
Deep learning for 3D data
Levente Tamas

With slides adapted from H. Su and IB Shabat



Content

1. Preliminary ideas on DL

2. Why 3D data with deep learning?

3. Classification

4. Segmentation

5. Perspectives



Content

1. Preliminary ideas on DL

2. Why 3D data with deep learning?

3. Classification

4. Segmentation

5. Perspectives



1. Short introduction to DL

1.1. Motivation

1.2. Neuronal networks

1.3. Optimization details

1.4. Convolutional neural networks

1.5. Recurrent neural networks



1.1 Motivation

● Subset of AI (see fig)
● Universal approx. of nonlinear functions (Hornik 1991) 
● Significant results in

○ Image processing
○ Speech reco
○ NLP

● Different types:
○ Multilayer perceptrons
○ Convolutional Neural Networks (CNN)
○ Recurrent Neural Networks (RNN)

● Main reference book: 

http://www.deeplearningbook.org/
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1.1 Motivation

Demystification:

What is not?



1.1 Motivation

Evolution of the state of the art performance in 2D classification:



1.2 Neuronal networks
Artificial neuron with params θ, input x:                       → nonlinear optimization

More generally:

With    being the activation function, e.g
● Identity

● Rectified Linear Unit (ReLU)

● Sigmoid

● Softmax

Schematic representation of: 



1.3 Multilayer perceptron (MLP)

Several interconnected hidden layers + I/O

No connection between neurons on the same layer

The activation     at the O layer:

● Regression
● Classification (e. softmax)

Summary of L hidden layers, with 



1.3 Multilayer perceptron (MLP)



1.3 Optimization details

Loss function - how to minimize?

● Expected loss

● For Gaussian models, 

● For binary cae

● For K classes



1.3 Optimization details

Stochastic gradient descent

B is a subset of cardinality m called batch. An iteration over the dataset is called 
epoch and with a learning rate 



1.3 Optimization details

About the learning rate:



1.3 Optimization details

Dropout (Hinton, 2012)

Increase generalization

Used with

● Data augmentation
● Adversarial examples



1.3 Optimization details

About data normalization



1.4 CNN

MLP not easy to adopt for 2D(3D) data → transform it into some feature vectors

Vectors → how to conserve the spatial relations?

CNN (LeCun, 1998) → automatic vector extraction



1.4 CNN - convolution operator

Definition for * on function f and g:

For 2D(I) data kernel K is used: 



1.4 CNN - convolution operator

Example

Pooling (no padding)



1.4 CNN - common architectures

E.g Alexnet



1.4 CNN - common architectures - description

Alexnet

Code:



1.4 CNN - common architectures

VGG

More to be found on ModelZoo from Nvidia.



1.4 CNN - evolution of depth

Reduction of params

Increase of depth

Pruning networks

Targeted devices (TRT)



1.5 RNN & LSTM

RNN (Jordan, 1990): information from past as well
LSTM (Schmidhuber, 1997): special form of RNN

Slightly more complex internal structure as in case of RNN:

C Olah.



1. Summary

Promising research direction

Stay tuned!

Good starting point: 
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3D DL

World is in 3D...



Motivation



2D, 2.5D, 3D ?

From 2D to 3D



DL for 3D?



Now happening



Motivation - lack of data/model ~10 years ago



Motivation - plenty of data/model today
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3D deep learning tasks

3D geometric analysis

3D assisted image analysis

3D synthesis



3D representation for DL

2D images: uniqueness in representation, plays well with * operator

Unordered point clouds → not that easy!



3D representation for DL - some 2D analogy

Order is still critical!



3D representation for DL

3D representation 

● Multiview 2D images
● Volumetric
● Poly Mesh
● Point cloud
● Primite based

Rasterized (grid)→ direct2D, with 
challenges

Geometric relation (irregular) → 
directly CNN
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3D representation for DL - references



3D representation for DL - tools
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Classification

Multi-view CNN

Volumetric CNN

Point nets

Spectral convolution



Classification: Multi-view CNN

Render with Multiple Virtual Cameras

Su et al., "Multi-view Convolutional Neural Networks for 3D 
Shape Recognition”, ICCV 2015



