
Development Kit
For the PIC® MCU

Exercise Book

RFID
September 2006

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2006 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

UNPACKING AND INSTALLATION1
Inventory

 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must
have a spare 9-Pin Serial or USB port, a CD-ROM drive and 5 MB of disk space.

 The diagram on the following page shows each component in the PIC16F877A kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start.

If your computer is not set up to auto-run CDs, then select Start>Run and enter
D:\SETUP1.EXE where D: is the drive letter for your CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking
NEXT, OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will
have created an empty directory c:\program fi les\picc\projects that may be used for
this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCM to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (11)

to the ICD using the modular cable. Plug in the DC adaptor (12) to the power socket and
plug it into the prototyping board (11). The fi rst time the ICD-U40 is connected to the PC,
Windows will detect new hardware. Install the ICD-U40 driver from the CD or website
using the new hardware wizard. The driver needs to be installed properly before the
device can be used.

 The LED should be dimly illuminated on the ICD-U to indicate the unit is connected properly.

 Run the following program: Start>Programs>PIC-C>ICD. If a communication error
occurs, select a different COMM port until the ICD is discovered. See Chapter 3 for
assistance.

 Select Check COMM, then Test ICD, then Test Target. If all tests pass, the hardware is
installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.
(1) ICS-S40 can also be used in place of ICD-U40. Connect it to an available serial port on the PC using the
9 pin serial cable. There is no driver required for S40.

RFID Exercise Book

RFID

1

 1 Carrying case
 2 Exercise booklet
 3 CD-ROM of the C compiler (optional)
 4 Serial PC to Prototyping board cable
 5 Modular ICD to Prototyping board cable
 6 ICD unit for programming and debugging
 7 USB (or Serial) PC to ICD cable
 8 RFID board to adapter board cable
 9 Transponders
 10 RS-232 to RS-485 adapter board
 11 RFID reader board
 12 DC Adapter (9VDC)

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: C:\Program Files\PICC\Examples\Ex_
stwt.c

 Scroll down to the bottom of this fi le. Notice the editor displays comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F12 key. Notice a help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F12 will fi nd help for that item.

 Review the editor’s special functions by clicking on Edit. The IDE allows various standard
cut, paste, and copy functions.

 Review the editor option settings by clicking on Options. The IDE allows selection of the
tab size, editor colors, font and more. Click on Options>Toolbar to select which icons
will appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC16F876A chip, a 14-bit opcode part. Make sure PCM 14 bit is selected in the drop-
down box.

 The main program compiled is always shown in the bottom of the IDE. If the fi le you want
to compile is not shown, then click on the tab of the fi le you want to compile. Right click in
the editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click Compile>Compile, F9, or the compile icon to compile a project. Notice the
compilation box shows the fi les created and the amount of ROM and RAM used by this
program. Press any key to remove the compilation box.

RFID Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler-generated variables. Notice some
locations are used by more than one item. This is because those variables are not
active at the same time.

 Click Compile>C/ASM list. This file shows the original C code and the assembly
code generated for the C. Scroll down to the line:
 int _ count=INTS _ PER _ SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into a memory. Switch to the Symbol Map to find the
memory location where int_count is located.

 Click View>Data Sheet, then OK. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files
and Projects are created, opened,
or closed using this menu.

Place cursor here for slide out boxes.
slide out boxes. All of the current
project’s source and output files can
be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using

this menu.

CCS, Inc.

COMPILING AND
RUNNING A PROGRAM3

 Open the PCW IDE. If there are any fi les open , click File>Close All.

 Click File>New and enter in the fi lename EX3.C.

 Enter in the following source code then Compile.

#include <16F876A.h>
#fuses HS,NOWDT,NOPROTECT,NOLVP,NOBROWNOUT,PUT
#use delay(clock=20000000)

#defi ne GREEN_LED PIN_C3
#defi ne YELLOW_LED PIN_C4
#defi ne RED_LED PIN_C5

void main() {
 while(TRUE) {
 output_low(GREEN_LED);
 delay_ms(1000);
 output_high(GREEN_LED);
 delay_ms(1000);
 }
}

N
O

T
E

S

 The fi rst three lines of the source code defi ne the hardware environment.
The microcontroller being used is the PIC16F876A running at 20MHz.
Click on View>Valid Fuses to read about the different fuse settings.
Fuses control the microcontroller’s confi guration word.

 The #defi ne is used to enhance the readability by referring to
GREEN_LED in the program instead of PIN_C3.

 The statement while(TRUE) is a simple way to create a loop that never
stops. Infi nite loops are very common in main for embedded systems.

