Deep learning for 3D data

_evente Tamas

With slides adapted from H. Su and IB Shabat

Content

- 1. Preliminary ideas on DL
- 2. Why 3D data with deep learning?
- 3. Classification
- 4. Segmentation
- 5. Perspectives

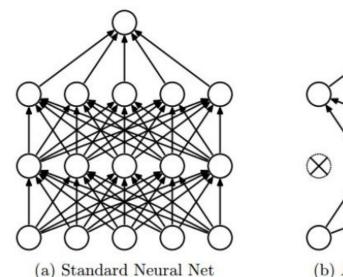
Content

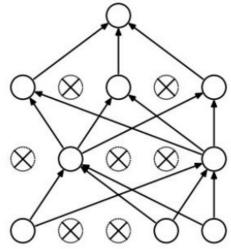
1. Preliminary ideas on DL

- 2. Why 3D data with deep learning?
- 3. Classification
- 4. Segmentation
- 5. Perspectives

1. Short introduction to DL

- 1.1. Motivation
- 1.2. Neuronal networks
- 1.3. Optimization details
- 1.4. Convolutional neural network
- 1.5. Recurrent neural networks

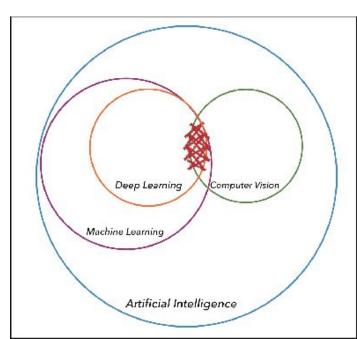




(b) After applying dropout.

- Subset of AI (see fig)
- Universal approx. of nonlinear functions (Hornik 1991)
- Significant results in
 - Image processing
 - Speech reco
 - NLP
- Different types:
 - Multilayer perceptrons
 - Convolutional Neural Networks (CNN)
 - Recurrent Neural Networks (RNN)
- Main reference book:

http://www.deeplearningbook.org/



- Significant results in
 - Image processing
 - Speech reco
 - NLP
- Different types:
 - Multilayer perceptrons
 - Convolutional Neural Networks (CNN)
 - Recurrent Neural Networks (RNN)
- Main reference book:

http://www.deeplearningbook.org/

Demystification:

What is not?

Black box	Interpretable MLVisualize gradients and activations
Needs too much data	Transfer learningShare pre-trained nets
Needs ML PhD	 No longer true fastai & keras libs, MOOCs, etc
Only for vision	No longer trueSoTA for speech, structured data, time series
Needs lots of GPUs	Was never trueexcept for some research projects
"Not really Al"	Who cares?Do you really want to build a brain?

Evolution of the state of the art performance in **2D classification**:

•	Shape	Appearance		Classification Accuracy (%)				
		layout type	using ground truth	family	breed (S. 4.2)		both (S. 4.3)	
				(S. 4.1)	cat dog		hierarchical flat	
1	1	-	- 	94.21	NA	NA	NA	NA
2	-	Image	-	82.56	52.01	40.59	NA	39.64
3	-	Image+Head	-	85.06	60.37	52.10	NA	51.23
4	-	Image+Head+Body	-	87.78	64.27	54.31	NA	54.05
5	-	Image+Head+Body	✓	88.68	66.12	57.29	NA	56.60
6	1	Image	-	94.88	50.27	42.94	42.29	43.30
7	1	Image+Head		95.07	59.11	54.56	52.78	54.03
8	1	Image+Head+Body	-	94.89	63.48	55.68	55.26	56.68
9	1	Image+Head+Body	 ✓ 	95.37	66.07	59.18	57.77	59.21

1.2 Neuronal networks

Artificial **neuron** with params θ , input x: $y = f(x, \theta) \rightarrow$ **nonlinear** optimization

More generally: $y_j = f_j(x) = \phi(w_j, x_i + b_j)$

With ϕ being the **activation** function, e.g

Identity

.

 $\phi(x) = x$ $\phi(x) = \max(0, x)$

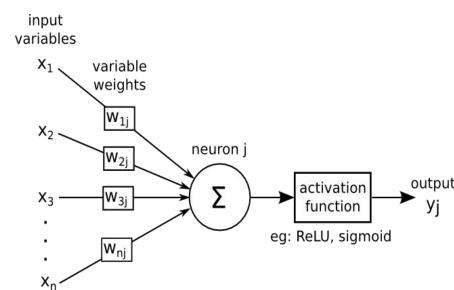
 $\phi(x) = \frac{1}{1 + exp(-x)}$

- Sigmoid
- Softmax

 $softmax(z) = \frac{exp(z)}{\sum_{j} exp(x_{j})}$ Schematic representation of:

Rectified Linear Unit (ReLU)

$$\sum = (w_j, x_i) + b_j$$



1.3 Multilayer perceptron (MLP)

Several interconnected hidden layers + I/O

No connection between neurons on the same layer

The activation Ψ at the O layer:

- Regression
- Classification (e. softmax)

Summary of L hidden layers, with

$$h^{(0)}(x) = x$$

For $k = 1, \ldots, L$ (hidden layers),

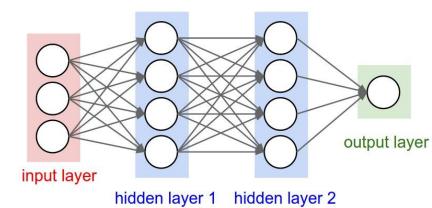
$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$$

$$h^{(k)}(x) = \phi(a^{(k)}(x))$$

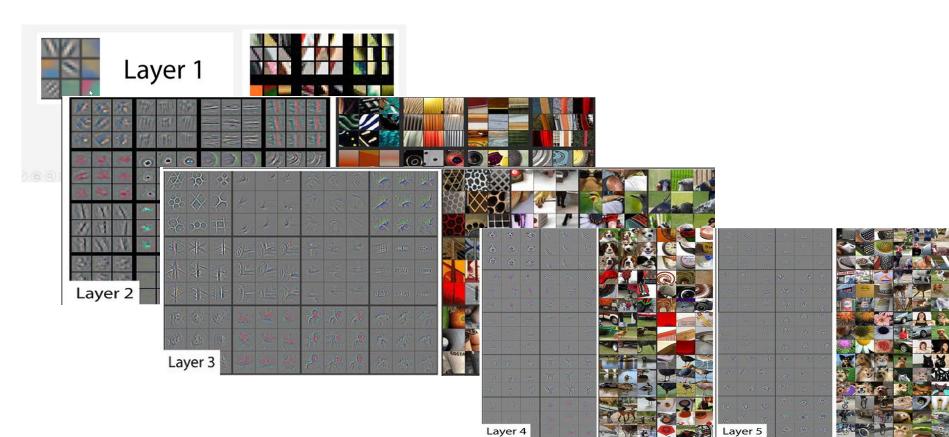
For k = L + 1 (output layer),

$$a^{(L+1)}(x) = b^{(L+1)} + W^{(L+1)}h^{(L)}(x)$$

$$h^{(L+1)}(x) = \psi(a^{(L+1)}(x)) := f(x,\theta)$$



1.3 Multilayer perceptron (MLP)



Loss function - how to minimize?

• Expected loss

 $L(\theta) = -\mathbb{E}_{(X,Y)\sim P}(\log(p_{\theta}(Y/X))).$

- For Gaussian models, $p_{\theta}(Y/X = x) \sim \mathcal{N}(f(x,\theta), I)$, $L(\theta) = \mathbb{E}_{(X,Y) \sim P}(||Y f(X,\theta)||^2)$.
- For binary cae $Y \in \{0,1\}$, $L(\theta) = -\mathbb{E}_{(X,Y)\sim P}[Y \log(f(X,\theta)) + (1-Y) \log(1-f(X,\theta))].$

• For K classes
$$L(\theta) = -\mathbb{E}_{(X,Y)\sim P}[\sum_{j=1}^{k} \mathbf{1}_{Y=j} \log p_{\theta}(Y=j/X)].$$

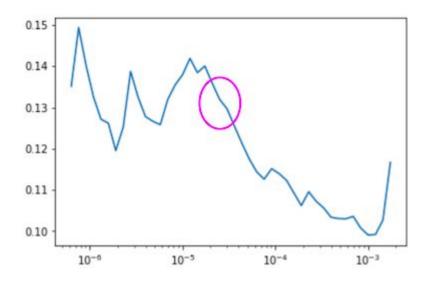
Stochastic gradient descent

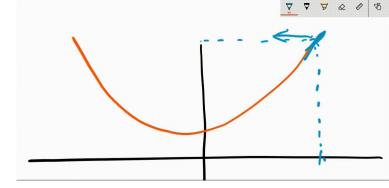
- Initialization of $\theta = (W^{(1)}, b^{(1)}, \dots, W^{(L+1)}, b^{(L+1)}).$
- For N iterations :
 - For each training data (X_i, Y_i) ,

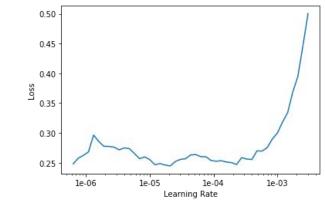
$$\theta = \theta - \varepsilon \frac{1}{m} \sum_{i \in B} [\nabla_{\theta} \ell(f(X_i, \theta), Y_i) + \lambda \nabla_{\theta} \Omega(\theta)].$$

B is a subset of cardinality *m* called **batch**. An iteration over the dataset is called **epoch** and with a **learning rate** ϵ

About the learning rate:





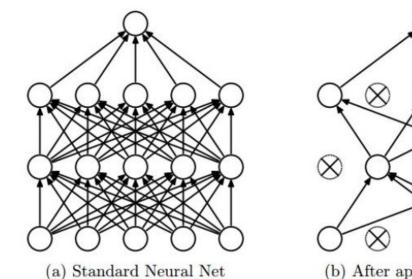


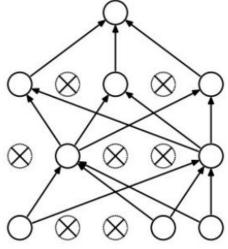
Dropout (Hinton, 2012)

Increase generalization

Used with

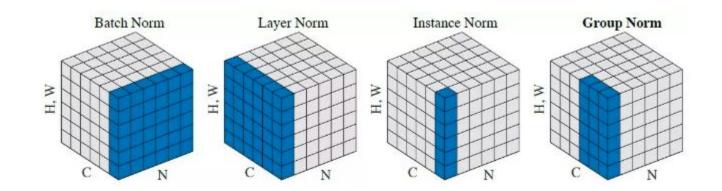
- Data augmentation
- Adversarial examples





(b) After applying dropout.

