
 

Pattern recognition systems – Lab 12 

Support Vector Machine – Classification 
 

1. Objectives 

In this lab session we will implement the simple linear classifier described in the previous 

lab and we will study the mechanisms of support vector classification based on soft 

margin classifiers. 

 

2. Theoretical Background 

 

2.1. Hard-margin classifiers 
 
In explaining the problem of hard and soft margin classifiers we will start from a simple 

problem of linearly separating a set of points in the Cartesian plane, as depicted in  

Fig. 1.1 

 
Fig. 1.1 A set of points linearly separable 

 

The question here is how can we classify these points using a linear discriminant function 

in order to minimize the error rate? We have an infinite number of answers, as shown in 

Fig. 1.2: 

 
Fig. 1.2 Linear classifiers that can discriminate between the set of points 



 

From the multitude of solutions we need to find out which is the best one. The answer is 

given by the linear discriminant function (classifier) with the maximum margin is the 

best. Margin is defined as the width that the boundary could be increased by before 

hitting a data point, Fig. 1.3.  

 
Fig. 1.3 The margin of a linear classifier 

 

This classifier is the best because it is robust to outliners and thus has strong 

generalization ability. 

Given a set of data points: {     }           where  

           
        

           
        

  
With a scale transformation on both w and b, the above is equivalent to: 

           
        

           
         

We know that: 

          

          

 
The margin width is: 

  (     )    (     )  
 

     
 

 

     
 

This margin should be maximized. The maximization problem is difficult to solve 

because it depends on ||w||, the norm of w, which involves a square root. Fortunately it is 

possible to alter the equation by substituting ||w|| with 
 

 
‖ ‖  without changing the 

solution (the minimum of the original and the modified equation have the same w and b).  

 



 

This is a quadratic programming (QP) optimization problem. More clearly we need to: 

          
 

 
‖ ‖  such that: 

            
         

            
           

 

Which is equivalent to          
 

 
‖ ‖  such that   ( 

     )    . 

The solution to this optimization problem is found by Lagrangian multipliers, but it is not 

the purpose of this lab. 

 

2.2. Soft-margin classifiers 
 
In 1995, Corinna Cortes and Vladimir Vapnik suggested a modified maximum margin 

idea that allows for mislabeled examples. If there exists no hyperplane that can split the 

"yes" and "no" examples, the Soft Margin method will choose a hyperplane that splits the 

examples as cleanly as possible, while still maximizing the distance to the nearest cleanly 

split examples. The method introduces slack variables, ξi, which measure the degree of 

misclassification of the datum xi. 

 
Fig. 1.4 Classification using soft margin 

 

By minimizing ∑iξi, we can obtain ξi by: 

 
 ξi are “slack variables” in optimization;  

 xi=0 if there is no error for xi, and  

 xi is an upper bound of the number of errors 



 

So we have to          
 

 
‖ ‖   ∑   

 
    such that   ( 

     )       and     . 

Parameter C can be viewed as a tradeoff parameter between error and margin.  
 

2.3. Support vector machine with soft margin classification 
 
Remember from the previous lab that if the data is non-linearly separable a 

transformation is applied to each sample xi such that xi→ф(xi). 

Given a training set of instance-label pairs (xi, yi); i = 1… l where xi   R
n
 and y {+1,-1}

l
, 

the support vector machines (SVM) require the solution of the following optimization 

problem: 

 
Subject to: 

 
Here training vectors xi are mapped into a higher (maybe infinite) dimensional space by 

the function Φ. Then SVM finds a linear separating hyperplane with the maximal margin 

in this higher dimensional space. C > 0 is the penalty parameter of the error term. 

Furthermore, K(xi,xj) = Φ(xi)
T Φ(xj) is called the kernel function. Though new kernels are 

being proposed by researchers, beginners may find in SVM books the following four 

basic kernels (linear, polynomial, radial basis function, sigmoid – see the previous lab!). 

 

3. Exercises 

 

For the practical work you will be given a framework called SVM-toy, that provides a 

C++ implementation of soft-margin classifiers using different types of kernels. 