 The statement delay_ms(1000); is a one second delay (1000
milliseconds).

RFID Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the
ICD to the PC using the 9-pin serial cable for ICD-S or the USB cable for ICD-U.
Power up the Prototyping board. Verify the LED on the ICD is dimly illuminated. If using
ICD-S40 and the COMM port box does not list the port, check that no other programs
have opened that port.

 Click on Tools>ICD to download the program to the RFID board. Once completed, the
green LED should flash, one second on and one second off.

 Highlight everything above void main(). Click Edit>Paste to file. Name the file rfid.h.
This header file is used in the remaining example programs.

CCS, Inc.

4 DEBUGGING

 Open rfi d.h and insert #device ICD=TRUE on the line after #include <16F876A.h> to
compile in debug mode.

 Create ex4.c, type in the following source code, right click in the editor and select Make
fi le project, then compile.

#include “rfi d.h”

int8 sum(int8 a, int8 b) {
 return a+b;
}

void main() {
 int8 x = 2, y = 3;

 while(TRUE) {
 x = sum(x, y);
 }
}

 Start the debugger by clicking Debug>Enable Debugger. After the program is
loaded onto the RFID board, click the step-over icon until the yellow arrow passes
x = sum(x, y). Each click causes a line of code to be executed. Clicking the step-over
icon on x = sum(x, y) causes the entire function to be executed in one click.

 Click the single step icon a few times. The arrow should point at return a+b. The
single step icon causes the debugger to step into the function. Press the single step
icon a couple more times to return to main.

 Click the Watches tab, then click the add icon to add a watch. Enter x or choose x
from the list of variables and click Add Watch. The current value of x is shown. Continue
to press the step-over and single step icons to see the value of x change. Notice
how the value of x is not displayed when it is inside the sum() function because it is not
available in the source code at this time.

RFID Exercise Book

 Click the go icon to allow the program to run normally. Click the stop icon to halt
execution. The debugger arrow will point to where the program was halted.

 In the editor, click on return a+b to move the cursor to that line. Click the Breaks tab
and click the add icon to set a breakpoint. The program will be halted every time this
line of code is reached. Click the go icon . The debugger will stop at the breakpoint.
Practice setting breakpoints at different locations to learn how they work.

 Click Compile>C/ASM List. Find the line with the debugger arrow. Notice one assembly
instruction was already executed and the arrow has passed the breakpoint. This is a side
effect of the debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step-over and single step icons a few times. Notice that the debugger is
stepping through one assembly instruction per click, instead of one entire C line.

 Change return a+b to return a-b and recompile. Step over the call to sum and examine
the value of x. The int data type by default is not signed, so x cannot be the expected –1.
The modular arithmetic works like a car odometer in reverse, only in binary. For example,
00000001 minus 1 is 00000000; subtract another 1 to get 11111111, or decimal 255.

 Press the reset button and step up to x = sum(x, y). Click the Eval tab. This pane
allows a one-time expression evaluation. Type in x+y and click Eval to see the debugger
calculate the result. The complete expression may also be put in the watches pane. Now
enter y=1 and click Eval. If the “Keep side effects” checkbox is checked, this expression
will change the value of y. Check “Keep side effects” and click Eval again. Click the
Watches tab. Then step over the call to sum to verify that the value of x was calculated
with the new value of y.

 Set a break point at x = sum(x, y) then click the Break Log tab. Check the Log checkbox,
make sure break 1 is selected, and enter x in the edit box. Press the go icon . Each
time the breakpoint is reached, the debugger will retrieve the value of x, add it to the log,
and continue execution.

 Remove #device ICD=TRUE from rfid.h before continuing the remaining exercises.

CCS, Inc.

5 RS-232 AND RS-485

 RS-232 is a popular point-to-point, asynchronous communication protocol used on most
PCs and many embedded systems. Two signal wires transmit and receive data while a
third ground wire is used for reference voltage. Both microcontollers included in the kit
have built-in hardware to buffer serial data. The 16F876A uses C6 for transmitting and
C7 for receiving while the 16F627A uses B2 and B1. The compiler is able to use any pin,
but will take advantage of the built-in hardware when available.

 The following line of code includes RS-232 support into the RS-232 to RS-485 adapter:
#use rs232(baud=9600, xmit=PIN _ B2, rcv=PIN _ B1)

 RS-232 sends a series of bits at the hardware level. The baud= option specifi es how
many bits are sent per second. The bit stream, as specifi ed above, is a start bit (always
0), 8 data bits (lsb fi rst) and a stop bit (always 1). The data line then remains at the logic
1 level. The number of bits may be changed with a bits= option. A 0 is represented as
a positive voltage (+3V to +12V) and a 1 is represented as a negative voltage (-3V to
–12V). Since the microcontroller outputs only 0V and 5V, a level converter is required
to interface to standard RS-232 devices such as a PC. A popular converter chip is the
MAX232. See the schematic on the back cover for details.