About data normalization



1.4 CNN

MLP not easy to adopt for 2D(3D) data \rightarrow transform it into some feature vectors

Vectors \rightarrow how to conserve the spatial relations?

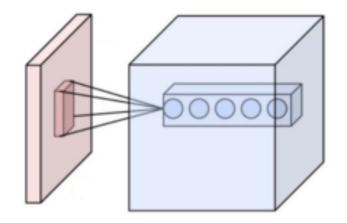
CNN (LeCun, 1998) \rightarrow automatic vector extraction

1.4 CNN - convolution operator

Definition for * on function f and g:
$$(f * g)(x) = \sum_{t} f(t)g(x+t)$$
.

For 2D(*I*) data **kernel** *K* is used:

$$(K*I)(i,j) = \sum_{m,n} K(m,n)I(i+n,j+m).$$

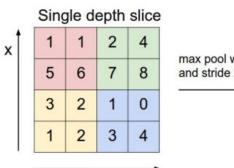


1.4 CNN - convolution operator

Example

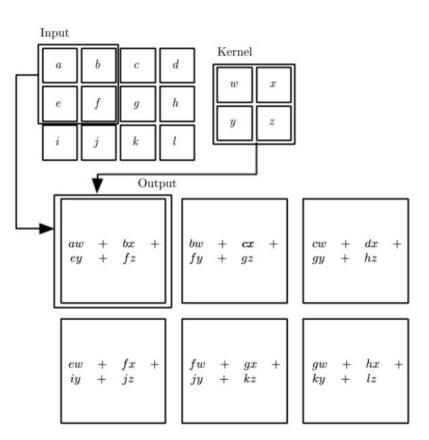
$$K_l * I(i,j) = \sum_{c=0}^{2} \sum_{n=0}^{4} \sum_{m=0}^{4} K_l(n,m,c)I(i+n-2,i+m-2,c).$$

Pooling (no padding)



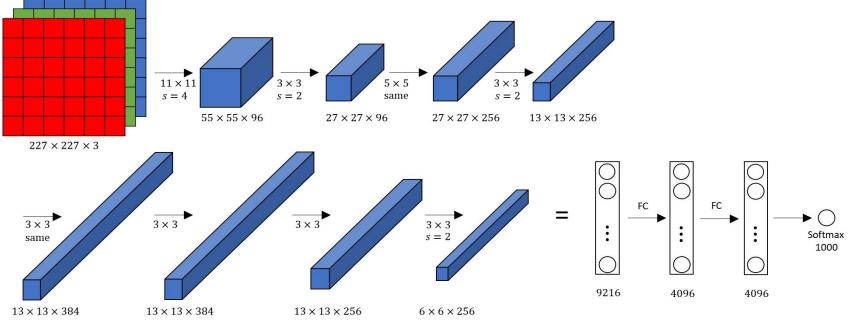
V

max pool with 2x2 filters and stride 2



1.4 CNN - common architectures

E.g Alexnet



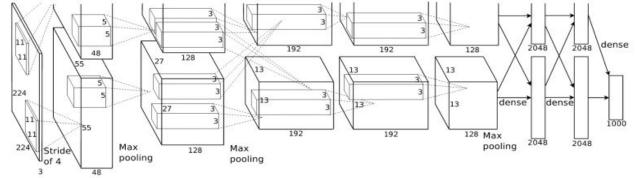
60M parameters

1.4 CNN - common architectures - description

Alexnet

Code:

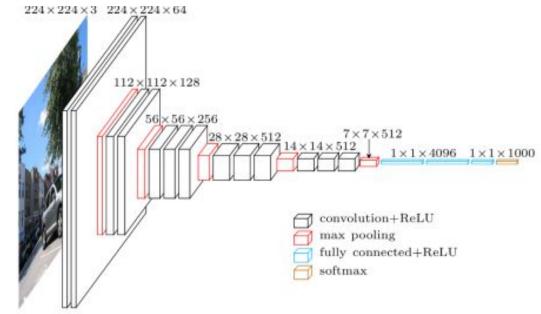
Input	227 * 227 * 3			
Conv 1	55*55*96	96	11 *11	filters at stride 4, pad 0
Max Pool 1	27*27*96		3 *3	filters at stride 2
Conv 2	27*27*256	256	5*5	filters at stride 1, pad 2
Max Pool 2	13*13*256		3 *3	filters at stride 2
Conv 3	13*13*384	384	3*3	filters at stride 1, pad 1
Conv 4	13*13*384	384	3*3	filters at stride 1, pad 1
Conv 5	13*13*256	256	3*3	filters at stride 1, pad 1
Max Pool 3	6*6*256		3 *3	filters at stride 2
FC1	4096	4096	neurons	
FC2	4096	4096	neurons	
FC3	1000	1000	neurons	(softmax logits)



1.4 CNN - common architectures

VGG

More to be found on ModelZoo from Nvidia



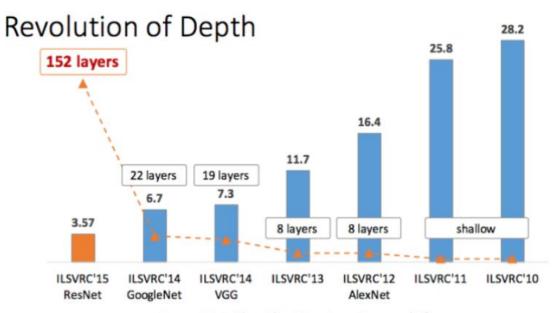
1.4 CNN - evolution of depth

Reduction of params

Increase of depth

Pruning networks

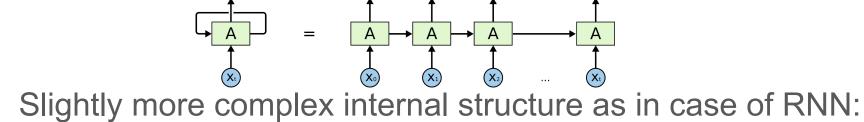
Targeted devices (TRT)

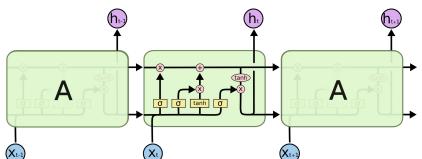


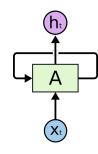
ImageNet Classification top-5 error (%)

1.5 RNN & LSTM

RNN (Jordan, 1990): information from past as well LSTM (Schmidhuber, 1997): special form of RNN





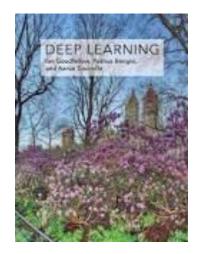


1. Summary

Promising research direction

Stay tuned!

Good starting point:

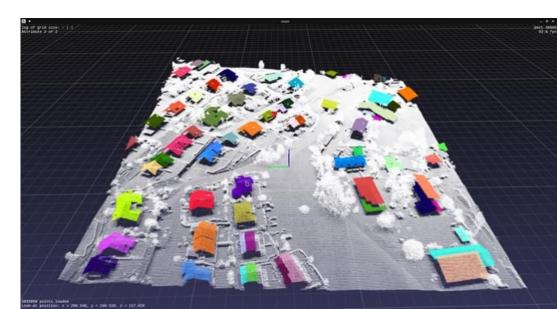


Content

1. Preliminary ideas on DL

2. Why 3D data with deep learning?

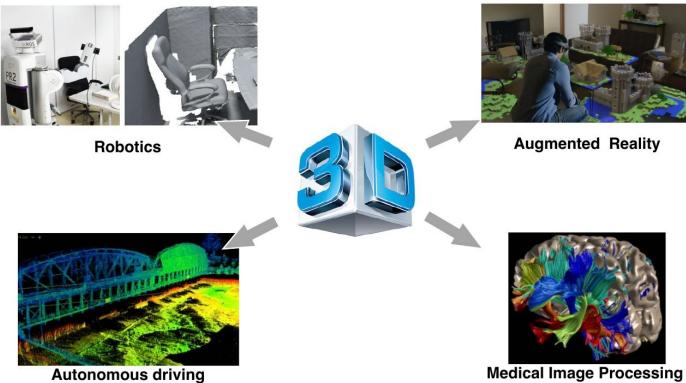
- 3. Classification
- 4. Segmentation
- 5. Perspectives



3D DL

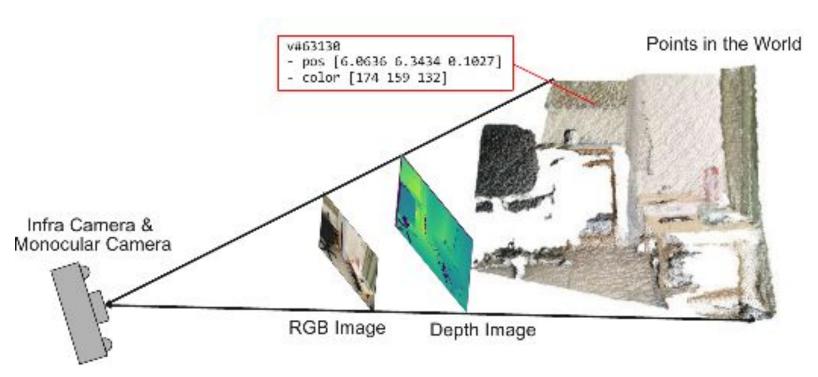
World is in 3D...

