

Gesture Recognition Toolkit Using a Kinect Sensor

Marius-Cristian Giuroiu

Department of Computer Science
Technical University of Cluj-Napoca

Romania
E-mail: mariuscris9019@gmail.com

Tiberiu Marita

Department of Computer Science
Technical University of Cluj-Napoca

Romania
E-mail: Tiberiu.Marita@cs.utcluj.ro

Abstract - Computational modeling of human behavior has
become a very important field of computer vision. Gesture
recognition allows people to interact with machines in a natural
way without the use of dedicated I/O devices. This paper presents
a simple system that can recognize dynamic and static gestures
using the depth map and the higher level output (skeleton and
facial features) provided by a Kinect sensor. Two approaches are
chosen for the recognition task: the Dynamic Time Warping
Algorithm is used to recognize dynamic gestures, while a
Bayesian classifier is used for the static gestures/postures. In
contrast with some specialized methods presented in the
literature, the current approach is very generic and can be used
with minimal modification for recognizing a large variety of
gestures. As a result, it can be deployed in a multitude of fields
from security (monitoring rooms and sending alarm signals),
medicine (helping people with physical disabilities) to education
and so on. The tests results show that the system is accurate, easy
to use and highly customizable.

Keywords—human computer interaction; Kinect; depth map;
gesture recognition; dynamic time warping; Naïve Bayes classifier.

I. INTRODUCTION

Gestures recognition systems have various applications in
the field of human computer interaction especially in
developing assistive technologies for sensory/motor impaired
people, communication, cognition, education, home
automation, smart cars etc. Some examples are mentioned
bellow:

 Monitoring the drivers' attention when they are in
traffic. The system can detect if a driver is tired or unfit
to drive a car by analyzing his facial expressions and
body language/gestures. Such a system can offer
advices and trigger alarms [1].

 Creating perceptual human-computer interfaces. People
with motoric disabilities can interact with a computer
using their eyes movements or hands gestures [2].

 Sign language. A gestures recognition system can help
people, who do not know sign language, to
communicate more easily with their peers who are
hearing impaired [3].

 Virtual control of certain electrical devices [4].

Regarding the type of the sensorial input used, several
approaches were proposed for gesture recognition. Each
solution deals with specific trade-offs regarding the equipment
costs, computational complexity and results quality:

 By using low cost 2D cameras [5], additional
algorithms that require intensive computing resources
(segmentation, objects detection) must be used.

 The depth information provided by a stereo camera
system eases the scene segmentation by reducing the
search space for the object detection process but the
system setup and the map generation are expensive,
both financially and computationally [6].

 Wired gloves can be used to determine the position and
rotation of the hands but they have only been available
at a huge cost, with the finger bend sensors and the
tracking device having to be bought separately [7].

Depth or range cameras [8] can generate directly a map of
depth points of what is seen in a short-range. These points can
then be further used to build a 3D representation of the scene.

The current paper will describe a system that is able to
recognize body and facial static and dynamic gestures using an
affordable depth camera: the Kinect sensor [9]. The system
uses the depth information provided by Kinect [8] in
conjunction with the functions provided by its SDK and
toolkits [10], [11].

The Kinect device is described in detail in [12]. A list of
advantages and disadvantages of the Kinect camera is also
presented. The Kinect sensor is a human motion tracking
peripheral which was first released by Microsoft in November,
2010 for the Xbox 360 console and in February, 2012 for the
PC (version 1). The v.1 Kinect used in our experiments has a
640 x 480 32-bit RGB color camera and a 320 x 240 11-bit
depth camera, both running at 30 frames per second. The field
of view (FOV) is 58º(h) x 47º(v) and the depth range is
between 0.4 … 4.5 m. Additionally it has a microphone array
which can be used for detecting voice commands. The version
2 of the Kinect sensor, launched in 2014, came with some
hardware and software improvements: increased resolution of
the color (1920x1080) and depth (512x424) images with Time-
Of-Flight (ToF) measuring principle, increased FOV of 70º(h)
x 60º(v).