 RS-485 is also an asynchronous communication protocol, but it differs from RS-232 in
many ways. Primarily, it allows for multiple points to be connected to the same signal
wires. In half duplex or b-directional mode, one twisted pair is used for both transmitting
and receiving. To send a bit over the network, one of the wires is set to a high state and
the other is set to a low state over a –7V to +12V range. The receiving device subtracts
line voltages. If the difference is greater than 200mV, a bit has been sent. When a
device is not transmitting, it set its outputs for high impedance. The voltage difference
across the twisted pair is then less than 200mV. RS-485 transmissions are achievable
over longer distances than RS-232 due to the twisted pair usage. If noise is incurred,
both wires will be affected because the voltage difference is still detectable. The twisted
pair also provides noise cancellation to prevent emitting interference to other nearby
communication wires.

 There is a variety of software methods for handling RS-485 communication. The drivers
included with the CCS compiler use carrier detection. Before attempting to send a
message, the bus is checked for activity. If signals are present, the device waits until the
voltage levels are in the idle state.

 Each device on the network is assigned a unique address. When sending a message,
the address and message size are included with a parity check to ensure integrity. A
device only accepts messages sent to its specifi c address.

RFID Exercise Book

 The RS-232 to RS-485 adapter board, included in the kit, comes preprogrammed with a
conversion program. Any message it receives from RS-485 is sent to the PC’s RS-232
port. Characters from the PC are sent to address 0x11. See ex_RS232_485.c in the
examples directory for the source code.

 The following example is for the RFID board. It gets characters over the RS-485 bus
from the adapter board to change the color of its bicolor LED. Create a new fi le called
ex5.c and enter the following source code:

#include “rfi d.h”

#defi ne RS485_ID 0x11
#defi ne RS485_USE_EXT_INT FALSE
#defi ne ADAPTER_RS485_ID 0x7F
#include <rs485.c>

int8 msg[32];

typedef enum {OFF, GREEN, RED} LEDcolor;

void twoColorLED(LEDcolor color) {
 switch(color) {
 case OFF:
 output_low(PIN_A3);
 output_low(PIN_A5);
 break;
 case GREEN:
 output_high(PIN_A3);
 output_low(PIN_A5);
 break;
 case RED:
 output_low(PIN_A3);
 output_high(PIN_A5);
 break;
 }
}
void RS485send(char* s) {
 int8 size;
 for(size=0; s[size]!=’\0’; ++size); // Find message size
 rs485_wait_for_bus(FALSE);
 while(!rs485_send_message(ADAPTER_RS485_ID, size, s)) {
 delay_ms(RS485_ID);
 }
}
(continued...)

CCS, Inc.

(continued...)

char RS485getc() {
 rs485_get_message(msg, TRUE);
 return msg[2];
}

void main() {
 output_low(GREEN_LED); // Show power is on
 rs485_init();

 sprintf(msg, “(O)ff, (G)reen, or (R)ed\n\r”);
 RS485send(msg);

 while(TRUE) {
 switch(toupper(RS485getc())) {
 case ‘O’: twoColorLED(OFF); break;
 case ‘G’: twoColorLED(GREEN); break;
 case ‘R’: twoColorLED(RED); break;
 }
 }
}

 Connect the 9-pin serial cable, to RS-232; to the RS-485 adapter board, and to the PC.
Click Tools>Serial Port Monitor within the PCW IDE. Confi gure the COMM port by
clicking Confi guration>Set port options. Set the baud rate to 9600, parity to none,
data bits to 8, stop bits to 1, and fl ow control to none. Make sure the correct COMM port
is selected.

RS-232 AND RS-485 (CONT.)5

RFID Exercise Book

 Compile the program and download it to the RFID board. Once the program is running, ,
a message will display in SIOW,

 Click on SIOW and press O, G, or R to change the color of the LED.

 Before moving on to the next exercise, open the rfid.h file and add the three #define
statements from the ex5.c program. The enum and functions from ex5.c are likely to be
reused in future programs. In order to use this code in other sources, highlight lines from

 start point to endpoint. Click Edit>Paste to File. Name the file utilities.c
and click Save.

CCS, Inc.

Although Radio Frequency Identifi cation (RFID) technology is a few decades old, it has
become more widely used in recent years due to diminishing cost restraints. Previously, it
was not feasible to attach expensive, disposable transponders to consumer products. They
were mainly utilized in situations where they could be reused, such as assembly lines. The
basic RFID system is composed of three parts: transponders, antennas, and controllers.