Motivation



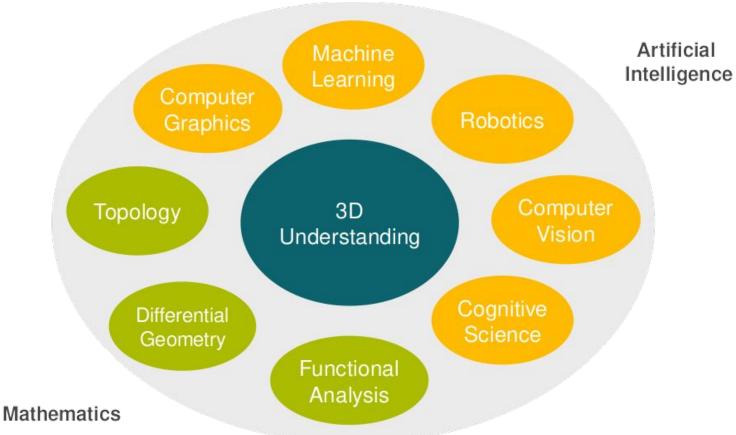
2D, 2.5D, 3D?

From 2D to 3D

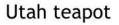


DL for 3D?

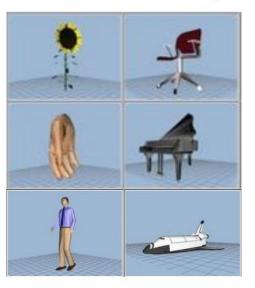
Now happening



Motivation - lack of data/model ~10 years ago

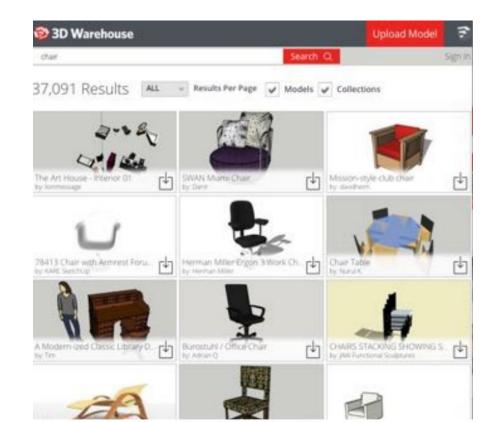


1800 models in 90 categories



Princeton shape benchmark [Shilane et al. 04]

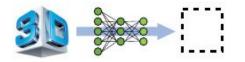
Motivation - plenty of data/model today



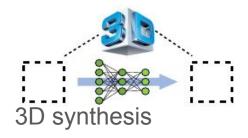
Motivation - plenty of data/model today

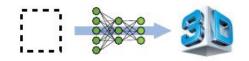
3D deep learning tasks

3D geometric analysis



3D assisted image analysis





3D representation for DL

2D images: uniqueness in representation, plays well with * operator

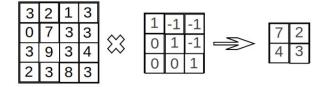
1	44	33	12	20	23	35	14
51	16	40	32	46	48	28	17
29	60	3	63	49	55	36	7
52	22	26	41	38	10	61	53
2	24	19	11	34	43	5	8
57	9	37	42	25	21	27	18
30	56	50	64	4	59	6	13
58	47	45	31	39	15	62	54

Unordered point clouds \rightarrow not that easy!

3D representation for DL - some 2D analogy

3d Convolution

2d Convolution



Order is still critical!

Distributed

 \mathfrak{X}

Entry to Entry Multiplication

-24	-29
-22	-55

-20 -38

-15 -55

3	2	1	1
0	3	3	3
2	1	3	Λ

23 6

4x4x4 Cube

3D representation

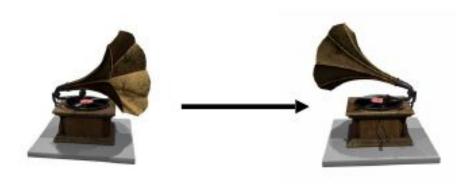
- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based

Rasterized (grid)→ direct2D, with challenges

Geometric relation (irregular) \rightarrow directly CNN

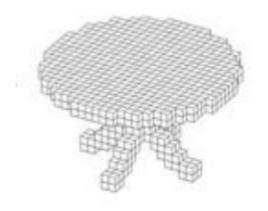
3D representation

- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based



3D representation

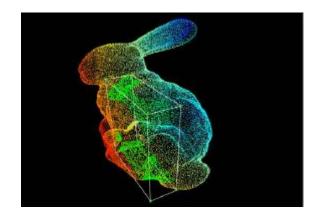
- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based



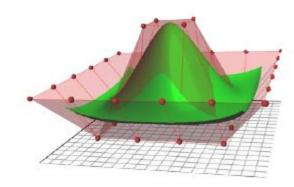
- 3D representation
- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based

3D representation

- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based



- 3D representation
- Multiview 2D images
- Volumetric
- Poly Mesh
- Point cloud
- Primite based



3D representation for DL - references

....

[Su et al. 2015] [Kalogerakis et al. 2016]

Volumetric

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

[Qi et al. 2017] (PointNet) [Fan et al. 2017] (PointSetGen)

Point cloud

[Defferard et al. 2016] [Henaff et al. 2015] [Yi et al. 2017] (SyncSpecCNN)

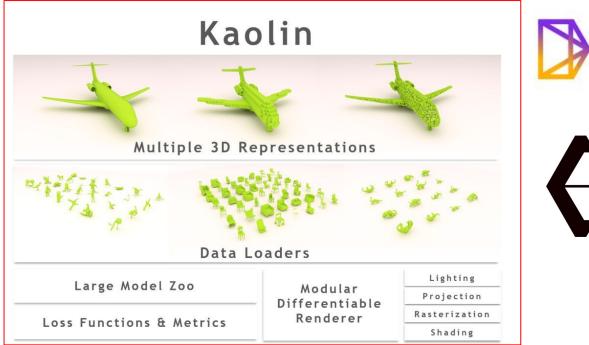
....

[Tulsiani et al. 2017] [Li et al. 2017] (GRASS)

Part assembly

Mesh (Graph CNN)

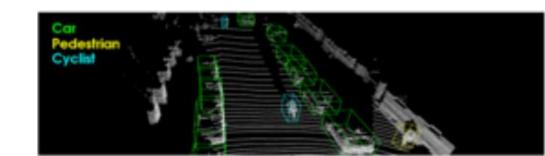
3D representation for DL - tools



PyTorch3D

Content

- 1. Preliminary ideas on DL
- 2. Why 3D data with deep learning?
- 3. Classification
- 4. Segmentation
- 5. Perspectives



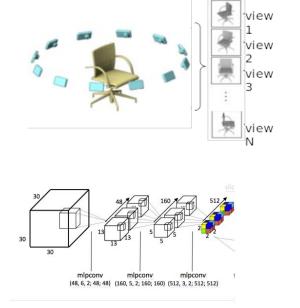
Classification

Multi-view CNN

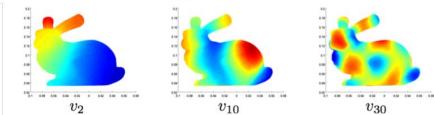
Volumetric CNN

Point nets

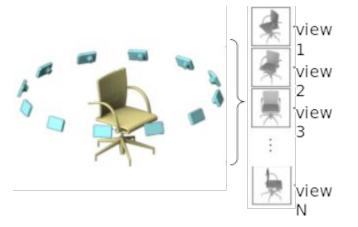
Spectral convolution



"Fourier basis" of the graph: V : Eigenvectors of Δ

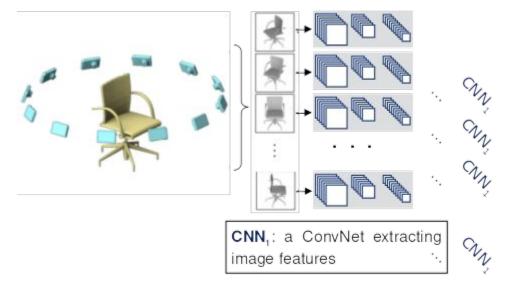


Render with Multiple Virtual Cameras

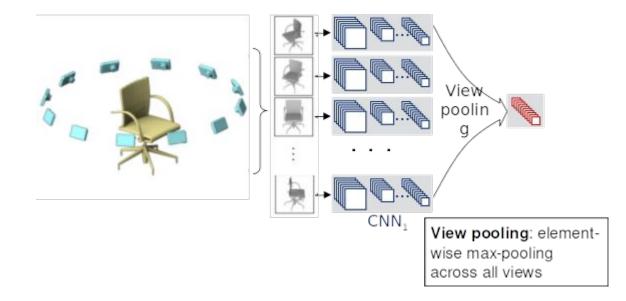


Su et al., "Multi-view Convolutional Neural Networks for 3D Shape Recognition", ICCV 2015