The Kinect v1.x SDK [10] provides the raw data for
developing advanced gesture recognition, facial recognition
and voice recognition applications. For example the Kinect's
v.1 skeletal tracking tool is able to track up to 20 joints per
active player but lacks in intrinsic gesture recognition
implementations. Therefore gesture recognition application
should be built by users over the SDK.

A tool that performs gesture recognition on the skeletal
data using the Dynamic Time Warping (DTW) algorithm is
described in [13]. This tool applies DTW in 2D (on the front-
view projection of 3D body joints). A similar method that uses

3D coordinates and an improved version of the DTW
algorithm by feature weighting is presented in [14]. In [15] a
method for static gestures recognition using the Kinect sensor
is presented. A set of classification techniques (back
propagation neural network, support vector machine, decision
tree, and Naïve Bayes) were tested and compared for 3 very
simple body postures: stand, sit down, and lie down. In [16] a
more complex dynamic gesture recognition method able to
recognize five basic human emotional states using classifiers is
presented. Unfortunately their approach has some
shortcomings: metric features are not normalized (lacking in
scale invariance) and their implementation does not provide
real-time capabilities (probably due to the off-line data
exchange method between the Kinect sensor and the Matlab
processing module which is not explained in the paper).

Hands and fingers tracking represent important body parts
used in vision based human computer interaction. In [17] the
author proposes a unique approach for hands and fingers
recognition using a Kinect sensor for search space reduction
and further analysis of the 2D projection of the hand. In [18]
the authors are performing the hand segmentation by
combining both skin color and depth information and then
fitting a 3D hand model to the observed data recovering the
hand articulations. In [19] the authors propose a hand gesture
recognition method based on a novel distance metric, Finger-
Earth Mover’s Distance (FEMD), to measure the dissimilarity
between hand shapes

For now, Kinect is mostly used in games and in
commercial applications that use animated avatars [20]. But in
[21] it is proposed the usage of Kinect in ADAS (Advances
driver assistance systems) for monitoring the driver’s
drowsiness or distraction while in [22] a driver awareness
testing system is presented using a Kinect device as a driver
interaction tool.

In the current work we propose to combine two different
recognition techniques (DTW and Naïve Bayes Classifier) in
order to create an original and generic system that can be
configured to learn and recognize every type of gesture a
human can make, even if it is a dynamic gesture or a static
posture. In contrast most of the current gesture recognition
systems based on the Kinect sensor are very specialized for
some specific body parts or gesture set.

The same input is used for both techniques. We use 3D
points for body and fingers movements, Animation Units (AU)
for face expressions and head rotation angles for head
movements. Every value used is normalized so the system
works regardless of the body size and shape. The system can
be used as a prototype when creating human-computer
interfaces. By firing events when executing gestures we could
easily control machines or we can use it in a large variety of
applications as those mentioned in the introduction.

The next section will present in more detail the output of
the Kinect sensor and its SDK. Section 3 will describe the
DTW algorithm and Naïve Bayes classifier. Section 4 will
describe how the DTW and the classification algorithms were
tailored to recognize gestures, postures and expressions.
Section 5 presents some experimental results of the proposed
system. Last section will conclude the current work.

II. OUTPUT OF THE KINECT SENSOR AND SDK

A. Skeleton tracking

The Kinect SDK offers free tools that can be used to
develop simple applications for detecting and tracking the
body/skeleton [10] and the head [11] of a person.

Skeletal Tracking allows Kinect to recognize people and
follow their actions. Using the depth map, the sensor tracks up
to 2 users in details and recognize up to 6 users in the field of
view of the sensor. The tracked features are the joints of the
body skeleton, each skeleton having a tracking ID.

The skeleton is modeled as a list of 3D points (x, y, z) that
corresponds to 20 types of joints [23] (HandLeft, HandRight,
WristLeft, WristRight, ElbowLeft, ElbowRight, Head,
Shoulder_Center, Spine, Hip_Center etc.). This list of points
can be used as input for the DTW algorithm or for fun
applications like finding a user's height, moving the mouse by
using one of the joints, or changing the slides of a presentation
by waving the arm. Every joint can be in one of the following
three states: tracked for a clearly visible joint, inferred when a
joint is not completely visible and Kinect infers its position
based on the position of neighboring points, or non-tracked if
the point is not tracked at the moment.