Classification: Multi-view CNN

Images are Passed through CNN1 for Image Features



Classification: Multi-view CNN

All Image Features are Combined by View Pooling



Classification: Multi-view CNN

and then Passed through CNN2 and to Generate Final Predictions



Classification: Multi-view CNN

Experiments – Classification & Retrieval



Classification: Multi-view CNN

Summary

● Gives good performance

● Can leverage vast literature of image classification

● Can use pertained features

●

● What if the input is noisy and/or incomplete? e.g., point cloud



Classification: Volumetric CNN

Main ideas:

● Use CNN without explicit 3D-2D projection

● Make use of 3D native convolution (aka 4D CNN)

● Represent the occupied space with voxel grids



Classification: Voxelization

Represent the occupancy of regular 3D grids



3D CNN on Volumetric Data

3D convolution uses 4D kernels



Complexity issues

Compared with 2D cases



Complexity issues

What about information loss?



Basic idea: learn to project

By ray tracing and 2D CNN low param number/low runtime is obtained



Voxel vs occupancy grids

● Store the sparse surface signals
● Constrain the computation near the surface



Optimized variant: octree

8 (oct) leaves for each node. Searching very efficient.



Memory efficiency

SparsconvNet → designed for octree representation



Classification: Voxel CNN

Voxnet

Reco with occupancy grid → prior in robotics

R invariant features + data augmentation

Efficiency

Drawback: only small grids/voxels

Maturana et al. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS. 2015.



Classification: Voxel CNN

Voxnet - demo

Maturana et al. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS. 2015.

http://www.youtube.com/watch?v=KAB11FrQz_Q


Classification: Point networks



Directly Process Point Cloud Data

End2end learning for:

● Unstructured
● Unordered 

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation”, CVPR 2017



Ensure permutation invariance

Point cloud: N odorless points, each represented by a D dim coordinate



Ensure permutation invariance

Point cloud: N odorless points, each represented by a D dim coordinate

How to cope with this?

represents the same set as 

2D array representation



Construct a Symmetric Function

                                                                            Is symmetric if g is symmetric
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PointNet: geometric transform invariance

Solution: use some simple transform nets (T-Net)

Transform: → matrix multiplication

Dimension (e.g. 3) can be arbitrary for data
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PointNet: architecture

Composition of T-Nets
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PointNet: architecture

Composition of T-Nets



PointNet: results
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PointNet: results

Scene parsing



Limitations of Pointnet

● No local context for each point!
● Global feature depends on absolute coordinate. 
● Hard to generalize to unseen scene configurations!



PointNet v2.0: Multi-Scale PointNet

Repeat

● Sample anchor points
● Find neighborhood of anchor points
● Apply PointNet in each neighborhood to mimic convolution



Point Convolution As Graph Convolution

● Points -> Nodes
● Neighborhood -> Edges
● Graph CNN for point cloud processing

Wang et al., “Dynamic Graph CNN for Learning on Point Clouds”, Transactions on Graphics, 2019



CNN are not aware of geometry

● Points sampled from surfaces
● Lack of sample invariance addressing (e.g. Lidar data)

Solution: Estimate the continuous kernel and point density for continuous 
convolution



Mathematically Proper Conv. Discretization

● Continuous conv: 

● Empirical conv: 

Thomas et al., “KPConv: Flexible and Deformable 
Convolution for Point Clouds”, ICCV 2019



Deformable Kernel for Deformable Objects

● Deformable point-based kernel
● The 3D version of 2D deformable convolution

Thomas et al., “KPConv: Flexible and Deformable 
Convolution for Point Clouds”, ICCV 2019



Classification: Spectral CNN



Classification: Spectral CNN

● Convolution done in the spectral domain

● Kernels are also built in spectral domain

● Activation done in the spatial domain

Needs to be a differentiable manifold!

Masci et al., “Geometric deep learning on graphs and manifolds 
using mixture model CNNs”, CVPR 2017



Spectral CNN: obtain fourier basis

Derived by eigenfunctions of self-adjoint operators, e.g. Laplacian-Beltrami 

Masci et al., “Geometric deep learning on graphs and manifolds 
using mixture model CNNs”, CVPR 2017



Fundamental Challenge of Spectral CNN

● If the shapes to compare are not isometric, their spectral domains are not aligned
● Function bases are derived by Laplacian operator, which is geometry dependent

Yi et al., “SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation”, CVPR 2017



A Special Case: Spherical CNN

● If the surface is always a SPHERE, no worry about the functional space 
alignment anymore

● Generate a spherical representation

● Do Spherical CNN
○ Has numerical tricks exploiting the symmetry of sphere

Cohen et al., “Spherical CNN”, ICLR 2018
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Segmentation Detection

Semantic segmentation



Encoder-Decoder: sparse conv

Graham, Benjamin, Martin Engelcke, and Laurens van der Maaten. "3d semantic segmentation with submanifold 
sparse convolutional networks." CVPR 2018.

