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Abstract—The current paper presents a method for automatic 

segmentation of potentially malignant abnormalities in 2D 

mammographic images based on pixel level classification using 

convolutional neural networks (CNN). Experiments were 

performed for masses segmentation by training U-Net models on 

the CBIS-DDSM dataset using original algorithms for data 

preprocessing in order to obtain an augmented and balanced 

training dataset and post-processing for semiautomatic 

evaluation. In terms of masses detection rates, a FPPI (False  

Positive Per Image) rate of 3.65 and a sensitivity (True  Positive 

Rate – TPR) of 0.77 were obtained on the whole test data set, 

which are closed to the ones reported in the literature, proving 

that the proposed method has the potential to be integrated in 

mammography CAD applications for assisting screening 

programs in which the a main goal is a high true positive rate  

and a small false negative rate.  

Keywords – 2D mamograms; preprocessing; segmentation; 

automatic masses detection; deep learning; convolutional neural 

networks 

I.  INTRODUCTION 

Breast cancer is one of the main diseases that affect 
women’s life and is amongst the main causes of death related 
to cancer, if not discovered in the early stages. The pathology 
has an asymptomatic early phase that can be detected through 
mammography. The WHO (World Health Organization) 
concluded that 23% of cancers are breast cancer and 14% lead 
to death [1]. 

The main hardship in the detection of potentially malignant 
abnormalities (especially masses and micro-calcifications) is   
due to the acquisition process of the 2D mammograms 
(digitalized or film),  meaning that a 3D structure is projected 
on a 2D plan, which leads to increased noise due to tissue 
overlapping, especially for dense glandular tissues. Therefore, 
10% to 15% of cancers are invisible on mammograms, as the 
dense glandular tissue might hide 30%-50% of cancers [2]. 

The double interpretation (independent and simultaneous 
visualization of the mammograms by two radiologists) has 
been enforced as a standard in most of the screening programs, 
thus decreasing false-negatives detection [3]. This technique 
requires more time and additional expenses, as a digitized 
mammogram usually averages above 10 megapixels. 

As an alternative to double blind interpretation, computer 
tools such as CADe (Computer- Aided Detection) or CADx 
(Computer Aided Diagnostics) can be used to provide a second 
opinion when mammograms are interpreted by a single 
radiologist.  Amongst the limitations of these methods we 
mention: the high detection rate of false positives for CADe [4] 
or their limited-acceptance in clinical practice for CADx [5]. 
Most of the 2D mammography CAD Tools  (3D 
mammography [6] is not the subject of the current paper due to 

limited access to such a technology) are able to detect 
abnormalities (as masses and calcification) based on traditional 
pattern recognition and machine learning algorithms as  [7], 
[8], and [9] and are focused on reducing the false negative 
detection rate. Only a few tools such as ProFound AI, and 
SecondLook from iCAD [10] claim to use state of the art 
approaches based on Artificial Intelligence (AI) and Deep 
Learning (DL). 

Recently, deep learning methods based on convolutional 
neural networks (CNN) have proven superior performance, 
including the medical imaging field. Instead of manually 
selected mathematical or heuristic features, these algorithms 
can automatically generate discriminative features at different 
levels of abstraction. 

A hybrid mass classification method that combines feature 
extraction with a CNN network and a traditional SVM type 
classification method is presented in [11]. As training dataset 
for the neural network, the INbreast[12] data set was used, 
containing both mammograms digitized from films with a 
color depth of 8 bits/pixel and digital mammograms (16 
bits/pixel). In [13] and [14] a method for mass detection is 
presented in several stages: in the first phase hypotheses are 
generated through a hybrid approach in which deep 
convolutional networks cascade with random decision tree 
type classifiers, followed by a segmentation stage based on 
deep learning models and a refinement stage using ”level-set” 
methods. The authors report a true positive detection rate TPR 
= 0.96 at 1.2 FPPI (false positive per image) on the INbreast 
data set and TPR = 0.75 at 4.8 FPPI on the DDSM-BCRP data 
set [15]. 