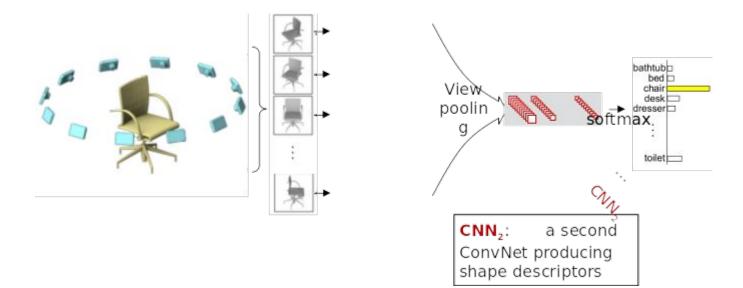
Images are Passed through CNN1 for Image Features



All Image Features are Combined by View Pooling



and then Passed through CNN2 and to Generate Final Predictions



Experiments – Classification & Retrieval

val Method	Classificati on (Accuracy)	Retrieval (mAP)
SPH [16]	68.2%	33.3%
LFD [5]	75.5%	40.9%
3D ShapeNets [37]	77.3%	49.2%
FV, 12 views	84.8%	43.9%
CNN, 12 views	88.6%	62.8%
MVCNN, 12 views	89.9 %	70.1%
MVCNN+metric, 12 views	89.5%	80.2%
MVCNN, 80 views	90.1%	70.4%
MVCNN+metric, 80 views	90.1%	79.5%

Summary

- Gives good performance
- Can leverage vast literature of image classification
- Can use pertained features

• What if the input is noisy and/or incomplete? e.g., point cloud

Classification: Volumetric CNN

Main ideas:

• Use CNN without explicit 3D-2D projection

• Make use of 3D native convolution (aka 4D CNN)

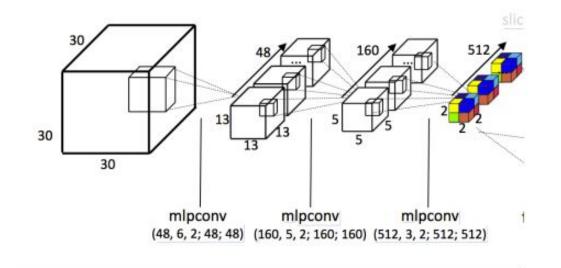
• Represent the occupied space with voxel grids

Classification: Voxelization

Represent the occupancy of regular 3D grids

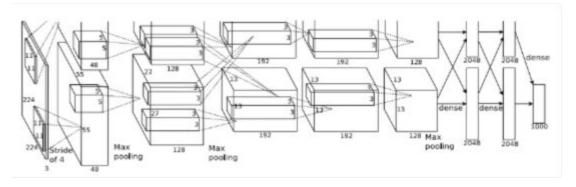
3D CNN on Volumetric Data

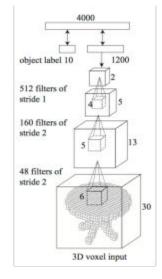
3D convolution uses 4D kernels



Complexity issues

Compared with 2D cases





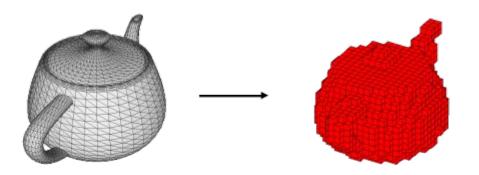
AlexNet, 2012

Input resolution: 224x224 224x224=50176 3DShapeNets, 2015

Input resolution: 30x30x30 224x224=27000

Complexity issues

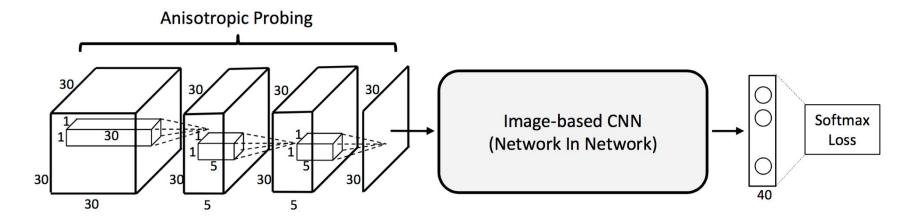
What about information loss?



Polygon Mesh Occupancy Grid 30x30x30

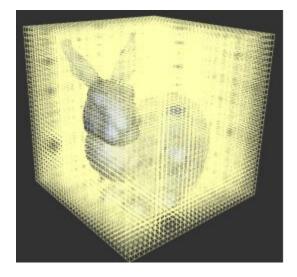
Basic idea: learn to project

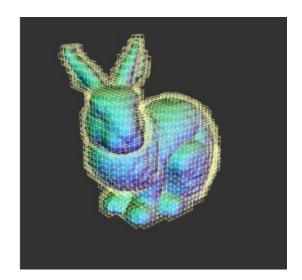
By ray tracing and 2D CNN low param number/low runtime is obtained



Voxel vs occupancy grids

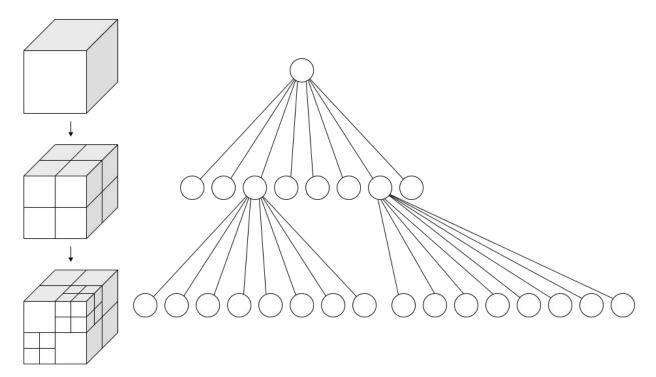
- Store the sparse surface signals
- Constrain the computation near the surface





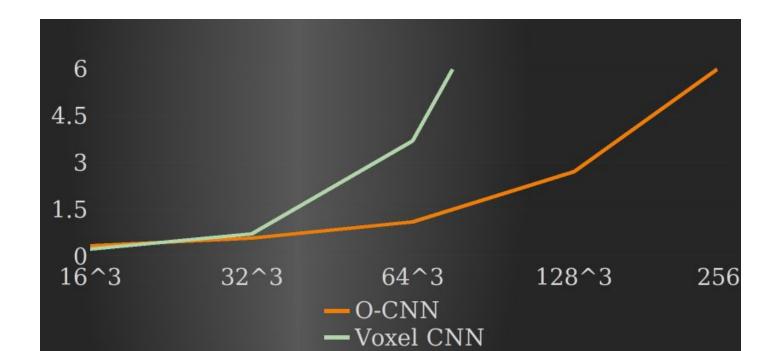
Optimized variant: octree

8 (oct) leaves for each node. Searching very efficient.



Memory efficiency

SparsconvNet \rightarrow designed for octree representation



Classification: Voxel CNN

Voxnet

Reco with occupancy grid \rightarrow prior in robotics

R invariant features + data augmentation

Efficiency

Drawback: only small grids/voxels

Occupancy Grid 32×32×32 Conv(32,5,2) 4×14×14 Conv(32,3,1)+Pool(2) 6×6×6 Full(K)/Output Maturana et al. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS. 2015.

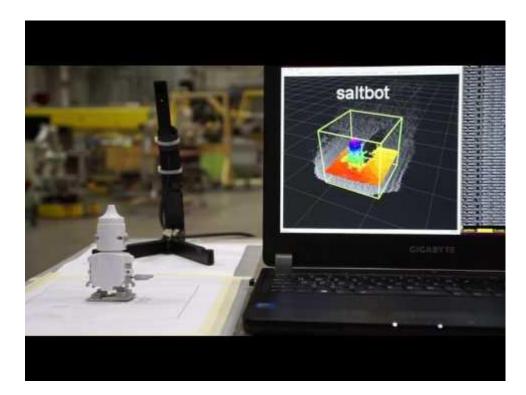
LIDAR

RGBD

Point Cloud

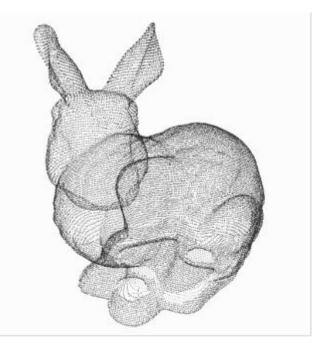
Classification: Voxel CNN

Voxnet - demo



Maturana et al. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS. 2015.

Classification: Point networks



Point cloud (The most common 3D sensor data)

Directly Process Point Cloud Data

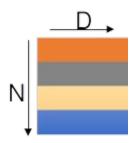
End2end learning for:

- Unstructured
- Unordered

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation", CVPR 2017

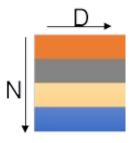
Ensure permutation invariance

Point cloud: N odorless points, each represented by a D dim coordinate

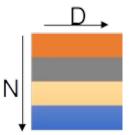


Ensure permutation invariance

Point cloud: N odorless points, each represented by a D dim coordinate



represents the same set as

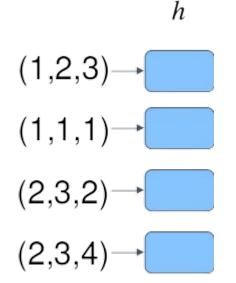


2D array representation

How to cope with this?

