
Transaction-based model for real-time distributed
control systems

Gh. Sebestyen1, A. Hangan1

1Technical University of Cluj-Napoca, Gheorghe.Sebestyen@cs.utcluj.ro, Anca.Hangan@cs.utcluj.ro

Abstract-The paper presents a transaction-based task allocation
model suitable for real-time distributed control applications. In
accordance with the proposed model the autonomous functional-
ities of a control application are implemented as chains of tasks
and messages, called transactions. This model allows the evalua-
tion of worst case response time for transactions and subsequently
determines the real-time feasibility of the system. The task alloca-
tion strategy assures fault-tolerance and adaptable real-time be-
havior. As communication infrastructure a general purpose
switched Ethernet network was considered. The transaction-based
model was validated through simulations made with a Timed
Petri-Net tool.

I. INTRODUCTION

As real-time control applications become more and more
distributed new task allocation models are needed, models that
inherently offer facilities for real-time feasibility evaluation. In
the past, hard real-time systems with critical time constraints
required dedicated equipments, software components and
communication infrastructures. In order to satisfy deadline re-
strictions, a significantly higher rate of computation power and
communication throughput was used compared to the actual
needs of the system. For instance in avionics, regulations im-
pose one application per processor even if today's multi-core
processors may process more tasks in parallel. In the MARS
[1] or Spring [2] projects dedicated architectures were pro-
posed for real-time purposes.

Nowadays there is a significant trend toward the use of
common (general purpose) computer architectures (e.g. PCs,
PDAs), programming platforms (Windows, .Net) and commu-
nication infrastructures (e.g. Ethernet, Internet) as support for
real-time control applications. But an important drawback in
such attempts is the lack of deterministic and predictable be-
havior of general purpose ITC technologies. Therefore a num-
ber of research efforts were made [3][4][5] in order to impose a
more deterministic system behavior.

In the case of communication infrastructures the first ap-
proach was to develop a new class of network protocols dedi-
cated for control applications. As a result a wide range of in-
dustrial network standards were promoted by the main manu-
facturers of automation equipments. Some standards such as
CAN, ModBus, Profibus, ASi, P-Net are still in use in industry
and offer the necessary support for real-time and safety critical
control applications.

But as the speed of Ethernet networks grew from 10Mbs to
100Mbs and even to 1Gbs and the switched network topology

solved the problem of packet collision, there is a significant
pressure from the industrial user's community towards the use
of Ethernet networks also for control applications. The argu-
ments for such a trend are: the need for interoperability with
other information systems of a company (e.g. ERP, SAP, B2B
applications, etc.) and the very low cost of interfaces. Until
recently Ethernet was avoided in case of hard real-time systems
because of its inherent non-deterministic (collision-based)
MAC mechanism.

Research effort is being made to provide Ethernet solutions
for real-time communication. While an approach is to avoid
collisions through implementing a medium access control
mechanisms such as TDMA [1] or token-passing [6] over
Ethernet, others use switches to separate collision domains [5]
and traffic shapers to avoid bursts [3][4].

In this paper we show that with the use of switched network
topologies collisions may be avoided and a worst-case packet
transmission time can be computed.

The other aspect taken into consideration in this paper is the
distribution of supervisory and control tasks along the "intelli-
gent" nodes of the system. Usually a given control functionality
requires a chain of actions or tasks (e.g. data acquisition, proc-
essing, storage/logging, visualization, etc.) placed in different
equipments and interlinked through a set of specific messages.
Job shop [7] is a classical model that can be used to describe
end-to-end tasks in a distributed system with heterogeneous
processors. Each task in a job shop is modeled as a chain of
jobs that execute on different processors and for each task there
is a visit sequence of processors. Message transmission over
the network is considered as a job which executes on a com-
munication processor.

In order to evaluate the real-time feasibility for a given set of
control functionalities a new distributed transaction-based
model is proposed. This model allows computation of the end-
to-end worst case response/reaction time for each control chain
and verification that deadlines are not missed.