A mass segmentation method that combines FCN (Fully 
Convolutional Networks) with the CRF method (Conditional 
Random Fields) and the contradictory learning technique 
(adversarial learning) is presented in [16].  The authors present 
comparative results obtained on the INbreast and DDSM-
BCRP datasets between the various combinations of the three 
techniques used and other methods from the CNN-based 
literature. A method for mass detection is presented using a 
RetinaNet type deep convolutional network in [17]. The 
authors also use the transfer learning technique by which the 
weights of the network are pre-trained on one dataset and used 
in training and testing on another dataset. The authors also 
present a comparative analysis in terms of the FPR vs. FPPI 
metric of their own method in the context of the transfer 
learning technique on the INbreast dataset and on GURO 
dataset (their own data set), as well as compared with other 
segmentation methods based on deep networks or traditional 
methods on different datasets (INbreast, DDSM). In [18], a 
method for masses and micro-calcifications segmentation 
using dedicated neural network architectures (AlexNet,  
VGGNet,  GoogleNet,  ResNet) is presented. For each type of 



network,  a pixel classification model with 3 classes (normal,  
mass or calcification) was trained using the CBIS-DDSM 
dataset [19], with patches of size 224x224 extracted from the 
native resolution images around abnormalities marked in the 
binary masks (Ground Truth - GT), augmented by rotations and 
random mirroring operations. The predictions were made using 
the Class Activation Mapping (CAM) technique [20]. The 
authors reported a maximum accuracy of 92.42% on 
calcifications for the VGGNet architecture, a maximum 
accuracy of 95.06% on masses for the GoogleNet architecture 
and a maximum overall accuracy of 92.53% for VGGNet 
architecture without mentioning whether the evaluation was 
done at pixel or abnormality levels. 

In the current paper a generic method for automatic 
segmentation of potentially malignant abnormalities in 2D 
mammographic images based on the deep learning paradigm is 
proposed. The method is generic and can be applied for the 
detection of both type of abnormalities: masses and 
calcifications. However in the current paper only experiments 
and results for masses segmentation are presented. 

A preprocessing step of the training data set is proposed 
that provides  2nx2n size (n configurable) image patches (ROIs), 
centered around the annotated GT (Ground Truths) from the 
training dataset. In order to prevent over-fitting, data 
augmentation is performed by generating an additional set of 4 
images cropped for the same binary mask, where the centers of 
the 2nx2n ROIs are shifted by a random value.  

For the abnormalities segmentation a pixel level 
classification model based on the U-Net CNN architecture is 
trained on the downscaled ROIs (by a ratio of 4). Different 
variations of the model were tested by modifying the loss 
function type (binary cross-entropy, dice coefficient loss) and 
its metrics (accuracy, dice coefficient). To increase the trained 
model’s performance balancing the training set is performed 
by giving different weights to black and white pixels (there are 
several times more black pixels compared to white pixels in the 
training images). 

For the image segmentation step, the test images are 
divided in patches of the same resolutions (2nx2n ROIs further 
down sampled by a ratio of 4) using a non-overlapping sliding 
window scheme. The prediction map is generated by applying 
the inference with the obtained models for each patch and the 
full test images are resembled from the binarized predictions. 

For evaluation of the results, both pixel level segmentation 
and abnormalities level detection rates are estimated in a semi-
automatic manner. 

II. THE ARCHITECTURE OF THE PROPOSED 

SEGMENTATION METHOD 

The architecture of the proposed method is presented in 
figure 1. The architecture is generic and can be duplicated for 
both types of abnormalities detection: masses and 
calcifications. A publicly available dataset (CBIS-DDSM [19]) 
that contains digitized film mammograms was used for training 
the pixel level classification models. Deep learning models 
based on the U-Net Convolutional Neural Network (CNN) 
architecture were trained and tested. 

The system is composed of an off-line phase for training 
the models and an on-line phase to generate the prediction map 
for the images from the test set. Processing sequences are the 
same for both types of abnormalities, but the training process 
is conducted on different set of images and are as follows: 

 
Figure 1.  Architecture of the proposed method. 

The main steps of the method are: 

1. Preparing the dataset for the training phase 

2. Training the pixel level classification models  

3. Preprocessing the test dataset in a similar manner as the 

training set 

4. Segmentation phase: generating the prediction map for 

the pixel level segmentation on the test images. 
 