Construct a Symmetric Function

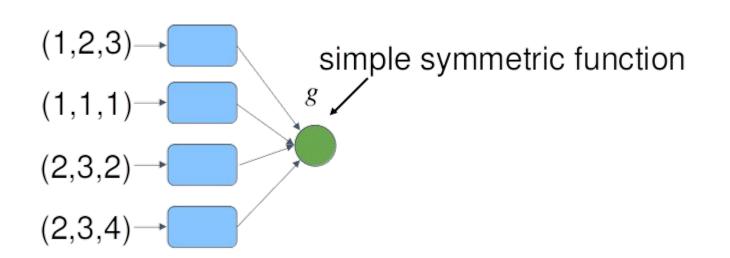
 $f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if **g** is symmetric



Construct a Symmetric Function

h

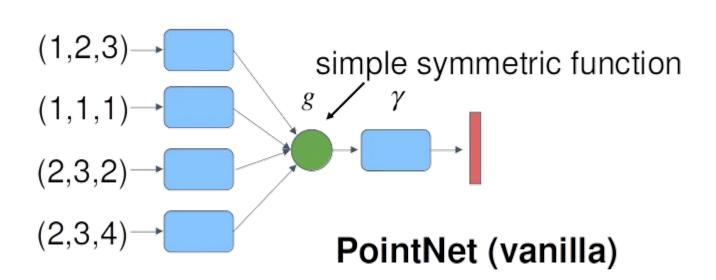
 $f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if **g** is symmetric



Construct a Symmetric Function

h

 $f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if **g** is symmetric

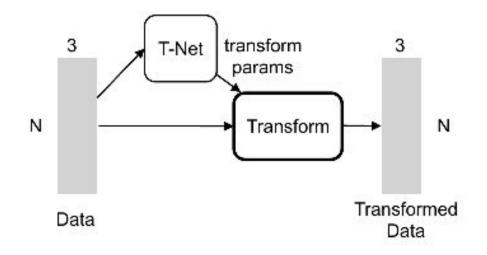


PointNet: geometric transform invariance

Solution: use some simple transform nets (T-Net)

Transform: \rightarrow matrix multiplication

Dimension (e.g. 3) can be arbitrary for data

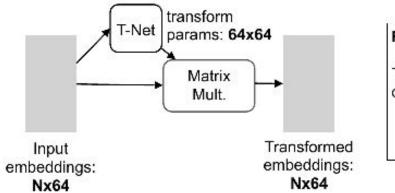


PointNet: geometric transform invariance

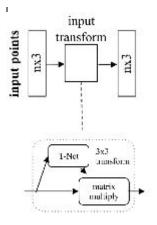
Solution: use some simple transform nets (T-Net)

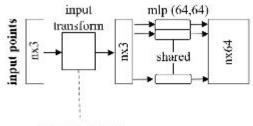
Transform: \rightarrow matrix multiplication

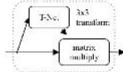
Dimension (e.g. 3) can be arbitrary for data

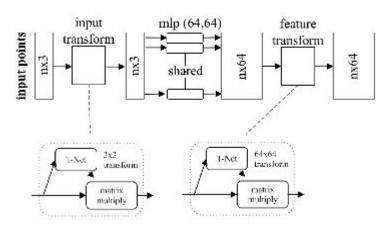


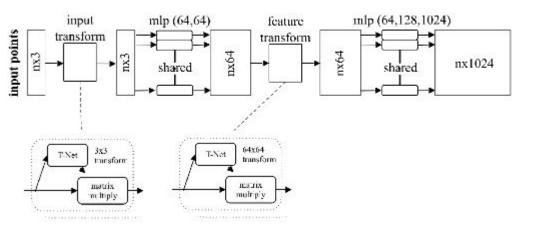
Regularization:
Transform matrix A 64x64
close to orthogonal:
$$L_{reg} = ||I - AA^T||_F^2$$

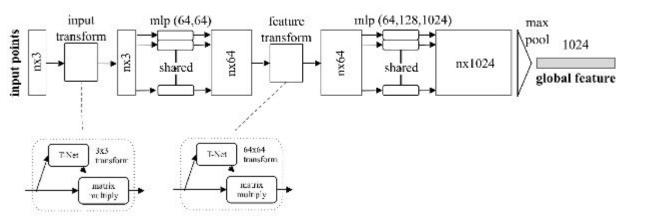


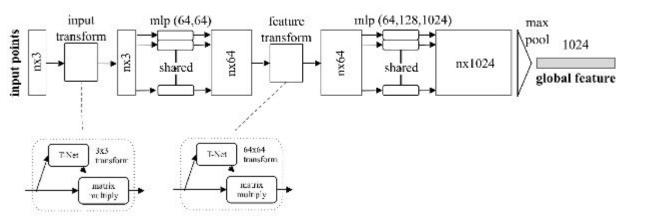


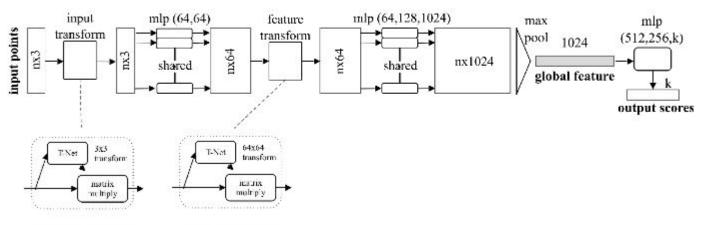


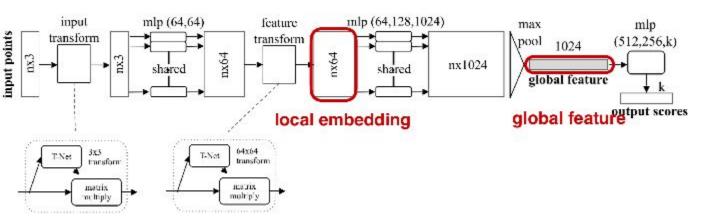


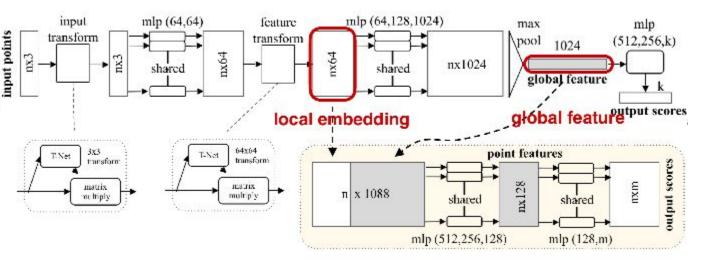










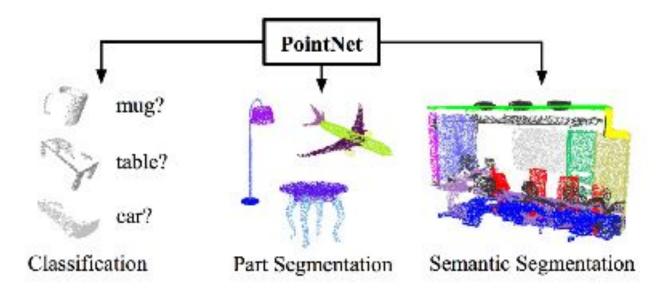


PointNet: results

-		input	#views	accuracy avg. class	accuracy overall
	SPH [12]	mesh	-	68.2	\frown
	3DShapeNets [29]	volume	1	77.3	84.7
3D CNNs	VoxNet [18]	volume	12	83.0	85.9
	Subvolume [19]	volume	20	86.0	89.2
	LFD [29]	image	10	75.5	. . .
	MVCNN [24]	image	80	90.1	
	Ours baseline	point	-	72.6	77.4
	Ours PointNet	point	1	86.2	89.2

dataset: ModelNet40; metric: 40-class classification accuracy (%)

PointNet: results



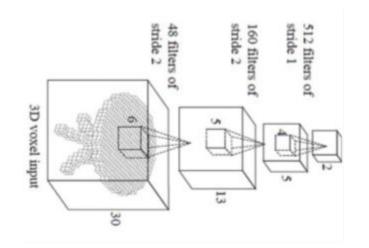
PointNet: results

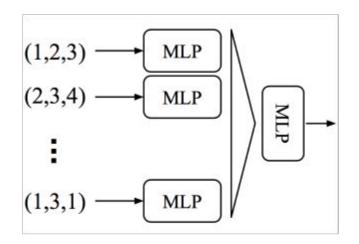
Scene parsing

dataset: Stanford 2D-3D-S (Matterport scans)

Limitations of Pointnet

- No local context for each point!
- Global feature depends on absolute coordinate.
- Hard to generalize to unseen scene configurations!





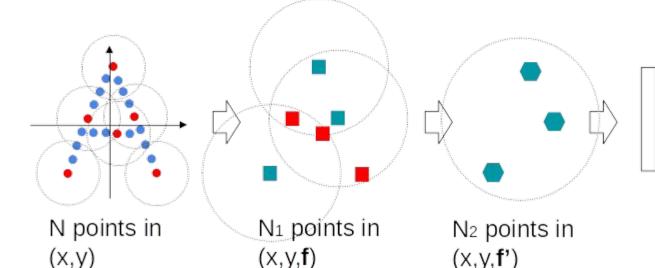
PointNet (vanilla) (Qi et al.)

3D CNN (Wu et al.)