Choy, Christopher, et al. “4D Spatio-Temporal Convnets: Minkowski Convolutional Neural Networks.” CVPR 2019



Encoder-Decoder: upsampled pointnet

Upsampled pcd features interpolating

from 3 nn poins

Qi, Charles R., et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.”, NeurIPS 
2017



Multimodal approach

● Backproject 2D features to 3D 
voxels

● Apply voxel-wise max-pooling 
across multiple views

● Fuse 2D and 3D features at the 
intermediate level

Dai, Angela, and Matthias Nießner. "3dmv: Joint 3d-multi-view prediction for 3d semantic 
scene segmentation.”, ECCV 2018



Segmentation with X-conv



Segmentation with X-conv



Segmentation: Instance-level Understanding 



Task: 3D Detection & Instance Segmentation

● General
○ Sliding shape
○ 3D-SIS
○ Frustum PointNet
○ Point R-CNN
○ VoteNet
○ GSPN
○ SGPN
○ JSIS3D

● BEV
○ ContFuse
○ PointPillar
○ Second

Bottom-up approach
To wich object belongs this point?

T
op-bottom approach

What object is in the pcd?



Segmentation: top-down approaches

Sliding Shapes

Song et al., “Sliding Shapes for 3D Object Detection in Depth Images”, ECCV 2014



Segmentation: top-down approaches

From Box to Instance Segmentation

Figure from “Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds”, NIPS 2019



Segmentation: top-down approaches

Volumetric R-CNN

Song et al., “Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images”, CVPR 2016



Segmentation: top-down approaches

View-based: Generate object proposals from a view (e.g., using SSD)

Qi et al., “Frustum PointNets for 3D Object Detection from RGB-D Data”, CVPR 2018



Segmentation: top-down approaches

View-based: FG/BG segmentation

Qi et al., “Frustum PointNets for 3D Object Detection from RGB-D Data”, CVPR 2018



Segmentation: top-down approaches

View-based: Perspective variation → normalization

Qi et al., “Frustum PointNets for 3D Object Detection from RGB-D Data”, CVPR 2018



Segmentation: top-down approaches

Point-based Proposal: 

Stage 1: FB/BG seg to generate 3D proposal

Stage 2: Refine

Shi et al., “PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud”, CVPR 2019



Segmentation: top-down approaches

Proposal from Voting: 

How to get 3D object centroid can be far be from any surface point?

Sample a set of seed points and generate votes

Qi et al., “Deep Hough Voting for 3D Object Detection in Point Clouds”, ICCV 2019
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Segmentation: top-down approaches

Proposal from Generative Network: 

● Randomly sample seeds points
● Use conditional VAE to generate a point cloud as proposal
● Convert the proposal to an ROI box

Yi et al., “GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud”, CVPR 2019



Segmentation: bottom-up approaches

Associative Embedding: 

● Learn a per-point embedding
● Points from the same instance have similar embeddings
● Clustering gives proposals

Wang et al., “SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation”, CVPR 2018



Segmentation: bottom-up approaches

JSIS3D: 

● A discriminative function to present the embedding loss

Pham, Q Hieu, et al. “JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with CRF.”, CVPR 2019



Segmentation: bottom-up approaches

BEV (bird-eye view): 

Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point clouds." CVPR 2018



Segmentation: bottom-up approaches

BEV (bird-eye view): ContFuse

Liang, Ming, et al. “Deep Continuous Fusion for Multi-Sensor 3D Object Detection.” ECCV 2018
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Now happening!



GeometricDL

● Intrinsic/geod/R shape feature
● Heat kernel maps
● Laplacian map
● Spectral CNN
● Spectral synch
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Thank you!

Levente.Tamas@robotics-ai.org


