initialized by opening an image from the disk),

the examples below are presenting how a simple processing like the image negative can be

implemented:

 int height = src.rows;

 int width = src.cols;

 Mat dst = src.(clone);

 // the “easy/slow” approach

 for (int i=0; i<height; i++)

 {

 for (int j=0; j<width; j++)

 {

 uchar val = src.at<uchar>(i,j);

 uchar neg = 255-val;

 dst.at<uchar>(i,j) = neg;

 }

 }

or

 // the fast approach

 for (int i = 0; i < height; i++)

 {

 // get the pointer to row i

 const uchar* SrcRowi = src.ptr<uchar>(i);

 uchar* DstRowi = dst.ptr<uchar>(i);

 //iterate through each row

 for (int j = 0; j < width; j++)

 {

 uchar val = SrcRowi[j];

 uchar neg = 255 - val;

 DstRowi[j] = neg;

 }

 }

 or

// the fastest approach using the “diblook style”

 uchar *lpSrc = src.data;

 uchar *lpDst = dst.data;

 int w = src.step; // no DWORD alignment is done !!!

 for (int i = 0; i<height; i++)

 for (int j = 0; j < width; j++)

{

 uchar val = lpSrc[i*w + j];

 lpDst[i*w + j] = 255 - val;

 }

The operations implemented on matrices that can be combined in arbitrary complex

expressions. Few examples are presented bellow (see the documentation for more examples).

In the expressions bellow A, B stand for matrices (Mat), s for a scalar (Scalar), alpha for a

scalar (double)).

 Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A

 Scaling: A*alpha

Appendix II. Image processing using OpenCV library

118

 Matrix multiplication: A*B

 Transposition: A.t() (means A
T
)

 Matrix inversion and pseudo-inversion, solving linear systems and least-squares

problems: A.inv([method]) (~ A
-1

) , A.inv([method])*B (~ X: AX=B)

 Comparison: A cmpop B, A cmpop alpha, alpha cmpop A, where cmpop is one

of: >, >=, ==, !=, <=, <. The result of comparison is an 8-bit single channel

mask whose elements are set to 255 (if the particular element or pair of elements

satisfy the condition) or 0.

 Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where

logicop is one of : &, |, ^.

 Element-wise minimum and maximum: min(A, B), min(A, alpha), max(A, B),
max(A, alpha)

 Element-wise absolute value: abs(A)

 Cross-product, dot-product: A.cross(B) A.dot(B)

 Matrix initializers: Mat::eye(), Mat::zeros(), Mat::ones()

In order to get a region of interest (ROI) from a matrix defined by a Rect Structure use the

following statements:

Mat image;

Rect ROI_rect;

Mat roi=image(ROI_rect);

3. Reading, writing and displaying images and videos

To open an image file stored on the disk the imread function can be used. It can

handle/decode the most common image formats (bmp, jpg, gif, png etc.):

Mat imread(const string& filename, int flags=1)

The input parameters are the filename and an optional flags parameter specifying the color

type of a loaded image:

 CV_LOAD_IMAGE_ANYDEPTH - returns a 16-bit/32-bit image when the input has

the corresponding depth, otherwise converts it to 8-bit.

 CV_LOAD_IMAGE_COLOR - always convert the image to a color one.

 CV_LOAD_IMAGE_GRAYSCALE - always converts the image to a grayscale one

 >0 - returns a 3-channel color image.

 =0 - returns a grayscale image.

 <0 - returns the loaded image as is (with alpha channel).

Appendix II. Image processing using OpenCV library

119

The output is a Mat object containing the image for successful completion of the operation.

Otherwise the function returns an empty matrix (Mat::data==NULL).

To display an image in a specified window, the imshow function can be used:

void imshow(const string& winname, InputArray mat)

In order to control the size and position of the display window the following functions can be

used:
void namedWindow(const string& winname, int flags=WINDOW_AUTOSIZE)

void moveWindow(const string& winname, int x, int y)

To save the image on to the disk the imwrite function can be used. The image format is

chosen based on the filename extension.

bool imwrite(const string& filename, InputArray img,

const vector<int>& params=vector<int>())

The input parameter params contains format-specific save parameters encoded as pairs

paramId_1, paramValue_1, paramId_2, paramValue_2, The following parameters

are currently supported:

 For JPEG, it can be a quality (CV_IMWRITE_JPEG_QUALITY) from 0 to 100 (the higher

is the better). Default value is 95.

 For PNG, it can be the compression level (CV_IMWRITE_PNG_COMPRESSION) from 0

to 9. A higher value means a smaller size and longer compression time. Default value

is 3.

 For PPM, PGM, or PBM, it can be a binary format flag (CV_IMWRITE_PXM_BINARY),

0 or 1. Default value is 1.