Transponders
A transponder consists of an Integrated Circuit (IC) and an antenna. The IC can range from
the size of a fi ngernail to a fl ake of pepper. Antennas are usually made from a coil of wire
surrounding the IC.
There are two different approaches to powering transponders. An active transponder
contains its own power source for retaining information and communication. A passive
transponder relies on being powered through its antenna coil by the carrier frequency of the
radio signal. Waves power the transponder either through backscatter or inductive coupling.
The system in this kit uses inductive coupling. When the oscillating radio waves match the
oscillating frequency of the transponder’s antenna coil circuit, enough voltage is induced to
power its IC and transmit signals. Passive devices normally contain an EEPROM to preserve
their information while not powered. These transponders do not require maintenance
because there is no battery to replace.
Transponders come in a few package types. The package included in the kit is called a
tag. The other package types are labels and printed circuit boards (PCB). Labels are ideal
for mass production, low cost applications in a tame environment. Tags can be used in a
wider variety of situations because they are durable against heat, chemicals, dirt, and water.
PCBs are normally utilized in permanent installations, such as pallet tracking, where they are
reused and more information needs to be stored.

Key FobR/W
Tag

RFID TECHNOLOGY6

EM4150

EM4102
Card

RFID Exercise Book

Transponders also come in read-only or read/write models. The read-only type usually
has less storage available. They are useful for tracking items or animals. Since there are
so many IDs available with a small number of bits, it is easy to uniquely identify every item
with its own ID. For example, there are over 4 billion different ID numbers in 32 bits. Read/
write transponders are useful for small remote databases and more intelligent tracking
systems. Each item can have every location written to its transponder. This allows service
technicians and customer support to handle problems more accurately. They also help
control manufacturing processes by writing specific assembly instructions and quality control
information on each part. Sometimes it may be necessary to protect the data to prevent
unwanted reads. Some transponders offer read, write, and password protection, while others
encrypt data to prevent a different reader from intercepting a transmission and decoding it.
This kit uses parts from EM Microelectronics. Transponders available include:

Part # Read-Only Read/Write Rectifier Contactless Anti-
Collision Encryption

Card EM4102 X X
EM4100 X X
EM4056 X X X
EM4450/4550 X X
EM4025/4125 X X
EM4055 X X X
EM4083 X
EM4469 X
EM4170 X X X

CCS, Inc.

Antennas
The antenna is a very important part of designing an RFID system. The size, shape, and
quality of the antenna directly infl uence communication distance and circuit board design.
Generally, as the size of the antenna increases, so does the reading distance. Similarly,
a transponder with a larger antenna is readable at a greater distance. The driver circuit
designed to operate at the resonant frequency depends on the antenna’s attributes.
There are two things to remember when designing an antenna. First, fi eld strength for the
small loop antennas decreases proportionately to 1/r3 where r is the distance from the coil.
This means that the effectiveness of an antenna falls quickly over a greater distance and
there will be a point when transponders are suddenly unreadable. Second, high powered
antennas are not always a solution to reading distance. The FCC has regulations and ICs
can handle only so much antenna voltage.

Controllers
A controller is the device in charge of handling all the communication. It drives the resonating
frequency of the antenna and monitors signal fl uctuations to detect nearby transponders.
Most controllers are also connected to an external device with a different communication
protocol, such as RS-232 or RS-485, to pass along information.
When an antenna and a controller are combined into one unit, a reader is created. The
RFID board included in the kit is an example of a reader. Readers can operate over multiple
frequency spectrums; among the most common are 50 to 500kHz, 13.56mHz, and 0.9 to
2.5GHz. Each spectrum has its benefi ts and downfalls. The low frequency RFID systems are
very reliable and allow for cheap, low speed systems.
They are perfect for access control and similar situations where slow data transfer rates over
short ranges are acceptable.

RFID TECHNOLOGY (CONT.)6

RFID Exercise Book

There are a few different ways for an RFID system to modulate radio signals. FM changes
the carrier frequency, PM changes the phase, and AM changes the amplitude. Some
techniques using these modulations are frequency shift key (FSK), phase shift key (PSK),
and amplitude shift key (ASK). The technique used by the RFID board in the kit is a special
type of ASK known as on/off key (OOK), which completely modulates the antenna voltage
to send a ‘0’. Data is transmitted to the reader using Manchester encoding. The carrier
frequency also acts as a clock for synchronous communication. This protocol is described in
detail in Chapter eight, Read/Write Transponder.