PointNet v2.0: Multi-Scale PointNet

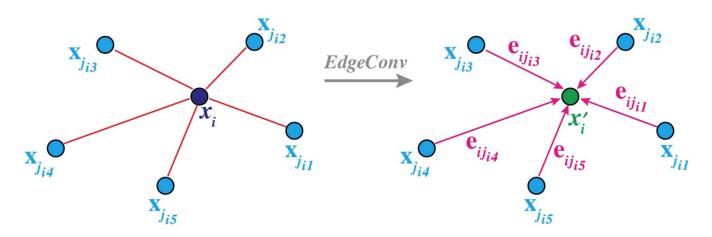
Repeat

- Sample anchor points
- Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution



Point Convolution As Graph Convolution

- Points -> Nodes
- Neighborhood -> Edges
- Graph CNN for point cloud processing



Wang et al., "Dynamic Graph CNN for Learning on Point Clouds", Transactions on Graphics, 2019

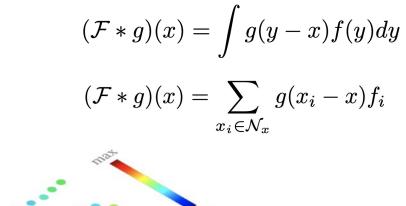
CNN are not aware of geometry

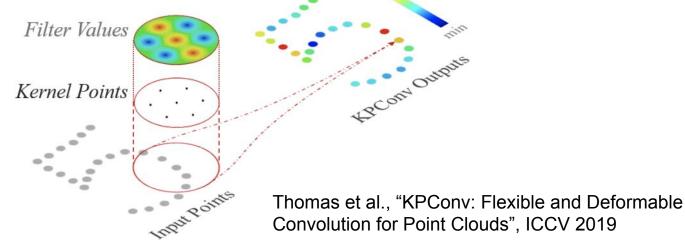
- Points sampled from surfaces
- Lack of sample invariance addressing (e.g. Lidar data)

Solution: Estimate the continuous kernel and point density for continuous convolution

Mathematically Proper Conv. Discretization

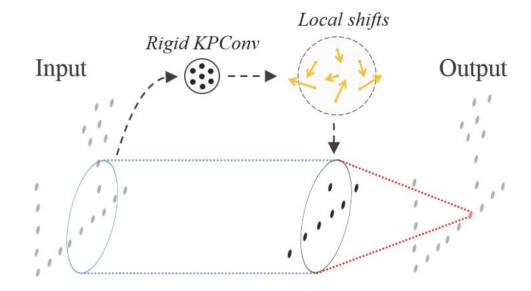
- Continuous conv:
- Empirical conv:





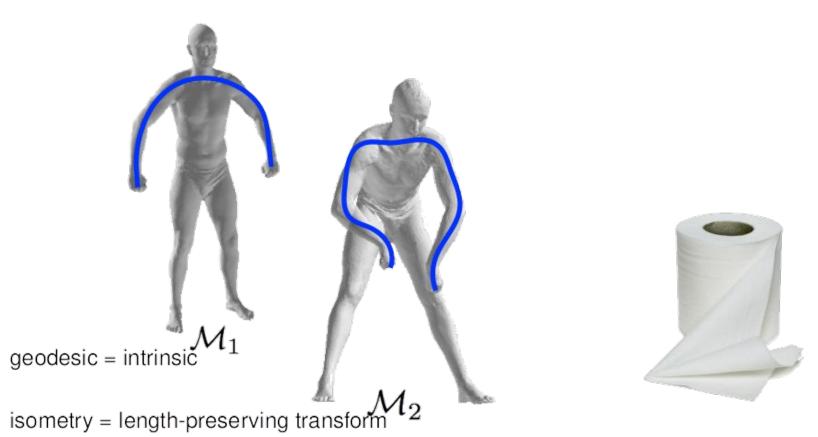
Deformable Kernel for Deformable Objects

- Deformable point-based kernel
- The 3D version of 2D deformable convolution



Thomas et al., "KPConv: Flexible and Deformable Convolution for Point Clouds", ICCV 2019

Classification: Spectral CNN



Classification: Spectral CNN

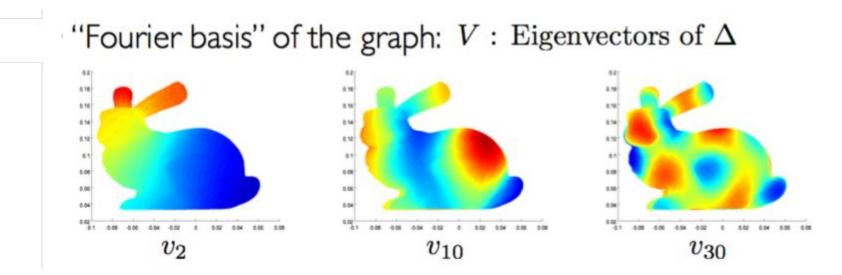
- Convolution done in the spectral domain
- Kernels are also built in spectral domain
- Activation done in the spatial domain

Needs to be a differentiable manifold!

Masci et al., "Geometric deep learning on graphs and manifolds using mixture model CNNs", CVPR 2017

Spectral CNN: obtain fourier basis

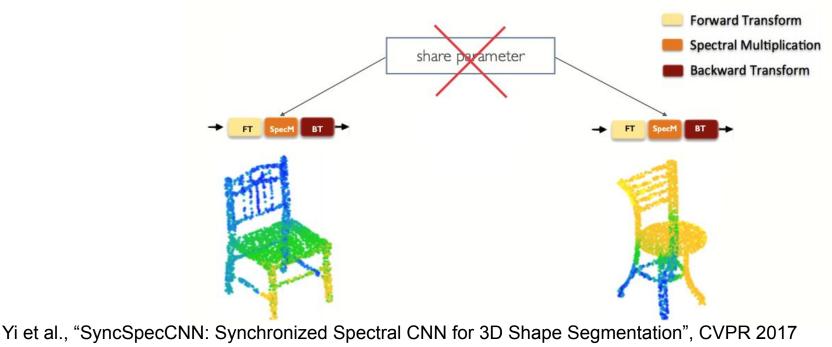
Derived by eigenfunctions of self-adjoint operators, e.g. Laplacian-Beltrami



Masci et al., "Geometric deep learning on graphs and manifolds using mixture model CNNs", CVPR 2017

Fundamental Challenge of Spectral CNN

- If the shapes to compare are not isometric, their spectral domains are not aligned
- Function bases are derived by Laplacian operator, which is geometry dependent



A Special Case: Spherical CNN

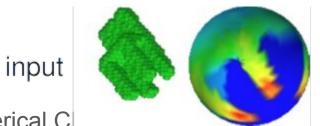
• If the surface is always a SPHERE, no worry about the functional space alignment anymore

convert input to a

function on sphere

(spherical repr.)

• Generate a spherical representation



• Do Spherical Cl...

• Has numerical tricks exploiting the symmetry of sphere

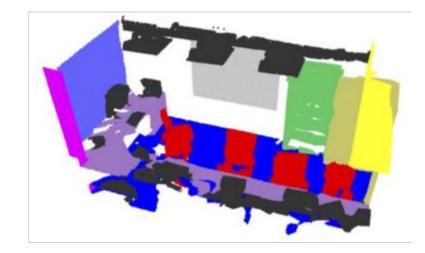
Cohen et al., "Spherical CNN", ICLR 2018

Content

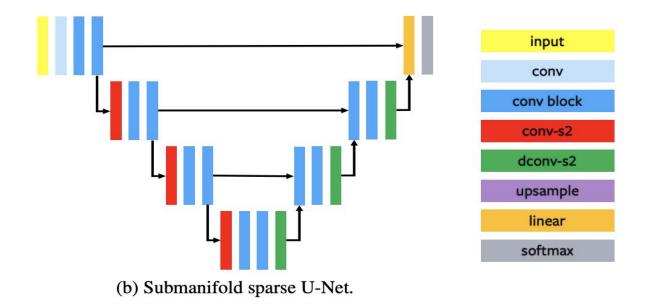
- 1. Preliminary ideas on DL
- 2. Why 3D data with deep learning?
- 3. Classification
- 4. Segmentation
- 5. Perspectives

Segmentation Detection

Semantic segmentation

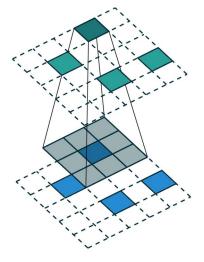


Encoder-Decoder: sparse conv



Graham, Benjamin, Martin Engelcke, and Laurens van der Maaten. "3d semantic segmentation with submanifold sparse convolutional networks." CVPR 2018.

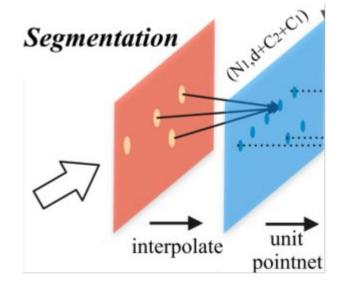
Choy, Christopher, et al. "4D Spatio-Temporal Convnets: Minkowski Convolutional Neural Networks." CVPR 2019



Encoder-Decoder: upsampled pointnet

Upsampled pcd features interpolating

from 3 nn poins

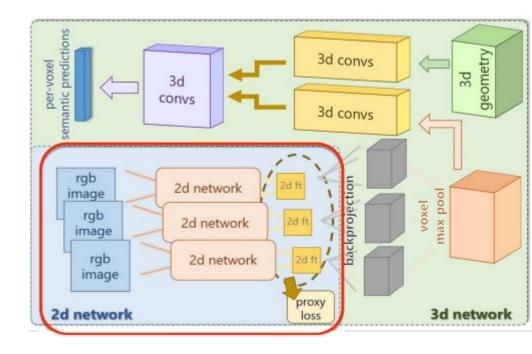


Lower resolution Higher resolution Fewer points More points

Qi, Charles R., et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.", NeurIPS 2017

