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Pattern recognition systems – Lab 8 

K-Nearest Neighbor Classifier  
 

1. Objectives 

The purpose of this laboratory session is to introduce perhaps the simplest 

classifier: k-Nearest Neighbor classifier. The classifier is applied on a small image 

dataset with multiple classes. 

2. Theoretical Background 

Introduction 

The purpose of a classifier is to assign a class to an unknown sample. Each 

sample is described by a feature vector. Perhaps one the simplest classifiers is the k-NN 

classifier. It makes the decision about the input sample based on the K nearest neighbors 

from a labeled training dataset. The next figure illustrates this by showing the sample as a 

blue square among the labeled samples. A circle enclosing the 5 closest neighbors 

indicates the region which is used to infer the class of the test sample. The radius of the 

circle is variable and always encloses K neighbors. 

 
Figure 1. 5-NN classifier example with three classes 

 

k-NN classifier is a non-parametric classifier, meaning that it does not construct a 

model for the classes it tries to distinguish. Instead it remembers the whole training set 

and at classification time the instance is classified online. It can be labeled as a type of 

instance-based learning, or lazy learning, since the classifier function is only 

approximated locally and all computation is deferred until classification. 

Classification algorithm 

Let the training dataset be defined in the form of a matrix of dimensions nxd 

denoted by X. Each line from X contains a single d dimensional feature vector called Xi, 

corresponding to a training instance. Also, let y denote the vector containing class labels. 

The dimension of y is nx1, each training instance having a class assigned to it. The 

elements of y are restricted to the set {1,2,…,C}, where C is the number of classes. 
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For an unknown test instance x the distance from each training example is 

calculated: 

𝑑𝑖 = 𝑑𝑖𝑠𝑡(𝑥, 𝑋𝑖) 
The distances are sorted in ascending order and the closest K instances are 

considered based on the distance. Each instance casts a vote for their class which is 

known from y. The instance is classified as the class which has the most votes. A more 

formal description follows. 

Let p be the permutation that sorts the distances in increasing order: 

𝑑𝑝1 < 𝑑𝑝2 < ⋯ < 𝑑𝑝𝑛 

The vote histogram is a Cx1 vector constructed as: 

𝒉 = ∑𝟏(𝑦𝑝𝑘)

𝐾

𝑘=1

 

where 𝟏(𝑦𝑝𝑘) is a Cx1 the indicator vector containing 1 only at the position 𝒚𝑝𝑘 and 0 

elsewhere. The sum accumulates the votes from the K closest neighbors. The class of the 

unknown instance is selected as: 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝒉𝑖 
 There are multiple versions of the algorithm depending on the distance function 

used and the voting scheme. For example, votes can be weighed based on inverse 

distance using the following formula: 

𝒉 = ∑
𝟏(𝑦𝑝𝑘)

1 + 𝑑𝑝𝑘

𝐾

𝑘=1

 

where we have added 1 to the distance to avoid division by 0 and to obtain a weight of 1 

for distances equal 0. 

 The parameter K controls how many neighbors are considered. If K=1, only the 

nearest neighbor is considered. Increasing its value reduces the effect of noise on the 

result but makes the boundaries between the classes less distinct. In the extreme case 

when K=n, the whole training set is considered. If the votes are not weighted, this would 

classify an instance based on the prior distribution of the classes from the training set. In 

practice K is chosen to be an odd number to break ties when there are only two classes. 

Tests are performed on a validation set to obtain a proper value for K (hyper-parameter 

optimization). 

The presented approach can also be used to perform regression if instead of 

choosing the class; we construct a weighted sum of the training instances as a response. 

The error rate of a k-NN classifier approaches that of the ideal Bayes error rate and is 

bounded by twice the Bayes error for two classes and for 𝑛 → ∞. 

Global image features 

Color images can be characterized by a global feature vector for the purpose of 

classification. A global feature vector of fixed dimension for any input image enables the 

process of classification. Global features usually describe certain relevant statistics of the 

image but lose information about the spatial layout of the image. 

