
Pattern Recognition Systems – Lab 2 

RANSAC – fitting a line to a set of points 
 

1. Objectives 

The purpose of this laboratory session is to use the RANSAC method for line fitting. 

 

2. Theoretical Background 

Random Sample Consensus (RANSAC) is a paradigm for fitting a model to experimental 

data, introduced by Martin A. Fischler and Robert C. Bolles in 1981 [1]. 

 

As stated by Fischler and Bolles "The RANSAC procedure is opposite to that of 

conventional smoothing techniques: Rather than using as much of the data as possible to 

obtain an initial solution and then attempting to eliminate the invalid data points, 

RANSAC uses as small an initial data set as feasible and enlarges this set with consistent 

data when possible". 

 

The RANSAC algorithm is summarized below [2]: 

 

Objective:  Robust fit of a model to a data set S which contains outliers. 

 

Algorithm: 

 

1. Randomly select a sample containing a number of s data points from S and 

instantiate the model from this subset. 

 

2. Determine the set of data points Si which is within a distance threshold t of the 

model. The set Si, is the consensus set of the sample and defines the inliers of S.  

 

3. If the size of Si (the number of inliers) is greater than some threshold T, re-estimate 

the model using all the points in Si and terminate. 

 

4. If the size of Si is less than T, select a new subset and repeat the above. 

 

5. After N trials the largest consensus set Si is selected, and the model is re-estimated 

using all the points in the subset Si. 

 

 

 



2.1. RANSAC for fitting a line to a set of points 

 

 
Figure 1-a 

 

 
Figure 1-b 

 

The problem, illustrated in Figure 1-a is the following: given a set of 2D data points, find 

the line which minimizes the sum of squared perpendicular distances (orthogonal 

regression), subject to the condition that none of the valid points deviates from this line 

by more than t units. This is actually two problems: a line fit to the data; and a 

classification of the data into inliers (valid points) and outliers. The threshold t is set 

according to the measurement noise (for example t = 3), and is discussed below.  

 

The first step is to select two points randomly; these points define a line. The support or 

consensus set for this line is measured by the number of points that lie within a distance 

threshold. This random selection is repeated a number of times and the line with most 

support is deemed the robust fit. The points within the threshold distance are the inliers 

(and constitute the eponymous consensus set). The intuition is that if one of the points is 

an outlier then the line will not gain much support.  

 

Furthermore, scoring a line by its support has the additional advantage of favoring better 

fits. For example, the line (a, b) in figure 1-b has a support of 10, whereas the line (c, d), 

where the sample points are neighbors, has a support of only 2. We can deduce from this 

that c or d is a noise point.  

 



We can discuss three main issues that result from the presented algorithm: 

 

1. What is the distance threshold? We would like to choose the distance threshold 

t, such that a point is an inlier with a given probability. For this we require the 

probability distribution for the distance of an inlier from the model (measurement 

error model). In practice the distance threshold is usually chosen empirically. 

However, if it is assumed that the measurement error is Gaussian with zero mean 

and standard deviation , then a value for t may be computed. 

 

2. How many trials? It is often computationally infeasible and unnecessary to try 

every possible sample. Instead the number of samples N is chosen sufficiently 

high to ensure with a probability p, that at least one of the random samples of s 

points is free from outliers. A typical value for p is 0.99. Suppose q is the 

probability that any selected data point is an inlier, and thus qs is the probability 

that all s points are inliers. The complementary event is that there is at least an 

outlier among the s points has probability 1-qs. Then the probability for N
 

selections to each have at least 1 outlier is (1-qs)N 
 

which must be equal to 1-p. We 

find the number of required trials N is equal to log(1 - p)/log(1-qs). 

 

3. How large is an acceptable consensus set? A rule of thumb is to terminate if the 

size of the consensus set is similar to the number of inliers believed to be in the 

data set, given the assumed proportion of outliers, i.e. for n data points T=qn. For 

the line-fitting example of Figure 1, a conservative estimate of q = 0.8, so that T 

= 0.8∙12 = 9.6. 
 

3. Mathematical background 

 

The equation of a line through two distinct points (x1, y1) and (x2, y2) is given by: 

(y1 - y2)X + (x2 - x1)Y + x1y2 - x2y1 = 0 

 

The distance from a point (x0, y0) to a line given by aX+bY+c = 0 is: 
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4. Practical background 
 

Opening an image as grayscale: 
Mat img = imread(“filename”, CV_LOAD_IMAGE_GRAYSCALE); 

 

Creating a grayscale image: 
Mat dst(height, width, CV_8UC1); //8bit unsigned 1 channel 

 

Accessing the pixel at position row i and column j: 
uchar pixel = img.at<uchar>(i,j); //unsigned char type 

 



A black point from the image at position (i,j) corresponds to a point at coordinates 
x=j, y=i: 

if (img.at<uchar>(i,j)==0){ 

 Point p; p.x = j; p.y = i; 

} 

 

Modifying the pixel at position row i and column j: 
img.at<uchar>(i,j) = 255; //white 

 

Draw a line between two points: 
line(img, Point(x1, y1), Point(x2, y2), Scalar(B,G,R)); 

 

Viewing the image: 
imshow(“title”, img); 

waitKey(); 

5. Practical work 

1. Open the image and construct the input point set by finding the positions of all 

black points. 

2. Calculate the parameters N and T after setting t=10, p=0.99, q=0.8 and s=2. 

For points1.bmp use q=0.3. 

3. Apply the RANSAC method: 

a. Choose two different points; 

b. Determine the line equation passing through the selected points; 

c. Find the distances of each point to the line; 

d. Count the number of inliers; 

e. Save the line parameters (a,b,c) if the current line has the highest number 

of inliers so far; 

f. Write the correct termination conditions (based on the size of the 

consensus set and the maximum number of iterations). 

4. Draw the optimal line found by the method.  
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