III. AUTOMATED MASSES SEGMENTATION 

A. Data preprocessing 

 
The CBIS-DDSM [19] dataset contains training and testing 

data for two types of abnormalities: masses and calcifications.  
The images are kept in DICOM files and are structured 
compliant to the standard [27]: Calc-Test Full Mammogram 
Images (DICOM), Calc-Test ROI and Cropped Images 
(DICOM), Calc-Training Full Mammogram Images 
(DICOM), Calc-Training ROI and Cropped Images (DICOM), 
Mass-Test Full Mammogram Images (DICOM), Mass-Test 
ROI and Cropped Images (DICOM), Mass-Training Full 
Mammogram Images (DICOM) and Mass-Training ROI and 
Cropped Images (DICOM). 

The ”Training Full” folders contain grayscale images 
(16bits/pixel) with the original mammogram. ”Training ROI 
and Cropped” contain files with the binary mask having the 
abnormality marked (8 bits/pixel) and the grayscale image of 
the rectangular region of interest (ROI) that bounds the 
abnormality which has no use for our method and are 
discarded. Most of the binary masks and grayscale ROIs are in 
the same folder in the folder tree, and their numbering (000000 
or 000001) is random, the only way to differentiate them being 
the field that holds the information regarding the number of bits 
per pixel. There have been solitary cases where the binary mask 
and the ROI were in the same parent directory, but in different 
subfolders. There is a possibility for a ”Full” mammographic 
image to have many abnormalities, which leads to multiple 
binary masks images. For the test dataset there is an analogous 
structure for ”Test Full” and ”Test ROI and Cropped”. 

An algorithm was used to restructure the datasets, with the 
following steps: 

• Parsing the folder tree for the abnormality (masses or 
calcifications); 

• Renaming the images with distinct names  which  index  
the  patient’s  case  identifier (*F XXXXXX*.dcm for 
the ”Full” images, M XXXXXX*.dcm for the binary 
masks), structured in folders that are abnormality 
specific and phase specific (training, testing) ; 

• Deleting the solitary cases where the ”Full” image and 
the binary mask have different spatial dimensions. 

On the 1253 images with distinct annotated mass regions 
available in the training dataset, there have been done some 
preprocessing steps, with the main purpose of selecting the 
region of interest (ROI) that will be fed to the network, together 
with the corresponding binary mask, in the training process. 



The idea behind the process implies that a rectangle that 
bounds the abnormality in every binary mask and its center 
point are found. Then, an image of size 2nx2n pixels is cropped 
from both the binary mask and from the corresponding ”Full” 
grayscale  image,  trying  to center it in the bounding 
rectangle’s center. If the 2nx2n ROI image extends outside the 
border of the binary mask and its corresponding grayscale 
image, the 2nx2n ROIs are cropped as much as the border 
allows, keeping the abnormality as much as possible contained 
in the cropped image.  

This results in a 2nx2n binary mask containing only the 
abnormality, and then the corresponding grayscale ROIs 
cropped from the ”Full”  image. For data augmentation and to 
prevent overfitting, an additional set of 4 images are cropped 
for the same binary mask, where the center of 2nx2n ROI is 
shifted by a random value, as seen in figure 2. 

Before passing the data to the training process, the 2nx2n 
images are downscaled by a ratio of 4 in order to avoid 
overloading the hardware resources used in the training process 
(single RTX 2080 Ti GPU) and the pixel intensities are 
normalized to the [0..1] interval  

The pseudo-code for the binary-mask and corresponding 
grayscale ROI pairs generation process for each abnormality is 
presented below: 

 
I. For each mask in binary_masks: 

a. Read the corresponding grayscale_image 
b. If mask.dimensions==grayscale_image.dimensions  

and patch_dim < dimensions:  
1. Bounding_rect = get_abnormality_contour (from 

mask)  
2. Get Bounding_rect center 
3. Crop a square region of patch_dim size around the 

center  
4. Crop other random_images (4, for the proposed 

method) - square regions, where the center from (3) 
is moved by a random offset 

5. Apply the same cropping to the grayscale 
counterpart for each patch cropped from the binary 
mask  

6. Save the cropped ROI and mask patches 

 
 

 
a. Centered mask 

 
b. Mask at random offset 1 

 
c. Mask at random offset 2 

 
d. Mask at random offset 3 

 
e. Mask at random offset 4 

 
f. Centered grayscale ROI 

 
g. Grayscale ROI at offset 1 

 
h. Grayscale ROI at offset 2 

 
i. Grayscale ROI at offset 3 

 
j. Grayscale ROI at offset 4 

 
Figure 2.  Ilustration of binary-mask and grayscale ROI pairs genereation process for each abnormality from the training dataset.  