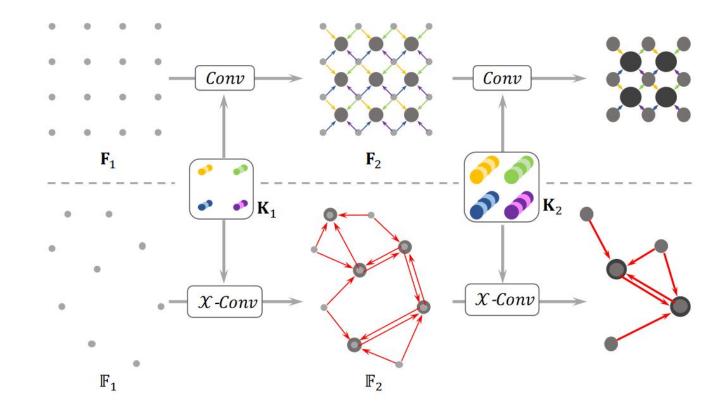
Multimodal approach

- Backproject 2D features to 3D voxels
- Apply voxel-wise max-pooling across multiple views
- Fuse 2D and 3D features at the intermediate level

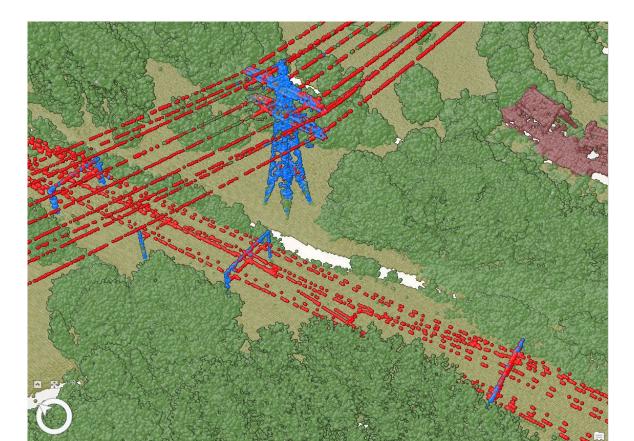


Dai, Angela, and Matthias Nießner. "3dmv: Joint 3d-multi-view prediction for 3d semantic scene segmentation.", ECCV 2018

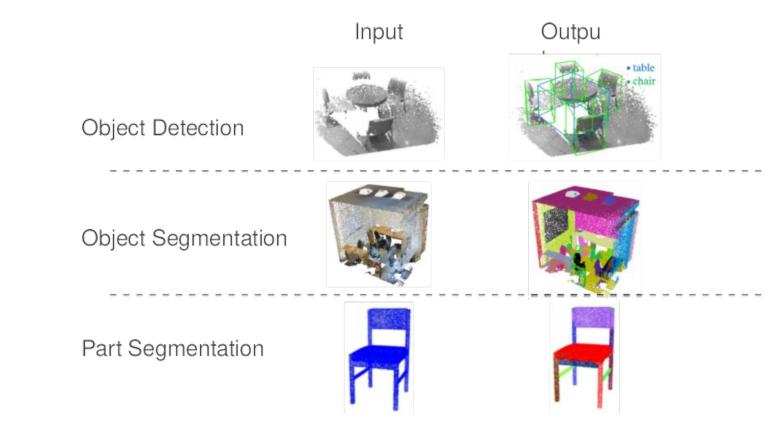
Segmentation with X-conv



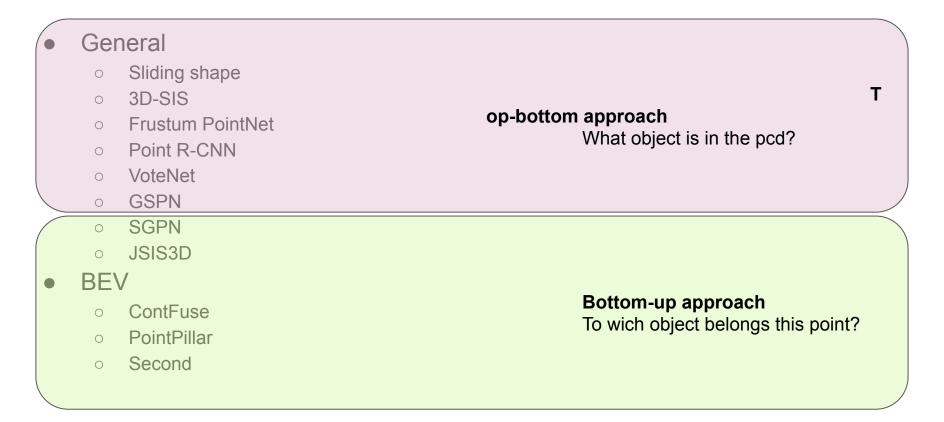
Segmentation with X-conv



Segmentation: Instance-level Understanding

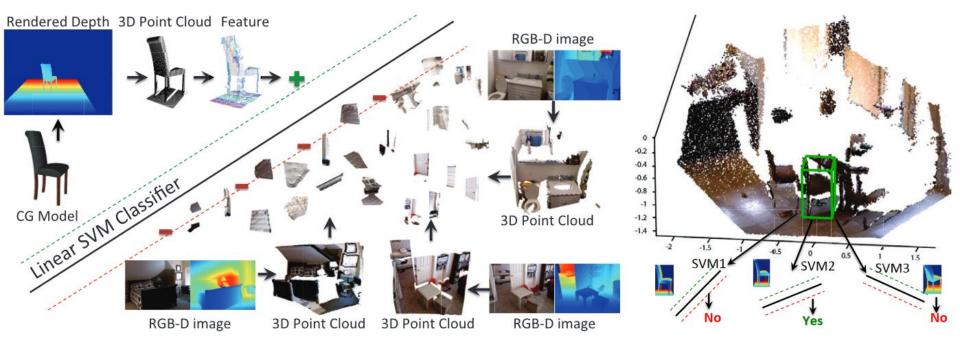


Task: 3D Detection & Instance Segmentation



Segmentation: top-down approaches

Sliding Shapes



Song et al., "Sliding Shapes for 3D Object Detection in Depth Images", ECCV 2014

From Box to Instance Segmentation

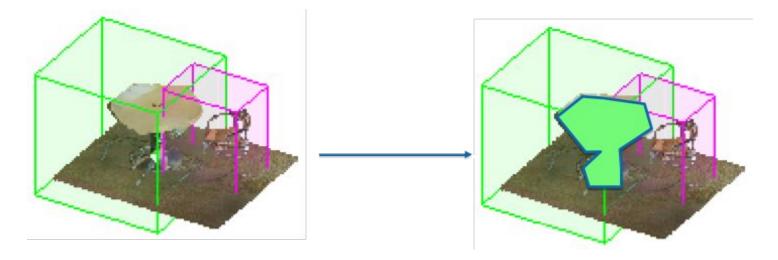
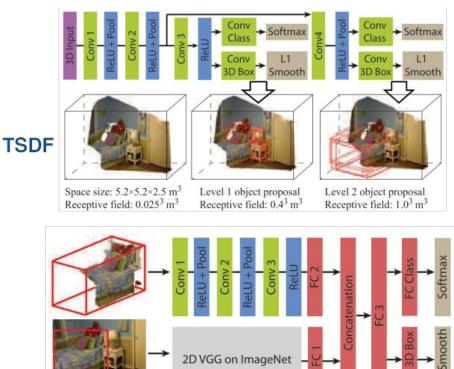


Figure from "Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds", NIPS 2019

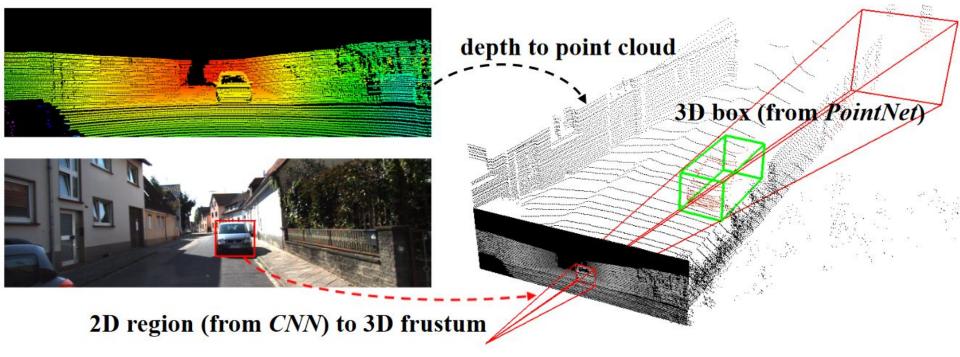
Volumetric R-CNN

Stage1: 3D Region Proposal Network



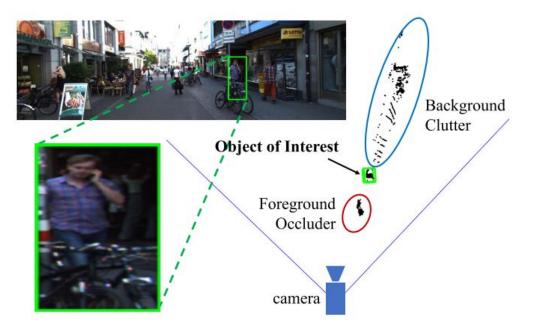
Song et al., "Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images", CVPR 2016

View-based: Generate object proposals from a view (e.g., using SSD)



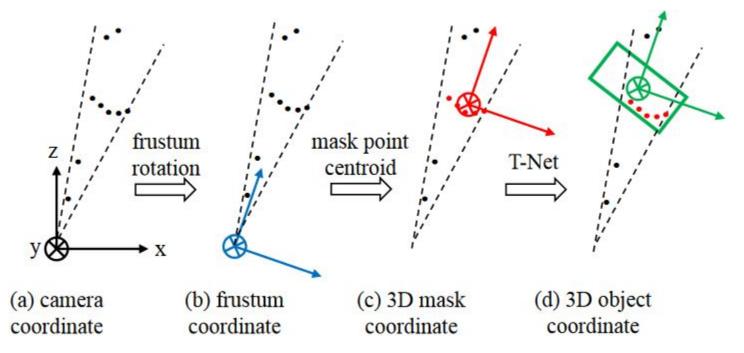
Qi et al., "Frustum PointNets for 3D Object Detection from RGB-D Data", CVPR 2018