Benefits
There are many benefits to using an RFID system over other predominant methods.
Barcodes require optical readers, which require maintenance, are more prone to damage,
and do not work well in direct sunlight. Barcodes themselves cannot contain nearly as much
information as a transponder and require a line of sight to the reader. Magnetic strip cards
wear out and need to be replaced and their readers have mechanical parts that also require
periodic service. Transponders only need to be within the reading range and are readable
even when placed inside packages. They also have a higher reading success rate. For these
reasons, many companies are switching to RFID for logistics and inventory control.

CCS, Inc.

1 1 1 1 1
D
D
D
D
D
D
D
D
D
D
C

1
D
D
D
D
D
D
D
D
D
D
C

1
D
D
D
D
D
D
D
D
D
D
C

1
D
D
D
D
D
D
D
D
D
D
C

1
P
P
P
P
P
P
P
P
P
P
0

Customer ID Tag ID Tag ID Tag ID Tag ID

READ ONLY TRANSPONDER7
 The EM4102 transponder included in the kit is a read-only device. It contains 64 bits of

information consisting of a 9-bit header, 40 data bits (D), 10 row-parity bits (P), 4 column-
parity bits (C), and one stop bit. When the transponder coil is close enough to a 125kHz
RF signal to power the IC, it will continuously send the 64 bit stream, one bit every 64 RF
periods. It starts by sending nine 1s to create a header, then a pattern of four data bits
followed by one row-parity bit. The last fi ve bits are column-parity and a 0 for the stop
bit. Of the 40 bits of data, the fi rst eight are version bits or a customer ID number. The
remaining 32 bits offer over 4 billion unique tag ID numbers.

 The example program for the RFID board continuously searches for data from an
EM4102 transponder and sends it to the adapter board. The function read_4102()
expects a pointer to a 5 byte array. The following diagram depicts how read_4102()
stores data in the array.

 The fi rst byte contains the customer ID, which is followed by the 32 tag ID bits. The most
signifi cant tag ID bit is not defi ned in the data sheet for the EM4102. This means the
bytes can be converted to a 32 bit number in any order. Just be sure to convert in the
same way every time.

RFID Exercise Book

 Open the rfi d.h fi le created in Chapter 3 and insert #device *=16 on the line after
#include <16F876A.h>. The compiler will use 16-bit RAM addresses, thereby allowing
more memory to be used.

 Create a fi le called ex7.c and type in the following source code:

 Compile the program and download it to the RFID board. Open SIOW and confi gure
it in the same way as in Chapter 5. Take an EM4102 transponder and place it near the
RFID board. The customer code and tag ID number should be displayed in the terminal
window. Rotate the transponder from parallel to perpendicular relative to the antenna
and compare reading distances. The reader should be able to fi nd a parallel transponder
about three inches away.

 Write down the Customer Code and the Tag Number.

#include “rfi d.h”
#include <em4095.c> // Controls the reader IC
#include <em4102.c> // Allows reading 4102 transponders
#include <rs485.c>

int8 msg[32];
#include “utilities.c”

void main() {
 int8 customerCode;
 int32 tagNum;

 rf_init(); // Initialize the RF reader
 rf_powerUp(); // Power up the antenna
 rs485_init(); // Initialize RS485 communication
 output_low(GREEN_LED); // Show the board is powered and ready

 for(;;) {
 if(read_4102(msg)) {
 customerCode = msg[0];
 tagNum = make32(msg[1], msg[2], msg[3], msg[4]);

 sprintf(msg, “Customer Code: %u\n\r”, customerCode);
 RS485send(msg);
 sprintf(msg, “Tag Number: %lu\n\n\r”, tagNum);
 RS485send(msg);
 }
 }
}

CCS, Inc.

RFID APPLICATION EXAMPLE8
 Append the following two functions to utilities.c:

 Create ex8.c and type in the following source code:

int8 RS485getInt() {
 int8 i, s[5];
 for(i=0; (s[i]=RS485getc()) != ‘\r’ && i<5; ++i);
 return atoi(s);
}

int32 RS485getI32() {
 int8 i, s[11];
 for(i=0; (s[i]=RS485getc()) != ‘\r’ && i<11; ++i);
 return atoi32(s);
}

#include<..\rfi d.h>
#include<em4095.c> //Controls the reader IC
#include<em4102.c> //Allows reading 4102 transponders
#include<rs485.c>
#include<stdlib.h>

int8 msg[32];
#include “..\utilities.c”

void main()
{
 int8 customerCode, code;
 int32 tagNum, tag_ID;

 rf_init(); //Initialize the RF reader
 rf_powerUp(); //Power up the antenna
 rs485_init(); //Initialize RS485 commuication
 output_low(YELLOW_LED); //Show program is running

 sprintf(msg, “Enter the customer code: “);
 RS485send(msg);
 code = RS485getInt();

(Continued...)