 
 

B. Training the pixels classification model 

The architecture that has been used for the training process 
is U-Net [22] (presented in figure 3), which is based on an 
”encoder-decoder” architecture, with 7 encoding and 7 
decoding layers (including the final output layer). The main 
operation that supports a Convolutional Neural Network 
(CNN) is the convolution, which downscales the size of the 
image and leads later on to activation maps. These are then 
processed and transformed using nonlinear functions (usually, 
Rectified Linear Unit (ReLU) activation functions). 

This U-net model has 91.238.241 trainable parameters and 
24.256 non-trainable ones. Different variations of the model 
were tested by modifying the loss function type (binary cross-
entropy, dice coefficient loss) and its metrics (accuracy, dice 

coefficient). The optimizer used was Adam and the network 
was set to train for a maximum of 100 epochs, with a batch size 
of 8. The initial number of output filters of the convolution was 
32. Another important factor that contributed to the 
performance increasing the of the trained model was balancing 
the training set (giving different weights to black and white 
pixels, taking into account that there are several times more 
black pixels compared to white pixels). The initial training set 
was split into training and validation with a ratio of 85% to 
15%, resulting in 5325 training samples and 940 validation 
samples. Besides the centered abnormality, each image fed to 
the network also had another four counterparts where the center 
of the rectangle bounding the abnormality has been moved by 
a random offset, as presented in section III.A. This step 
represents the augmentation applied on the initial 1253 images. 



 
Figure 3.  U-Net Architecturere for training patches of size of 256x256 obtined by downsampling 1024x1024 ROIs. 

In the following the accuracy and the loss of the trained 
models as provided by Tensoarboard[23] vs. the number of 
epochs used for training is presented for both training and 
validation sets. 

Figure 3 indicates the accuracy of the model on the training 
set and on validation set respectively, while figure 4  shows the 
loss of the model  on the training set and on validation set. The 
different colors on the graph stand for how the model has been 
performing during the training and are as follows: 

 Orange: [0..1] normalization for input images, with 
binary crossentropy as the loss function  

 Cherry-colored: [0..1] normalization, binary 
crossentropy with a dropout value of 0.25 

 Light-blue [0..1] normalization, binary crossentropy 
and dice coefficient as loss functions , with a dropout of 
0.25 

 Pink:   same as above,  with some minor tweaks 
regarding the dropout value and number of 
convolutions in the “decoder” layer  

 Dark-blue:  [0..1] normalization, dice coefficient as 
loss function

 

 

 

Figure 4.  Accuracy vs. training epochs: a. Training set; b. Validation set 



 

 

Figure 5.  Loss vs. training epochs: a. Training set; b. Validation set 

IV. EXPERIMENTAL RESULTS AND EVALUATION 

A. Pixel level segmentation accuracy 

For the validation of the pixel level segmentation, the most 
common evaluation metric was used: Intersection over 
Union[28]. 

Intersection over Union, or the Jaccard index is a statistic 
used for gauging the similarity and diversity of sample sets. 
The Jaccard index measures similarity between finite sample 
sets, and is defined as the size of the intersection divided by the 
size of the union of the sample sets: 

𝐽(𝑋, 𝑌) =
|𝑋∩𝑌|

|𝑋∪𝑌|
=

|𝑋∩𝑌|

|𝑋|+|𝑌|−|𝑋∩𝑌|
  (1) 

The Sørensen–Dice coefficient can be used instead of the 
Jaccard index, which is defined as follows: 

𝐷𝑆𝐶(𝑋, 𝑌) =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
=

|𝑋∩𝑌|

|𝑋−𝑌|+|𝑌−𝑋|+2|𝑋∩𝑌|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (2) 