 The paper is organized as follows. Section II describes the
transaction-based computational model. This model is the start-
ing point of the end-to-end response time evaluation presented
in section III. Section IV presents experiments that have been
made in order to validate the proposed evaluation method. Sec-
tion V concludes the paper.

II. THE TRANSACTION-BASED MODEL

Distributed control systems include sequences of tasks such
as data acquisition, processing, storage, visualization, event

and alarm handling, data logging etc. Usually, control system’s
nodes do not implement the same functions and the processors
may be heterogeneous (e.g. some processors are specialized in
data acquisition, other in data processing). In our approach a
task may be executed on a subset of nodes, in accordance with
node's capabilities and resources (e.g. existing I/O interfaces,
sufficient computation power). As a consequence, some tasks
can be executed in parallel, while others may have to compete
for the same resources.

In the proposed model the autonomous functionalities of a
distributed control application are implemented through a set of
transactions. A transaction TR is defined as an ordered list of
tasks (t) and messages (m). As an example, in the case of a
temperature monitoring functionality, the transaction may be a
sequence of three tasks and messages between them. The first
task is data acquisition (t1), the second is data processing (t2)
and the last is data visualization (t3). Between tasks there are
two messages: m1 contains measured (raw) data and m2 con-
tains data sent for visualization. The temperature monitoring
transaction is described as TR = (t1, m1, t2, m2, t3).

The model includes two types of transactions:
• time-triggered periodic transactions, released with a pre-

defined frequency
• event-triggered sporadic transactions, caused by alarms

or operator requests
A periodic transaction TRi is defined by a set of parameters:

Ti – release period, Di – deadline, ri – worst case response time.
The components of a transaction (tasks and messages) inherit
its period and deadline. The worst case response time of the
transaction is equal to the response time of the last task in the
transaction. A sporadic transaction has similar parameters with
the difference that the "period" is the smallest interval of time
in which it may occur. This time is usually determined by
physical factors specific for the controlled process (e.g. the
same mechanical failure does not occur twice in less than 0.1
seconds). It is considered that the execution time Ci of a task ti
and the transmission time Cj of message mj are determined a-
priori.

The tasks belonging to a transaction will be distributed in the
control system taking into consideration the capabilities and
resources of nodes. For example, in the case of the temperature
monitoring functionality, the data acquisition task can be exe-
cuted on a given node only if there is a temperature sensor at-
tached to that node. To assure fault-tolerance and dynamic re-
configurability features it is considered that subsets of nodes
have similar capabilities and a given task may be allocated to
any node in a subset. It is assumed that a node contains the
executable code for all tasks it can execute. When the task is
allocated to a node, a new instance of that task is created and
activated. More instances of the same task may be active in a
node, hence competing for processor time. Tasks belonging to
the same transaction communicate and synchronize through
messages sent over the network infrastructure.

In the initialization phase the transactions are gradually
loaded on the distributed infrastructure, starting with the most

Figure 1. The distributed transaction-based model

critical ones. In this process tasks are allocated to nodes in ac-
cordance with the following restrictions and criteria:
• the node has the necessary capabilities to execute the

task
• the time restrictions (deadlines) for the current transac-

tion and the previously loaded ones are fulfilled (e.g. the
worst case response time for every transaction is less
than its deadline)

• adding a new task to a node does not overload the node
• if possible (the other conditions are fulfilled), a uniform

task allocation heuristics is applied

Fig. 1 shows a set of transactions distributed over the exist-

ing nodes of the distributed system.
In order to implement the task allocation strategy one Coor-

dinator and a set of Executor tasks are used. The Coordinator
keeps track of the active nodes, their capabilities and actual
loads. Based on a specially designed protocol the Coordinator
periodically tests the actual state of the nodes and in case of
hardware failures tries to reallocate the active transactions. If
the reallocation scheme does not satisfy the real-time condi-
tions, the Coordinator will discharge one by one the less criti-
cal transactions, until the real-time feasibility test succeeds.
The Executors controls the execution of tasks inside of a node
and respond to requests coming from the Coordinator. It also
schedules the active tasks based on their period, priority and
precedence relations. The Rate monotonic algorithm was cho-

sen as scheduling policy at node level, because it is optimal for
uniprocessor scheduling, assuming that task priorities do not
change over time.