RFID Exercise Book

 Compile the program and download it to the RFID board. When prompted, enter the
customer code and tag ID number written down in the last exercise of one of the
transponders. Then take a turn holding each EM4102 transponder over the antenna.
When the program fi nds a transponder matching the data entered, it will light the green
LED for two seconds. If a non-matching transponder is held over the antenna, the red
LED will be lit for two seconds.

 This behavior is an example of how RFID technology can be applied. If the system was
expanded it could easily be modifi ed to serve as an access control system. Instead
of just lighting a LED, the system could also unlock a door for the transponders that it
recognizes. RFID can also be used for inventory control systems. These systems use
antennas with a long range that activate an alarm when they recognize if a product that is
part of the inventory has not been sold or is scheduled to move.

(Continued)
 sprintf(msg, “\n\n\r”);
 RS485send(msg);

 sprintf(msg, “Enter the tag ID: “);
 RS485send(msg);
 tag_ID = RS485getI32();

 sprintf(msg, “\n\n\rScanning...”);
 RS485send(msg);

 for(;;)
 {
 if(read_4102(msg)) {
 customerCode = msg[0];
 tagNum = make32(msg[1], msg[2], msg[3], msg[4]);

 if(customerCode == code && tagNum == tag_ID) {
 output_high(RED_LED);
 output_low(GREEN_LED); //Light green LED if match made
 } else {
 output_high(GREEN_LED);
 output_low(RED_LED); //Light red LED if no match made
 }

 delay_ms(2000); //Wait 2s and then turn off LEDs
 output_high(GREEN_LED);
 output_high(RED_LED);
 }
 }
}

CCS, Inc.

D0 D1 D2 D3 D4 D5 D6 D7 P0

D8 D9 D10 D11 D12 D13 D14 D15 P1

D16 D17 D18 D19 D20 D21 D22 D23 P2

D24 D25 D26 D27 D28 D29 D30 D31 P3

C0 C1 C2 C3 C4 C5 C6 C7 0

9 READ/WRITE TRANSPONDER

 The second type of transponder included in the kit is the EM4150. Through a variety
of commands, its internal EEPROM can be read, written, password-protected, read-
protected, and write-protected. It holds 1024 bits arranged in 32 words of 32 bits. Three
of the words are reserved:
 • The fi rst word contains the login password.
 • The second word controls read/write protection.
 • Broadcasted data and password protection enabling are confi gured in the third word.
Together, these three words customize the information available to transponder readers.
In addition to the 1024 bits of EEPROM, there are two laser burned words. A device
serial and identifi cation number are located at addresses 32 and 33, respectively.

 Communication packets on the EM4150 are organized into a similar row and column
structure. A total of 45 bits are used to send 32 bits of data. Eight data bits are followed
by one parity bit, a row of column bits, and a stop bit. Reading and writing use the same
structure. The following fi gure details a packet of data.

 When the EM4150 becomes powered by the RF fi eld, it begins to broadcast words in
the format described above. Before transmitting each word, it sends two listen windows.
The listen window pattern consists of two half bit period pulses, a two- bit period pulse,
and two one-bit period pulses. The graph below shows two listen windows. One listen
window is between the vertical dashed lines.

RFID Exercise Book

 When the microcontroller wants to send a command, it searches for the beginning part
of the pattern with the long low pulse. Then it starts transmitting during the following
bit period where the demodulated signal is held high. The transponder detects the
modulation and stops broadcasting data.

 Each bit of data is sent via the OOK antenna modulation. When the antenna is
modulated, it stops sending the carrier signal. A bit value of ‘0’ is sent by modulating the
antenna for the first half of a bit period. No modulation occurs during the second half, so
the signal returns to its normal operating voltages to keep the transponder powered. A ‘1’
is sent with no modulation for either half. The following graph shows the antenna voltages
while sending 00100000001, the reset command, by modulating the signal amplitude.
The EM4150 transponders included in the kit have a bit period of 64 RF periods. Each
modulation pulse consists of half a bit period or 32 RF periods.

 The graph on the next page illustrates a complete communication cycle. The
demodulated signal is on top and the antenna modulation control is on the bottom.
Appearing on the top left side is the long low pulse of the listen window. After detecting
this pulse, two zeros were sent during the high one-bit period to put the transponder into
listen mode. The next eight bits are the command, which are followed by a parity bit. The
send time is located between the two vertical dashed lines. Notice the extra time at the
end when a ‘1’ was sent for parity. To complete the process, the transponder validates
the command and sends an acknowledgment (ACK). The reader detects the emitted
pattern to confirm a successful transmission. The ACK pattern begins within the second
low pulse after the second vertical line and ends with the last high pulse.