B. The Candide face model

A framework for face tracking was included in Kinect SDK
since version 1.5. This framework uses two libraries:
Microsoft.Kinect.Toolkit and a derived library called Face
Tracking [11]. This library can return up to 87 2D points of the
human face (Fig. 1.a) and 13 additional points that are
deduced from the existing ones (example : center of the eye,
center of the nose etc.). These points can be used as inputs for
different kinds of Human Machine Interface applications.

Having the position of the top of the head (joint of the
head), a parameterized face model consisting in 113 vertices
and 168 surfaces (Fig. 1.b) based on the CANDIDE-3 [24]
model is provided by the SDK.

The Face Tracking module offers also the objects
frame.Rotation containing the 3 rotations angles (pitch, yaw
and roll) of the head around the 3 axes of the Kinect (Fig. 1 c),
and frame.Translation object which contains the components
of the translation vector [Tx, Ty, Tz]. We can use these values
to find the position of the human head.

Fig. 1. Face points detection using FaceTracking (Kinect Toolkit) [11]: a. 2D

points; b. 3D virtual surface extrapolated from 2D points using the CANDIDE-
3 model [24]; c. Representation of rotations angles and translation vector

Facial gestures can be inferred based on the variability of
lips, eyebrows and jaw position, lips stretcher, etc. These
characteristics can be measured using 6 Animation Units (AU)
and 11 Shape Units (SU), which are a subset of the
CANDIDE-3 model.

The Shape Units (SU) are specifying the affected vertices
and the displacement (x, y, z) per affected vertex and can be
used to estimate the particular shape of the human face: the
neutral position of the mouth, eyebrows, eyes, etc. The shape
units are coded as follows: SU0 - Head height, SU1 - Eyebrows
vertical position, SU2 - Eyes vertical position, SU3 - Eyes
width, SU4 - Eyes height, SU5 - Eye separation distance, SU8 -
Nose vertical position, SU10 - Mouth vertical position, SU11 -
Mouth width.

The Animation Units (AU) represent deviations of the SU
from the neutral shape of the face and are most commonly
used to morph targets on animated avatar models so that the
avatar acts as the tracked user does. Each AU is expressed as a
numeric weight varying between -1 and +1 and are labeled as
follows: AU0 - Upper Lip Raiser, AU1 - Jaw Lowerer, AU2 -
Lip Stretcher, AU3 - Brow Lowerer, AU4 - Lip Corner
Depressor, AU5 - Outer Brow Raiser. For a Neutral Face all
AUs have null values.

III. RELATED ALGORITHMS

A. Dynamic Time Warping (DTW) Algorithm

Given two time series X = (x1, x2, ..., xN); N ∈ N and Y =
(y1, y2, ..., yM); M ∈ N, DTW[25] finds the optimal solution in
O(MN). This complexity can be improved using techniques
like multi-scaling [26].

The data sequences must be sampled at equidistant points
in time (problem that can be solved by re-sampling).

If we need to compare two sequences X, Y ∈ Φ which are
taking values from another space of properties then we need to
use a local distance measure:

 d : Φ x Φ → R ≥ 0 (1)

Intuitively, d takes smaller values when the sequences are
similar and bigger values when they are different. DTW is a
Dynamic Programming algorithm so we can say that the
distance function is a cost function. The task of finding the
optimal alignment of the sequences becomes the task of
arranging all sequence points by minimizing the cost function
(or distance).

The algorithm starts by building the distance matrix C ∈

RNxM which represents every pair of distance between X and
Y. This distance matrix is called the local cost matrix of two
sequences X and Y:

Ct ∈ RNxM : ci , j = || xi - yj
 ||, i ∊ [1 : N], j ∈ [1 : M] (2)

Once the cost matrix is built, the algorithm finds an
alignment path between the two sequences. This path (also
called warping path) defines the correspondence of xi ∊ X to

y
i
 ∈ Y. The first and last elements of X and Y must be

assigned to each other. This alignment path must have a
minimal cost.