View-based: FG/BG segmentation



Qi et al., "Frustum PointNets for 3D Object Detection from RGB-D Data", CVPR 2018

View-based: Perspective variation \rightarrow normalization

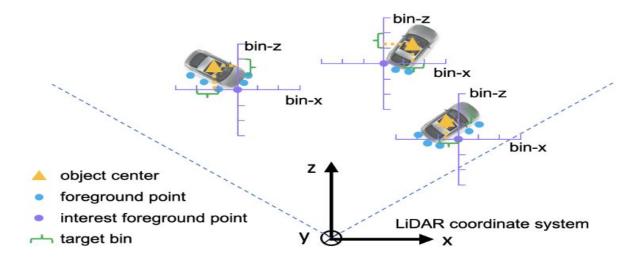


Qi et al., "Frustum PointNets for 3D Object Detection from RGB-D Data", CVPR 2018

Point-based Proposal:

Stage 1: FB/BG seg to generate 3D proposal

Stage 2: Refine



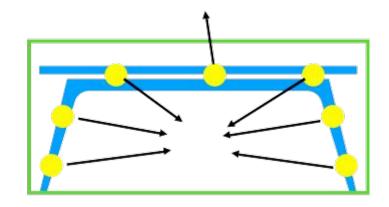
Shi et al., "PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud", CVPR 2019

Proposal from Voting:

How to get 3D object centroid can be far be from any surface point?

Sample a set of seed points and generate votes

Voting from input point cloud

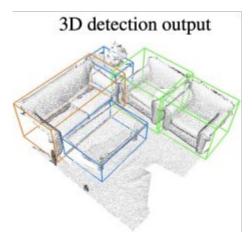


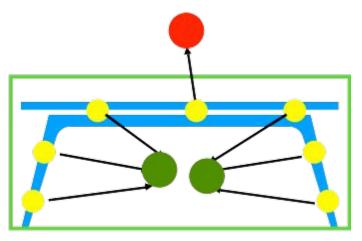
Qi et al., "Deep Hough Voting for 3D Object Detection in Point Clouds", ICCV 2019

Proposal from Voting:

How to get 3D object centroid can be far be from any surface point?

Sample a set of seed points and generate votes

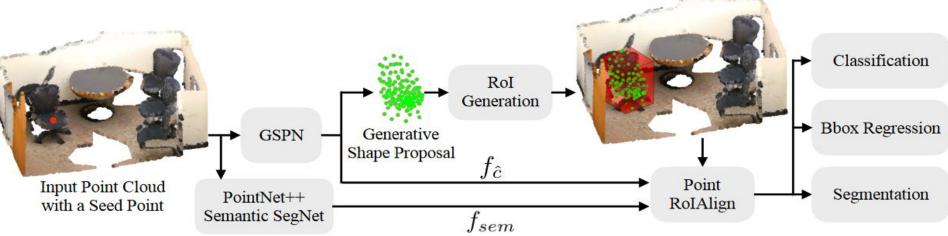




Qi et al., "Deep Hough Voting for 3D Object Detection in Point Clouds", ICCV 2019

Proposal from Generative Network:

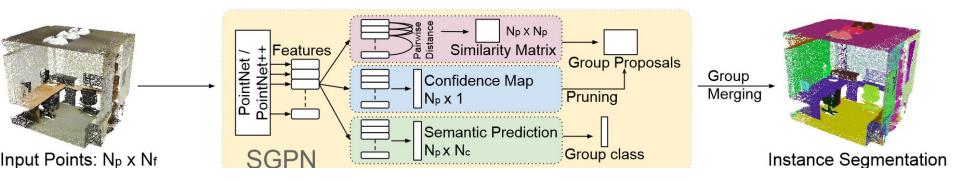
- Randomly sample seeds points
- Use conditional VAE to generate a point cloud as proposal
- Convert the proposal to an ROI box



Yi et al., "GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud", CVPR 2019

Associative Embedding:

- Learn a per-point embedding
- Points from the same instance have similar embeddings
- Clustering gives proposals

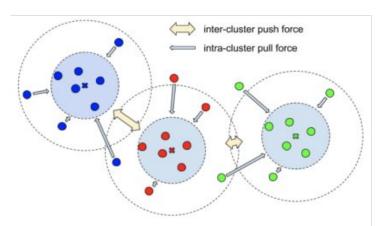


Wang et al., "SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation", CVPR 2018

JSIS3D:

• A discriminative function to present the embedding loss

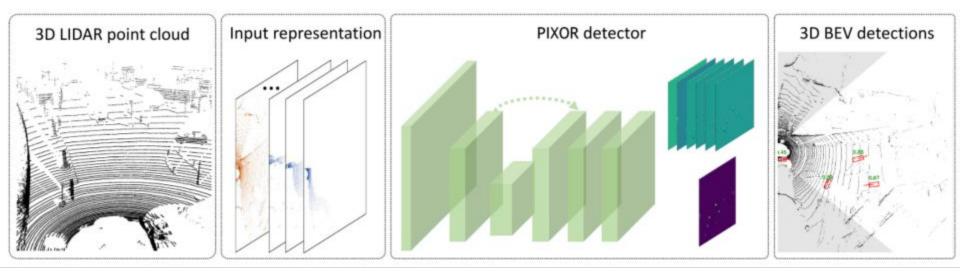
 $\mathcal{L}_{embedding} = \alpha \cdot \mathcal{L}_{pull} + \beta \cdot \mathcal{L}_{push} + \gamma \cdot \mathcal{L}_{reg}$



$$\mathcal{L}_{pull} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{j=1}^{N_k} \left[\|\boldsymbol{\mu}_k - \mathbf{e}_j\|_2 - \delta_v \right]_+^2$$

Pham, Q Hieu, et al. "JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with CRF.", CVPR 2019

BEV (bird-eye view):



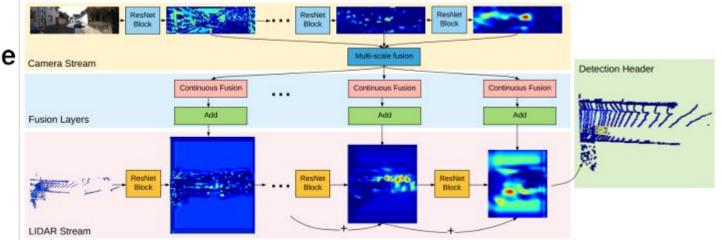
HxWxD voxels HxW image with D channels

Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point clouds." CVPR 2018

BEV (bird-eye view): ContFuse

Image feature network: 2D image

BEV network: 3D voxel (HxWxC)

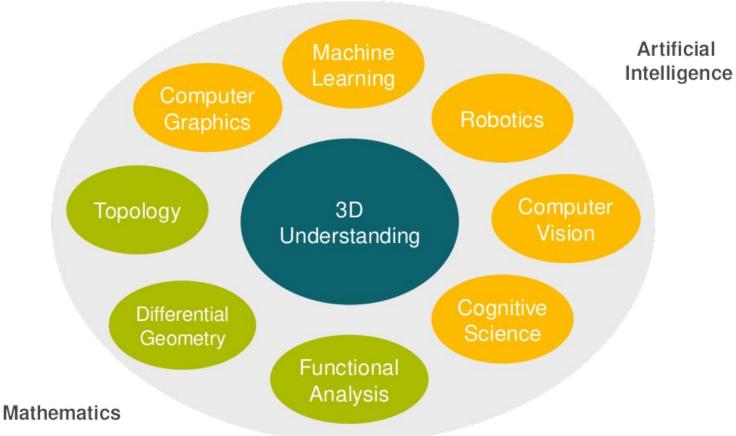


Liang, Ming, et al. "Deep Continuous Fusion for Multi-Sensor 3D Object Detection." ECCV 2018

Content

- 1. Preliminary ideas on DL
- 2. Why 3D data with deep learning?
- 3. Classification
- 4. Segmentation
- 5. Perspectives

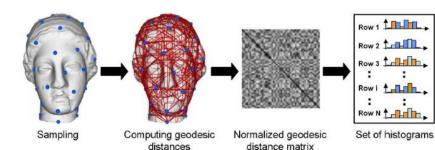
Now happening!

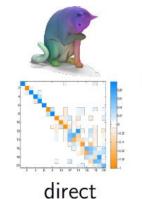


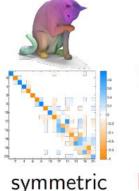
GeometricDL

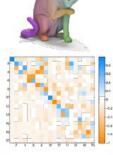
- Intrinsic/geod/R shape feature
- Heat kernel maps
- Laplacian map
- Spectral CNN
- Spectral synch

Functional Map C1









head to tail

References

- 1. <u>http://deeplearning.org</u>
- 2. <u>https://distill.pub/</u>
- 3. http://3ddl.stanford.edu/
- 4. https://github.com/NVIDIAGameWorks/kaolin
- 5. http://ai.ucsd.edu/~haosu
- 6. https://geoml.github.io/
- 7. <u>https://pytorch3d.org/</u>
- 8. <u>https://github.com/intel-isl/Open3D-ML</u>
- 9. https://www.shapenet.org/
- 10. https://modelnet.cs.princeton.edu/

Thank you!

Levente.Tamas@robotics-ai.org