III. EVALUATION OF THE END-TO-END RESPONSE TIME

As part of the feasibility test, the worst case end-to-end re-
sponse time for every transaction has to be computed. If for
each transaction this time is less than its deadline, then the sys-
tem (set of transactions) is considered feasible from the real-
time point of view. As mentioned in the previous section, the
worst case response time for a transaction is equal to the worst
case response time of the last task in the chain. The next two
subsections present the methodology used for computing the
worst case response time for tasks and for messages. The link
between a task and its subsequent message is made through the
"jitter time" ji of the message [], which is measured from the
release time of the transaction until the moment the message is
actually released for transmission. Jitter time is equal to the
worst case execution time of the emitting task. In a similar way
the jitter time of a task is equal to the worst case transmission
time of its precedent message. The first task in the transaction
has jitter time equal to zero.

As described in [8], computing the worst case execution and
transmission time for tasks and messages is an iterative proc-
ess. In each iterative step jitter time is set to the worst case
transmission/execution time computed in the previous step.
The process ends when there is no change in two consecutive
steps. The following equations describe the iterative method.

R1 (m+1) = ℜRM(J1(m))
 R2 (m+1) = ℜRM(J2(m))
…….. (1)
Rn (m+1) = ℜRM(Jn(m))
Rnet(m+1) = ℜSW(Jnet(m))

where:
• Ri(m) – is the vector of response times for all the tasks

executed by node i computed in step m of the iteration
• Rnet(m) – is the vector of transmission times for all the

messages exchanged through the network, computed in
step m

• Ji(m) – is the jitter computed for the tasks contained in
node i

• Jnet(m) – is the jitter computed for the messages transmit-
ted over the network

• ℜRM(Ji(m)) – is the matrix formula for computing the
tasks response times, using a rate monotonic (RM)
scheduling algorithm

• ℜSW(Jnet(m)) - is the matrix formula for computing the
messages transmission times in the case of a switched
Ethernet (SW) network infrastructure

The last two formulas will be detailed in the next subsec-
tions.

A. Evaluation of a task's worst-case response time

Figure 2. The effect produced by the arrival jitter of task j on the response time
of task i

Given a set of periodic and independent tasks and a rate

monotonic scheduling strategy the worst case response time of
a task is given by the following formula [9]:

)*(j
pj j

i
ii C

T
rCr

i

∑
∈ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= (2)

where: ri – worst case response time of task i
 Ci – execution time for task i
 Ti – period of task i
 pi – includes all tasks with higher priority than task i

In the above expression the term ⎡ri/Tj⎤ gives the number of

arrivals of task j during the response time of task i. The upper
rounding operator ⎡ ⎤ makes the above equation difficult to
compute. An iterative method may be used to evaluate the
worst response time:

() ())*(1 j
pj j

i
ii C

T
krCkr

i

∑
∈ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=+ (3)

where: ri(k) – worst case response time of task i in iteration

step k
In the first iteration, the worst case response time ri(0) is

considered equal to the execution time Ci. It can be demon-
strated [8] that this iterative method generates a solution in a
limited number of steps, if the processor's load is smaller or
equal with 100%.

A given schedule is feasible if the worst case response time
of any task is smaller or equal with its deadline.

ii Dr ≤ (4)

T

ri

task j

task i

Without jitter

T

J

ri

task j

task i

With jitter

where: ni ,1= and n = number of tasks

The above method may be used even in the case of sporadic
tasks, if their minimum arrival interval is known. The worst-
case response time considers that all the sporadic tasks arrive
with a period equal to the minimum arrival interval.