CCS, Inc.

 Create ex9.c and type in the following source code:

#include <rfi d.h>
#include <rs485.c>
#include <em4095.c>
#include <em4150.c>
#include <stdlib.h>

int8 msg[32];
#include “utilities.c”
void main() {
 int8 err;
 int32 temp;
 rs485_init();
 rf_init(); // Initialize the RF reader
 output_low(GREEN_LED); // Show the board is powered and ready
for(;;) {
 sprintf(msg, “\n\n\rR,W: “); // Choose read or write
 RS485send(msg);

(continued...)

READ/WRITE TRANSPONDER (CONT.)9

RFID Exercise Book

 Compile the program and download it to the RFID board. Once running, place an
EM4150 transponder near the antenna and test the program. The characters sent to
the RFID board will not be displayed without local echo enabled in SIOW. Since the
transponder is new, all EEPROM should fi rst contain 0. Try reading addresses 32 and 33
to see the device serial and identifi cation numbers.

 The last switch statement examines the error code returned by the transponder functions.
Different error codes are available to let software know what is causing a problem and
handle it as necessary.

(continued...)
 switch(toupper(RS485getc())) {
 case ‘R’:
 sprintf(msg, “\n\rAddress (0-33): “); // Get an address
 RS485send(msg);
 if((err = read_4150(msg, RS485getInt())) == ERR_OK) {
 temp = make32(msg[3], msg[2], msg[1], msg[0]);
 sprintf(msg, “\n\rData: %lu”, temp);
 RS485send(msg);
 }
 break;
 case ‘W’:
 sprintf(msg, “\n\rAddress (0-33): “); // Get an address
 RS485send(msg);
 temp = RS485getInt();
 sprintf(msg, “\n\rData: “); // Get data to write
 RS485send(msg);
 err = write_4150(RS485getI32(), temp);
 break;
 default: continue;
 }
 switch(err) {
 case ERR_OK: sprintf(msg, “\n\rOK”); break;
 case ERR_LIW: sprintf(msg, “\n\rLIW”); break;
 case ERR_NAK: sprintf(msg, “\n\rNAK”); break;
 case ERR_PARITY: sprintf(msg, “\n\rPARITY”); break;
 }
 RS485send(msg);
 }
}

CCS, Inc.

10 ADVANCED READ/WRITE
TRANSPONDER

 As mentioned in the previous chapter, the read/write transponder included in the kit
offers read, write, and password protection. Create a fi le called EX10.C, copy over all the
source code from EX8.C, and add the following input options:

case ‘L’:
 sprintf(msg, “\n\rPassword: “); // Get login password
 RS485send(msg);
 err = login_4150(RS485getI32());
 break;
case ‘C’:
 sprintf(msg, “\n\rOld PW: “); // Get old password
 RS485send(msg);
 temp = RS485getI32();
 sprintf(msg, “\n\rNew PW: “); // Get new password
 RS485send(msg);
 err = setPassword_4150(temp, RS485getI32());
 break;
case ‘P’:
 sprintf(msg, “\n\rFirst: “); // First read protected word
 RS485send(msg);
 temp = RS485getInt();
 sprintf(msg, “\n\rLast: “); // Last read protected word
 RS485send(msg);
 err = readProtect_4150(temp, RS485getInt());
 break;
case ‘E’: err = PWprotect_4150(TRUE); break;
case ‘D’: err = PWprotect_4150(FALSE); break;
case ‘T’: err = reset_4150(); break;

 Add the following cases to the error-checking switch statement:

case ERR_NAK_OLDPW: sprintf(msg, “\n\rNAK OPW”); break;
case ERR_NAK_NEWPW: sprintf(msg, “\n\rNAK NPW”); break;
case ERR_LIW_NEWPW: sprintf(msg, “\n\rLIW NPW”); break;

RFID Exercise Book

 Change sprintf (msg, “\n\n\rR,W: “); to include L,C,P,E,D,T.

 Compile the program and download it to the controller board. Place an EM4150
transponder near the antenna and press ‘L’ to login. The default password is zero. Once
a successful login has occurred, the read-protected region may be modified. Press ‘P’
and read protect five through ten. Write some data to address seven and read it back.
Move the transponder away from the antenna so it loses power, then return it to the RF
field. A read to address seven will return zero. Write some data to address six and read
it back. It will also read zero. Log back in, and read addresses six and seven again. This
demonstration shows how read protection works. It allows a write to occur anytime, but
data can only be read after a successful login. Write-protection works a little differently.
In order to change the data in a write-protected word, write-protection must first be
removed from that address.