The image histogram can be viewed as a global feature vector for the image. The 

basic definition for a histogram of a grayscale image is that of a vector which counts the 

occurrences of each gray level intensity. It is a vector of dimension 256. In general, the 

histogram can be a vector of length m if we divide the [0,255] interval in m equal parts. In 

this case each bin in the histogram vector counts the number of gray level intensities 

falling in that particular bin. For example: if m=8, the first bin would count all intensities 
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between 0 and 256/m - 1=31; the second bin between 32 and 63; and so on. The 

histogram for a color image can be formed by concatenating the individual histograms for 

the separate channels. The size of the resulting histogram is of 3 x m. 

Evaluation of classifiers 
Multiple metrics can be calculated to evaluate the performance of the classifier. 

The confusion matrix for a labeled dataset can be defined as a matrix containing in each 

cell Mij the number of instances classified by the classifier into class i while having true 

class j. The ideal classifier would assign all instances to their correct class and would 

have large entries on the diagonal of the confusion matrix Mii. In general, the values show 

which classes are confused with each other and can help to improve the classifier 

performance by identifying specific features that aid the discrimination between the two 

classes. 

The accuracy for the classifier on a labeled test set is defined as the percentage of 

correctly classified instances. It is the complementary metric to the error rate. It does not 

offer relevant information if the classes are skewed. If the number of instances is 

unbalanced, a classifier that always predicts the most prevalent class will have a high 

accuracy. This is the typical situation, for example: pedestrian classifiers deal with a 

highly skewed distribution of much more background image samples than pedestrian 

samples. In this case, more relevant metrics are precision and recall for each class. 

The accuracy can be calculated from the confusion matrix as: 

𝐴𝑐𝑐 =
∑ 𝑀𝑖𝑖
𝐶
𝑖=1

∑ ∑ 𝑀𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

 

3. Dataset Statistics – scene recognition 

The dataset for this session is for scene recognition. It contains 6 different classes: 

beach, city, desert, forest, landscape and snow. Images for each class are stored in 

subfolders and named as six digit numbers. The dataset is slightly imbalanced, the 

number of examples for each class ranging from 35 to 277. The training set contains 672 

files, and the test set contains 85 files. Sample images from each class are given below: 

 

   
 

  

beach city desert forest landscape snow 
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4. Implementation details 

Suggestion for the histogram function header (the hist array is allocated previously): 
void calcHist(Mat img, int nr_bins, int* hist) 

 

Define the class names: 
const int nrclasses = 6; 

char classes[nrclasses][10] =  

{"beach", "city", "desert", "forest", "landscape", "snow"}; 

 

Allocate the feature matrix and the label vector: 
Mat X(nrinst, feature_dim, CV_32FC1); 

Mat y(nrinst, 1, CV_8UC1); 

 

Read all images from class c, calculate the histogram and insert the values in X: 
int c = 0, fileNr = 0, rowX = 0; 

while(1){ 

sprintf(fname, "train/%s/%06d.jpeg", classes[c], fileNr++); 

 Mat img = imread(fname); 

 if (img.cols==0) break; 

 

 //calculate the histogram in hist 

 for(int d=0; d<hist_size; d++) 

  X.at<float>(rowX, d) = hist[d]; 

 y.at<uchar>(rowX) = c; 

rowX++; 

} 

 

Allocate the confusion matrix: 
Mat C(nrclasses, nrclasses, CV_32FC1); 

5. Practical work 

1. Implement a function for extracting the color histogram of an image. 

2. Read all the images from the training set. For each image compute the color 

histogram with general bin size m and save it as a row in the feature matrix X. 

Save the corresponding class label in the label vector y. 

3. Implement the k-NN classifier for an unknown image and for a general K value. 

4. Evaluate the classifier on the test set by calculating the confusion matrix and the 

overall accuracy. 

5. Try out different values for the number of bins for the histogram and the 

parameter K to see which feature attains the best performance. Aim for over 65% 

accuracy. 

6. Convert the input image into Luv or HSV color-space before histogram 

calculation. 

7. Optionally, try out more complex features (such as histograms on image regions) 

or other distance metrics (Manhattan distance, weighted Euclidean). 

  



5 

References 

[1] Wikipedia article - k-NN classifier  

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm  

[2] Andrew Ng - Machine Learning: Nonparametric methods & Instance-based learning 

http://www.cs.cmu.edu/~epxing/Class/10701-08s/Lecture/lecture2.pdf  

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.cs.cmu.edu/~epxing/Class/10701-08s/Lecture/lecture2.pdf