In the case of mammograms segmentation, the set Y can be 
considered to be the set of object pixels from the ground truth 
(GT) mask, while X can represent the pixels from the 
prediction mask, that have binarized with an adequate 
threshold. The Dice index can be computed as follows: 
1. Binarize the prediction matrix; 
2. Intersect the ground truth (GT) matrix with the binarized 

prediction matrix by applying a logical AND operator and 
compute the cardinality of the intersection (TP); 

3. Make the union between GT and the binarized prediction 
matrix by applying a logical OR operator and compute the 
cardinality of the reunion (TP + FP + FN); 

4. Compute the Dice index with the following formula: 
 

𝐷𝑆𝐶(𝑋, 𝑌) =
2∗𝑇𝑃

𝑇𝑃+(𝑇𝑃+𝐹𝑃+𝐹𝑁)
=

2∗𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑖𝑜𝑛

𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛+𝐴𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛
 (3) 

This operation can be automated for the entire test dataset 
by simple or weighted addition (running average), of the two 
type of areas: 

𝐷𝑆𝐶̅̅ ̅̅ ̅̅ (𝑋, 𝑌) =
2∗∑ 𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑁
1

∑ 𝐴𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑁
1 +∑ 𝐴𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛

𝑁
1

  (4) 

For evaluating the segmentation algorithm on a different set 
of images, the test set provided in the CBIS-DDSM [19] was 
used, containing 348 grayscale images and 365 binary masks. 
The inference function was computed on patches extracted 
from the full-sized images by a non-overlapping sliding 
window scheme (2nx2n patches down-sampled afterwards by a 
ratio of 4). One important fact is that if a patch has the mean of 
the pixels intensities lower than an empirical value (meaning 
that there is mostly black in that patch), that patch will not be 
given to the network for the inference (see examples from 
figure 6.c). Furthermore, the average intensity of a left and 
right side strip of the grayscale image was computed to 
determine on which part the breast appears. Finally the 
prediction obtained for each patch is binarized and reassembled 
in the full sized segmented image. 

The pseudo-code for the inference algorithm is presented 
below: 

 
I. For each image in grayscale_images:  

a. Compute means in left and right area of image  
b. If left_mean >= right_mean:  

1. Crop image from left to right to have a round 
number of patches on image width  

2. Crop image at the top and bottom to have a round 
number of patches on image height 

c. Else:  
1. Crop image from right to left to have a round 

number of patches on image width  
2. Crop image at the top and bottom to have a round 

number of patches on image height  



d. Resize each cropped image and normalize the values 
between [0..1] (for prediction) 

e. Nr_of_imgs_width := image_width / 

training_patch_dim  
f. Nr_if_imgs_height := image_height / 

training_patch_dim  
g. x_start = 0, y_start = 0 
h. Initialize(y)  
i. Initialize prediction_mask to a black image  
j. For j in (0..nr_of_imgs_height):  

1. Initialize(x)  
2. For i in (0..nr_of_imgs_width): 

i. Crop a square of size training_patch_dim 
ii. Compute mean, min, max of the region  
iii. If (mean => threshold) and (max – min >0):  

- pred_mask_part=model.predict(patch) 
- prediction_mask = or (prediction_mask, 

pred_mask_part) 
iv. update(x) 

3. Update(y) 
k. Save the prediction_mask 
 
The obtained IoU and Dice metrics computed at pixel level 

on the segmented images are presented in Table 1:  

TABLE I.  TABLE TYPE STYLES 

 IoU DSC 

Pixel level segmentation (entire 

test dataset) 
0.17 0.29 

Pixel level segmentation (only at 

the GT true positives) 
0.534 0.699 

 
The first line is the evaluation on the entire test data set and 

the obtained low rates are due to the high false positives rate of 

the pixel level segmentation.  The second line of the table was 
computed only at the true positives level (existing 
abnormalities), meaning that it shows the accuracy of the 
prediction only where the GT indicates an abnormality. 

B. Abnormality level detection accuracy 

In this section the focus of the evaluation is on the 
entire abnormality, not on pixel level. The full image was 
reassembled from each prediction of 256x256 pixels made 
from patches of the same size from the test image.  