If a task depends on the arrival of a message or another task's
execution then the task's arrival is delayed. This delay may
vary from 0 to the maximum response time of the previous
item (message or task). This assumption is based on the fact
that the task may be released any time during the response time
of the previous item. This delay, called arrival jitter affects the
worst-case response time of all tasks, which have smaller prior-
ity than the delayed task. Because of this jitter the minimum
time interval between two consecutive arrivals of a periodic
task may be smaller then its period. In this case the worst case
response time is computed with:

iii wJr += (5)

)*(j
pj j

ii
ii C

T
wJ

Cw
i

∑
∈ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+= (6)

Fig. 2 shows the effect of jitter time of task j on task i that
has less priority. It can be observed that the execution time of
task i is greater in the second case when the jitter time is con-
sidered.

B. Evaluation of message transmission time
In case of deterministic network protocols, such as TDMA

(Time Division Multiple Access), or token passing protocols a
number of methods for the evaluation of worst case transmis-
sion time were reported [1][6]. For a switched Ethernet net-
work the transmission time may be evaluated easier if the
packet losses at switch level are avoided. This can be achieved
if the output buffers have enough storage capacity. This as-
sumption is reasonable in case of high performance Ethernet
switches. The only condition for the designer is to evaluate the
maximum buffer capacity required for a given set of data
flows.

For the proposed method the following assumptions are
made:
• there are no packet losses due to buffer overflows
• the packets are transmitted to the destination channel

with a FIFO (first in first out) policy a
• message sent between two control tasks fits into an

Ethernet packet; usually control data has small dimen-
sions

Figure 3. Inside view of a switch

• concerning the way in which messages are forwarded

from the input channel to the output channel, a switch
may use a store-and-forward or cut-through method

• the deadline of a transaction and implicitly of a packet is
smaller than its period; under this assumption two pack-
ets of the same type do not compete for the service of
the same switch

Fig. 3 gives an inside view of a switch, where packets com-
ing from different sources are directed to the buffers associated
to the output channels. The delay of a packet inside of a switch
has two components:
• tc - the switching time (a constant parameter of a switch)
• tb- the time the packet spends in the output buffer

bcSW ttt += (7)

In case of multiple switches a packet is delayed at each

"hop". But the overall delay caused by switches is not a sum of
the possible delays in every switch because some delays may
be overlapped in time. For instance if there are 3 packets that
follow the same rout the last arrived packet must wait only at
the first switch because at the next switches it will arrive "just
in time" after the other packets were transmitted. The overall
transmission time of a packet from an emitting task to the des-
tination task may be computed as:

thopdelay
i

wtr tnttt
i

*++= ∑ (8)

where:
twi – the packet transmission time over cable segment i
tdelay – the overall delay for a packet caused by buffering in

switches (for a given data-flow configuration)
tt – the transmission time of the packet
nhop – in case of store-and-forward it is equal with the num-

ber of hops plus one; if the cut-through technique is used
it is equal to 1

The transmission time tw over the wire is determined by the
length of the segment (Li) and the transmission speed (v) of the
electric signal.

vLt iw *= (9)

The transmission time of a packet is computed using the

length of a packet (in bits) divided with the network's fre-
quency fnet (in bits per second):

net

packet
t f

L
t = (10)

The only variable part in (8) is the delay caused by buffer-

ing. The time a packet spends in a buffer depends on the other
packets that may arrive in the same time to the same switch
output. Because there are no priorities between packets (com-

mon Ethernet switches do not recognize priorities) the worst
case delay time for a given packet should be computed in a
scenario in which all the competing packets arrive in the same
time to the same output. It is obvious that in case of multiple
switches the delay of a packet is influenced by all the other
packets that intersect its route. What is not so obvious but it
can be demonstrated is the fact that all the packets that intersect
the studied packet may cause a delay only once. So in the worst
case the packet has to wait in different buffers for all the pack-
ets it may intersect in its route, but only once. In this case:

∑=
i

tdelay ii
tt (11)

The worst case transmission time of a packet tWCi measured

from the start of a transaction is the sum between the jitter
caused by the emitting task and the transmission time.

itriWCi tJt += (12)

Fig. 4 shows a scenario with 3 switches, 6 nodes and 4 inter-
secting messages. For instance message mDC intersect the route
of message mEB only on one segment, and the route of message
mAC in two segments. The overall worst case delay of message
mDC caused by buffering is the sum of the transmission times of
messages mAC, mEB and mFC.