The following example illustrates the above mentioned image handling functions by opening

a color image, converting it to grayscale and saving it to the disk and displaying the source

image and the destination/result image in a separate windows:

void testImageOpenAndSave()

{

 Mat src, dst;

 src = imread("Images/Lena_24bits.bmp", CV_LOAD_IMAGE_COLOR); //Read the image

 if (!src.data) //Check for invalid input

 {

 printf("Could not open or find the image\n");

 return;

 }

 //Get the image resolution

 Size src_size = Size(src.cols, src.rows);

 //Display window

 const char* WIN_SRC = "Src"; //window for the source image

 namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);

 cvMoveWindow(WIN_SRC, 0, 0);

Appendix II. Image processing using OpenCV library

120

 const char* WIN_DST = "Dst"; //window for the destination (processed) image

 namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);

 cvMoveWindow(WIN_DST, src_size.width + 10, 0);

 cvtColor(src, dst, CV_BGR2GRAY); //converts the source image to grayscale

 imwrite("Images/Lena_24bits_gray.bmp", dst); //writes the destination to file

 imshow(WIN_SRC, src);

 imshow(WIN_DST, dst);

 printf("Press any key to continue ...\n");

 waitKey(0);

}

The VideoCapture class provides the C++ API for capturing video from cameras or for

reading video files. In the following example is shown how you can use it (i.e. performing

canny edge detection on every frame and displaying the result in a destination window; the

example also shows how you can compute the processing time).

void testVideoSequence()

{

 VideoCapture cap("Videos/rubic.avi"); // open a video file from disk

 //VideoCapture cap(0); // open the default camera (i.e. the built in web cam)

 if (!cap.isOpened()) // opening the video device failed

 {

 printf("Cannot open video capture device\n");

 return;

 }

 Mat frame, grayFrame, dst;

 // video resolution

 Size capS = Size((int)cap.get(CV_CAP_PROP_FRAME_WIDTH),

 (int)cap.get(CV_CAP_PROP_FRAME_HEIGHT));

 // Init. display windows

 const char* WIN_SRC = "Src"; //window for the source frame

 namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);

 cvMoveWindow(WIN_SRC, 0, 0);

 const char* WIN_DST = "Dst"; //window for the destination (processed) frame

 namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);

 cvMoveWindow(WIN_DST, capS.width + 10, 0);

 char c;

 int frameNum = -1;

 for (;;)

 {

 cap >> frame; // get a new frame from camera

 if (frame.empty())

 {

 printf("End of the video file\n");

 break;

 }

 ++frameNum;

 double t = (double)getTickCount(); // Get the current time [s]

 // Insert your processing here

 cvtColor(frame, grayFrame, CV_BGR2GRAY);

// Performs canny edge detection on the current frame

 Canny(grayFrame, dst, 40, 100, 3);

 //

 // End of processing

Appendix II. Image processing using OpenCV library

121

 // Get the current time again and compute the time difference [s]

 t = ((double)getTickCount() - t) / getTickFrequency();

 // Print (in the console window) the processing time in [ms]

 printf("Time = %.3f [ms]\n", t * 1000);

 // output written in the WIN_SRC window (upper left corner)

 char msg[100];

 sprintf(msg, "%.2f[ms]", t * 1000);

putText(frame, msg, Point(5, 20), FONT_HERSHEY_SIMPLEX,

0.5, CV_RGB(255, 0, 0), 1, 8);

 imshow(WIN_SRC, frame);

 imshow(WIN_DST, dst);

 c = cvWaitKey(0); // waits a key press to advance to the next frame

 if (c == 27) {

 // press ESC to exit

 printf("ESC pressed - capture finished");

 break; //ESC pressed

 }

 }

}

4. Basic operations applied on images

The operations are generic for array type objects (i.e. Mat) and if the array is initialized with

an image, the result is a pixel level operation. In the case of multi-channel arrays, each

channel is processed independently. Some functions allow the specification of an optional

mask used to select a sub-array.

 void add(InputArray src1, InputArray src2, OutputArray dst, InputArray

mask=noArray(), int dtype=-1) - Calculates the per-element sum of two arrays or an

array and a scalar: src1 is added to src2 and the result is stored in dst. The function can

be replaced with matrix expressions: dst = src1 + src2;

 void addWeighted(InputArray src1, double alpha, InputArray src2, double beta,

double gamma, OutputArray dst, int dtype=-1) – performs the weighted sum of two

arrays, and is equivalent with the following matrix expression: dst = src1*alpha +
src2*beta + gamma;

 void absdiff(InputArray src1, InputArray src2, OutputArray dst) - performs the

per-element absolute difference between two arrays or between an array and a scalar.

 void bitwise_and(InputArray src1, InputArray src2, OutputArray dst,

InputArray mask=noArray() – computes the per-element bit-wise conjunction of two

arrays (src1 and src2) or an array and a scalar.

 oid divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1,

int dtype=-1) – performs the division operation between the elements of two arrays;

the result is multiplied with the scaling parameter.

 Scalar mean(InputArray src, InputArray mask=noArray()) – calculates the mean

value of the array elements, independently for each channel of the array.