An algorithm for automatic color coding of the true 
positives, false positives and false negatives at pixel level 
was proposed, described by the pseudo-code bellow: 

 
I. For each cropped mask and its coresponding 

binarized prediction_map:  
a. Initialize final_prediction_map with 

prediction_map  
b. And(mask, prediction_map) => color with green 

in final_prediction_map 
c. Difference(mask, prediction_map) => color with 

red in final_prediction_map 
d. Save the final_prediction_map 
 
Based on the automatic color coding the evaluation of 

the detection accuracy at abnormality level is performed 
by manually/visually counting each colored label on the 
entire test dataset.  

An example on how the prediction performs is shown 
in figure 6, where the green zones are the intersection of 
the GT with the predicted mask (true positives), white 
areas are false positives and the red zones are GT with 
missed predictions (false negatives). 

 

 
a. Grayscale image (ex.1) 

 
b. Mass segmentation (ex.1) 

 
c. Grayscale image (ex.2) 

 
d. Mass segmentation (ex. 2) 

Figure 6.  Segmentation results showing true positives (green regions), false positives (white regions) and false negatives (red). 
 

In terms of masses detection rates, a FPPI (False Positive 
per Image) rate of 3.65 and a sensitivity (True  Positive Rate 
– TPR) of 0.77 were obtained on the whole test data set, 
which are closed to the ones reported in the literature[13],[14] 
but still not as good as in the case of commercial 
mammography CAD systems[8]. 

V. CONCLUSIONS 

In the current paper a method for automatic segmentation 
of potentially malignant abnormalities in 2D mammographic 
images based on pixel level classification using convolutional 
neural networks (CNN) was proposed. Experiments were 
performed for masses segmentation by training U-Net models 
on the CBIS-DDSM dataset using original algorithms for data 
pre- and post-processing. 



A preprocessing step of the training data set was proposed 
that provides 2nx2n size (n configurable) image patches (ROIs) 
centered on the annotated GT (Ground Truths). For data 
augmentation and to prevent over-fitting, an additional set of 4 
images were cropped for the same binary mask, where the 
centers of the 2nx2n ROIs were shifted by a random value.  

For the masses segmentation a pixel level classification 
model based on the U-Net CNN architecture was trained on the 
downscaled ROIs (by a ratio of 4). Different variations of the 
model were tested by modifying the loss function type (binary 
cross-entropy, dice coefficient loss) and its metrics (accuracy, 
dice coefficient). To increase the trained model’s performance, 
balancing the training set was performed by giving different 
weights to black and white pixels. The initial training set was 
split into training and validation with a ratio of 85% to 15%, 
obtaining an average accuracy of 0.98 / 0.97 and an average 
loss of 0.04 / 0.08 on the training / validation sets respectively.   

For the image segmentation step, the test images were 
divided in patches of the same resolutions (2nx2n ROIs further 
downsampled by the same ratio of 4) using a non-overlapping 
sliding window scheme. The prediction map was generated by 
applying the inference with the obtained models for each patch 
and the full test images were resembled from the binarized 
predictions. 

For evaluation of the results both pixel level segmentation 
and abnormalities level detection rates were estimated in a 
semi-automatic manner. At pixel level segmentation the 
average Dice index computed on the pixels of the whole test 
data set was low (0.29) due to the high global pixel level false 
positives rate. When only regions with abnormalities (regions 
with GT positives) were taken into consideration, the average 
Dice index increased to 0.7. In terms of abnormalities detection 
rates, a FPPI (False Positive per Image) rate of 3.65 and a 
sensitivity of 0.77 were obtained on the whole test data set, 
similar to the ones reported in the literature. 

The obtained results proved that the proposed method has 
the potential to be integrated in mammography CAD 
applications for assisting screening programs in which the 
main goal is a high true positive detection rate and a small false 
negative detection rate of potentially malignant abnormalities. 

Further work will be performed for experimenting the 
proposed method for masses detection on the CBIS-DDSM 
annotated dataset using segmentation models based on several 
other CNN architectures (AlexNet,  VGGNet,  GoogleNet,  
ResNet, ERFNet), in order to find the best segmentation model. 
The experiments will be also replicated for the micro-
calcifications detection on the same dataset.  

As a further step for integrated the proposed segmentation 
models in a mammographic CAD application, the models 
parameters have to be tuned by building an own annotated 
dataset based on 2D digital mammograms used in the current 
radiological practice. 
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