 While logged in, press ‘E’ to enable password-protection, then ‘T’ to reset. A reset is
similar to removing and replacing the transponder from the RF field. Now an error will
occur when trying to write to any location. Log back in to gain write access and try writing
some data once more.

 Try experimenting on your own. Be careful not to lose the password if it is changed. Open
em4150.c and explore some other options as well.

CCS, Inc.

11 ANTI-COLLISION

 The transponders provided in the kit only permit one transponder in the RF fi eld at a time.
They always broadcast data while powered and respond to every command they receive.
When two or more transmit at the same, their signals will interfere with each other,
preventing any communication. Try reading the read/write transponder with the read-only
transponder in the fi eld at the same time to witness the effect. The single transponder
scheme is suffi cient for many applications, such as access control; however, sometimes
it is necessary to read multiple transponders at once. Some example situations include
reading an entire pallet of items or a continuous stream of packages.

 There are many algorithms for handling multiple transponders in a single RF fi eld, as
long as the transponders support anti-collision. Some algorithms work better for certain
situations. Described below is one algorithm for read-only anti-collision and one for read/
write anti-collision.

 This method is suited for read-only transponders. Each transponder contains a random
number clock generator and a random number clock counter. Unlike the transponders
in the kit, these do not transmit when powered until they see a gap in the RF fi eld. At
this time, they begin their random number generation, wait for a given period, then
begin to transmit. Upon seeing the second gap, they stop their random number circuit
and save the current number. Each gap in the RF fi eld causes the saved number to
be decremented. Once it reaches zero, the transponder transmits its data. Since each
transponder has a different random number, there are no collisions. The reader controls
communication by providing the RF gaps. If the reader notices a collision while reading,
it ignores the data and provides another gap. Otherwise the reader attempts to read
the data until successful, and then sends another gap. It would be very diffi cult to
synchronize two-way communication with this method, so a different approach is used
for some read/write transponders.

 One read/write algorithm begins with all transponders enabled at power on. When
transponders are enabled they will respond to commands, but not continuously
broadcast. The process starts with the reader sending a read command. If the reader
notices a collision, it starts the arbitration process by sending the arbitration command.
Each tag responds with its least signifi cant address bit. The tags with a ‘0’ respond
immediately and tags with a ‘1’ wait a moment before sending; this avoids collisions.
The reader checks if it received a 0, 1, or 0 and 1. If the reader reads a 0, it responds
with a 0. If it received only a 1, it responds with a 1. The transponders that sent a
matching address bit continue the process by sending their next address bit. The cycle
continues until the most signifi cant address bit is read. The entire process identifi es the
address of one transponder. The reader disables this transponder and continues to fi nd
addresses until no more collisions occur. Now the reader can enable a transponder and
communicate without interference.

RFID Exercise Book

There are many websites with great information about RFID technology, products, and design.
Many manufacturers provide product information along with technology descriptions.
The RFID Handbook is located at www.rfi d-handbook.com. This is an in-depth book
discussing everything about RFID. The site offers a forum and a free preview of one chapter in
the book.
The RFID Journal is located at www.rfi djournal.com. This site contains RFID news, case
studies, ideas, and opinions. Some articles are free, while others require a paid subscription.
EM Microelectronic is located at www.emmicroelectronics.com. Manufacturers of transponders
in this kit. See their website for datasheets, application guides, different transponders, and
other information.
Escort Memory Systems is located at www.ems-rfi d.com. They are another company that
offers information about RFID and a variety of transponders and readers.
RFID Updates are located at www.rfi dupdate.com. This site contains daily news posting
related to RFID.
RFID Talk is located at www.rfi dtalk.com. This site is a forum discussing design advice, news,
jobs, and general information about RFID.
Links to RFID privacy articles are located at www.rfi dprivacy.org. This site provides articles
and information that explore the issue of privacy as RFID becomes more integrated into our
society.

12 RFID RESOURCES

Comprehensive list of PICmicro®
Development tools and information

www.pic-c.com/links

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

������
�����

���

�����

�����

������

������
������

����
���������

�����������������
��������������������
������������������
�������������������

���

�����

�����

������

������

������

������

��������������������
������������

�
��

�
�

��
�

�
�

p
i
c
r
f
i
d
m
.
s
c
h
-
1

-

M
o
n

A
p
r

2
5

2
1
:
4
9
:
0
3

2
0
0
5