Appendix II. Image processing using OpenCV library

122

 void max(InputArray src1, InputArray src2, OutputArray dst)) – computes the

per-element maximum of two arrays: src1 and src2.

void min(InputArray src1, InputArray src2, OutputArray dst) – computes the per-

element minimum of two arrays: src1 and src2.

 void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point*

minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) – returns the minimum

and maximum value in the src array and also their coordinates (the function does not

work with multi-channel arrays.).

 void multiply(InputArray src1, InputArray src2, OutputArray dst, double

scale=1, int dtype=-1) - performs the per-element scaled product of two arrays.

5. Morphological operations

In OpenCV the morphological operations work on both binary and grayscale images. Each

morphological operation requires a structuring element. This can be created using

getStructuringElement function:

Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)

his function creates a structuring element of given shape and dimension. The shape parameter

controls its shape and can take the following constant values:

 CV_SHAPE_RECT

 CV_SHAPE_CROSS

 CV_SHAPE_ELLIPSE

The anchor parameter specifies the anchor position within the element. The default value (-1,

-1) means that the anchor is at the center. Note that only the shape of a cross-shaped element

depends on the anchor position. In other cases the anchor just regulates how much the result

of the morphological operation is shifted.

Morphological dilation can be performed using the dilate function:

void dilate (InputArray src, OutputArray dst, InputArray kernel, Point

anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const

Scalar& borderValue=morphologyDefaultBorderValue())

Morphological erosion can be performed using the erode function:

void erode(InputArray src, OutputArray dst, InputArray kernel, Point

anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const

Scalar& borderValue=morphologyDefaultBorderValue())

An example that performs a 2 iterations erosion followed by a 2 iterations dilation using a 3x3

cross-shape structuring element is presented below:

Appendix II. Image processing using OpenCV library

123

//structuring element for morpho operations

 Mat element = getStructuringElement(MORPH_CROSS, Size(3, 3));

 erode(src, temp, element, Point(-1, -1), 2);

 dilate(temp, dst, element, Point(-1, -1), 2);

unction morphologyEx can be used to perform more complex morphological operations:

void morphologyEx(InputArray src, OutputArray dst, int op, InputArray kernel, Point

anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const

Scalar& borderValue=morphologyDefaultBorderValue())

The op parameter specifies the type of the operation which is performed:

 MORPH_OPEN - an opening operation

 MORPH_CLOSE - a closing operation

 MORPH_GRADIENT - a morphological gradient

 MORPH_TOPHAT - “top hat”

 MORPH_BLACKHAT - “black hat”

6. Thresholding

The thresholding operation in OpenCV are performed with threshold function:

double threshold(InputArray src, OutputArray dst, double thresh,

double maxval, int type)

The operation is applied on the src image and the resulted binary image is stored in dst array.

The threshold value is specified by thresh parameter and the thresholding method is specified

by type parameter. The type parameter can take one of the following constant values:

 THRESH_BINARY () {
 ()

 THRESH_BINARY_INV () {
 ()

 THRESH_TRUNC () {
 ()
 ()

 THRESH_TOZERO () {
 () ()

 THRESH_TOZERO_INV () {
 ()
 ()

The above values can be combined with THRESH_OTSU. In this case, the function computes the

optimal threshold value using the Otsu’s algorithm (the implementation works only for 8-bit

Appendix II. Image processing using OpenCV library

124

images) which is used instead of the specified thresh parameter. The function returns the

computed optimal threshold value.

7. Filters

In OpenCV there are some optimized function designed to perform the filtering operations.

These optimizations depend however on the hardware and software architecture of the system.

Some example of functions that perform filtering operations are as follows:

void medianBlur(InputArray src, OutputArray dst, int ksize) – implements the median

filter

void blur(InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1),

int borderType=BORDER_DEFAULT) – implements the normalized box filter (mean filter).

void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX,

double sigmaY=0, int borderType=BORDER_DEFAULT)- implements the gaussian filter.

oid Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize=1, double

scale=1, double delta=0, int borderType=BORDER_DEFAULT) - performs the filtering with a

Laplacian filter using the specified aperture size if ksize >1. If ksize ==1 the 3x3 Laplacian

filter have the following elements is applied:

[

]

void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int

ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)- computes

the first, second, third, or mixed image derivatives (dx and dy parameters) using an extended

Sobel operator. Most often, the function is called with (xorder = 1, yorder = 0, ksize = 3)

or (xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative F (see

chapter 12 for more details).

void filter2D(InputArray src, OutputArray dst, int ddepth, InputArray kernel, Point

anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT)- this is a

generalized function designed to apply the filtering operation with a custom convolution

kernel. The kernel elements are defined in kernel parameter as a matrix. Default value (-1,-1)

for the anchor parameter means that the anchor is at the kernel center.

8. References

[1] OpenCV on-line documentation, http://docs.opencv.org/ , cited Dec. 2015.

http://docs.opencv.org/