 

1. Download TestSVM.zip. Compile SVM-toy and run it (on VisualStudio2005). Its 

interface should look like:  

 



 

The buttons of the interface have the following meaning: 

 ‘Change’ button: the application allows the user to add points in the 

classification space (the white window) by mouse left click; this button 

allows to change the color of the points (each color corresponds to a 

class). A maximum number of three colors is allowed (hence three classes) 

 ‘RunSVM’ button – runs the SVM classifier with the parameters specified 

in the edit box  

 ‘Clear’ button – clears the classification space 

 ‘Save’ button – saves the points (normalized coordinates) from the 

classification space to a file 

 ‘Load’ button – loads a bitmap image (loads and draws the points into the 

classification space) 

 The Edit box where parameters are specified, the default values are  

‘–t 2 –c 100’ 

The application allows several parameters, but we will use two of them, 

naming: 

 ‘-t kernel_type’ specifies the kernel type: set type of kernel 

function (default 2); ‘kernel_type’ can be one of the following: 

  0 – linear  kernel: u*v 

  1 –polynomial kernel: (gamma*u'*v + coef0)^degree 

  2 – radial basis function: exp(-gamma*|u-v|^2) 

  3 – sigmoid: tanh(gamma*u'*v + coef0) 

 ‘-c cost’ specifies the parameter C from the soft margin 

classification problem  

 ‘SimpleClassifier’ button – implements the simple classifier (to do!  

- see the previous lab). 

 

2. For each image in svm_images.zip run the default SVM classifier (with different 

kernels and costs) 

3. Implement the ‘SimpleClassifier’ code and compare it to the SVM classifier that 

uses a linear kernel. 

 

Write the code in the file svm-toy.cpp for the case branch:  
 

case ID_BUTTON_SIMPLE_CLASSIFIER: 

{ 

/* ****************************************  

 TO DO: 

 WRITE YOUR CODE HERE FOR THE SIMPLE CLASSIFIER 

**************************************** */ 

} 

 

For implementing the simple classifier (from the previous lab) you should know 

that in the svm_toy.cpp file the coordinates of the points are stored in the structure  
 

list<point> point_list;  

 

and a point is defined by the structure: 

 



 

 struct point { 

  double x, y; 

  signed char value; 

}; 

 

The variable ‘value’ represents the class label. 
 

The coordinates  of the points are normalized between 0 and 1 and the (0,0) point 

is located in the top left corner. 

Notice that the dimension of the classification space is XLEN x YLEN. Hence to 

a normalized point (x,y) we have other coordinates in the classification space 

(drawing space) which are (x*XLEN, y*YLEN). 

 

The drawing of a segment between two points is done by the method:  
DrawLine(window_dc,x1, y1, x2, y2, RGB(255,0,0)); 

 

In order to iterate over all the points and count how many points are in class ‘1’ 

and in class ‘2’ you should do the following: 
//declare an iterator 

list<point>::iterator p; 

int nrSamples1=0; 

int nrSamples2=0; 

double xC1=0,xC2=0,yC1=0,yC2=0; 

 

for(p = point_list.begin(); p != point_list.end(); p++) 

{ 

 if ((*p).value==1) //point from class ‘1’ 

 { 

   nrSamples1++; 

  xC1 =(*p).x; //normalized x coordinate of the current point  

  yC1 =(*p).y; //normalized y coordinate of the current point  

 

 } 

 if ((*p).value==2)  //point from class ‘2’ 

 { 

  nrSamples2++; 

  xC2 =(*p).x; //normalized x coordinate of the current point 

  yC2 =(*p).y; //normalized y coordinate of the current point 

 }  

}      

 

Sample result: 

 

Details: 

- 2D points to be classified 

- 2 classes, 2 features (x1 and x2) 

- Red line separation obtained by implementing 

the ‘Simple Classifier’ algorithm 

- Cyan/Brown line separation obtained by SVM 

linear kernel (-t 0) and cost C=100 (-c 100) 

Observe  

- The maximized margin obtained with SVM 

- The points incorrectly classified by simple 

classifier 



 

4. References 

[1] Jinwei Gu - An Introduction to SVM: 

http://www1.cs.columbia.edu/~belhumeur/courses/biometrics/2009/svm.ppt 

[2] J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Pattern 

Analysis (Chapter 1) 

[3] B. Scholkopf, A. Smola: Learning with Kernels. A Tutorial Introduction (Chapter 1), 

MIT University Press. 

[4] LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/  

http://www1.cs.columbia.edu/~belhumeur/courses/biometrics/2009/svm.ppt
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