IV. EXPERIMENTAL RESULTS

The proposed transaction allocation framework was vali-
dated through simulations using a Timed-Petri-Net (TPN) tool.
Task execution times and message transmission times were
simulated using transitions with firing time. Task concurrency
at node level and message concurrency at network level were
simulated through places and tokens. The TPN tool allowed
measurement of worst case response time and average time of
transactions. The analytically determined worst case times
were consistent with the simulation values.

In many scenarios the average response time was much less
than the worst case time. This means that in normal conditions
the system's reaction time is much under the predicted one. It
was observed that under similar workloads the difference be-
tween the worst case and the average time is greater if the
number of tasks and messages is grater. Therefore it is more
advantageous to group some of the tasks in larger ones (if pos-
sible) in order to reduce the worst case response time. For in-
stance all the transactions which have the same period and
share the same route may be merged into a single transaction.

V. CONCLUSIONS

The paper presents a solution for the task allocation problem
in a real-time distributed control system. The proposed frame-
work is based on the evaluation of worst-case end-to-end re-
sponse times of task sequences and messages.

Node A SW1

SW2

SW3

Node B

Node C

Node E
Node D

Node F

mDC

mDC
mAC

mDC
mAC

mDC

mAC

mFC

mFC

mEB

mEB

mEB

Figure 4. Messages sent over switched Ethernet

The generated allocation solution guarantees the fulfillment

of real-time requirements and it takes into account the existing
resources and ordering restrictions. The allocation heuristic
tries to assure a uniform load of control tasks on the network
nodes. In case of a node failure the distributed system is auto-
matically reconfigured, by reallocating the tasks present in the
defective node.

The paper presents a new approach in the evaluation of real-
time behavior of switched Ethernet networks. The worst case
transmission time computation is a mandatory step in the de-
sign and implementation of distributed control systems over
Ethernet infrastructures.

The proposed solution was validated through simulations,
using a TPN software tool. The simulated scenarios revealed
interesting aspects concerning the influence of task granularity
on the computed response time. These observations may be
used for better system design.

REFERENCES
[1] H. Kopetz, A. Damm, C. Koza, and M.Mullozzani, “Distributed Fault

Tolerant Real-Time Systems: The MARS Approach” IEEE Micro,
9(1):25–40, 1989.

[2] M. Humphrey, G. Wallace, J.A. Stankovic, "Kernel-level threads for
dynamic, hard real-time environments," rtss, p. 38, 16th IEEE Real-Time
Systems Symposium (RTSS '95), 1995

[3] A. Mifdaoui, F. Frances, C. Fraboul, "Full Duplex Switched Ethernet for
Next Generation "1553B"-Based Applications," rtas, pp. 45-56, 13th
IEEE Real Time and Embedded Technology and Applications Sympo-
sium (RTAS'07), 2007

[4] J. Loeser, H. Haertig, "Low-Latency Hard Real-Time Communication
over Switched Ethernet," ecrts, pp. 13-22, 16th Euromicro Conference on
Real-Time Systems (ECRTS'04), 2004

[5] B.-Y. Choi, S. Song, N. Birch, J. Huang, "Probabilistic approach to
switched Ethernet for real-time control applications," RTCSA , p. 384,
Seventh International Conference on Real-Time Computing Systems and
Applications (RTCSA'00), 2000

[6] C. Venkatramani, T. Chiueh, “Supporting real-time traffic on Ethernet”,
Real-Time Systems Symposium, 1994, Proceedings Volume, pp. 282 –
286

[7] J. W.S. Liu, Real-Time Systems, Prentice Hall, 2000
[8] K. Tindell, J. Clark, “Holistic schedulability analysis of distributed hard

real-time systems”. Microprocessors and Microprogramming, Elsevier.
no.40, 1994

[9] Gh. Sebestyen, K. Pusztai, "Dynamic task allocation in real-time distrib-
uted control systems", 13-th International Conference on Control Systems
and Computer Science CSCS2001, Bucuresti, 2001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