The alignment path build by DTW is a sequence of points p
= (p1, p2, ..., pK) with pk = (pi, pj) ∈ [1:N] x [1:M]), k ∈ [1:K]
which must satisfy the following conditions :

1. The Boundary Criteria: p1 = (1, 1) and pK = (N, M).
Given 2 sequences X and Y. The first and the final

point from the X sequence must be aligned with the first
and last point from the Y sequence.

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤
... ≤ mK. This condition keeps the order in time for the
points.

3. Step Size Condition: this criteria limits big jumps (time
displacements) in the alignment of the sequences. For
starters, we will use the function:

 p
k+1

 - p
𝑘
 ∊ {(1, 1), (1, 0), (0, 1)}.

The cost function that corresponds with the warping path
(minimum cost path) will be:

cp(X,Y) = ∑ c(x𝑛𝑘
, y

𝑚𝑘

K
k=1) (3)

The minimum cost alignment path is called least cost path
and is denoted by 𝑷∗. To find a minimum cost alignment path
we must find every alignment paths between X and Y.

This solution is very costly in terms of computation as the
number of possible alignment paths increases exponentially
when X and Y increase linearly. To prevent this from
happening we must use Dynamic Programming [27] to
implement DTW. The complexity will be reduced to O(MN).

The Dynamic Programming part of the DTW algorithm
uses the following distance function:

D (X, Y) = C
p
*(X, Y) = min { Cp(X, Y), p ∈ PNxM} (4)

where PNxM is the set of every possible alignment path and it
builds the global cost matrix or accumulated cost matrix
defined below:

1. First row : D(1, j) = ∑ c(x1,y
k
), j ∈ [1, M]

j

k=1

2. Fist column : D(i, 1) = ∑ c(xk,y
1
), i ∈ [1, N]

j

k=1

3. All other elements are:

D(i, j) = min {

D(i-1, j-1),

D(i-1, j),

D(i, j-1)
} + c (xi, yj

) , i ∈

[1, N], j ∈ [1, M]).

The necessary time to build the matrix is O(NM). The
algoritm that builds the matrix has X, Y and C as inputs. C is
the matrix of local cost and represent all possible distances
between X and Y. The algorithm to create the accumulated
cost matrix is described in [9].

Once the accumulated cost matrix is build we can find the
shortest path by going backwards from the point p

end
 = (M, N)

to the point p
start

 = (1, 1) using the Greedy method described

by the OptimalWarpingPath algorithm [25].

The following improvements can be added to the DTW
algorithm:

1. Step function (slope constraint): if DTW makes k
consecutive steps in one direction, it must make at least
l steps in a diagonal direction.

2. Weighting: by adding weights to each of the distances
based on the step direction we could penalize or favor
certain types of point-to-point correspondences.

3. Global path constraints: the Sakoe-Chiba band [28]
and Itakura parallelogram [29] which are constraining
the warping range:

Fig. 2. a) Left - Itakura parallelogram b) right - Sakoe-Chiba band.

4. Scaling: by decreasing the length of the time series
(size of N and M) using coarsening. Scaling can be
obtained using a low-pass filter or linear approximation
[30].

B. Hands and fingers detection

In the past, the majority of the algorithms for hands and
fingers recognition were based on the pigmentation of the
hands. The problem is that these algorithms can only be used
on one kind of pigmentation, light or dark. So, depending on
the person, the algorithm must be changed. However we can
still use some parts of these algorithms in conjunction with
depth information.

Two approaches can be used to recognize the hands and the
fingertips:

 By using a large database of hands images in order to
train the system to find the correspondence between
them. This method is computationally expensive.

 Using some geometrical properties to approximate the
location of the fingertips and the center of the palm.

The steps necessary to recognize the fingertips and the
center of the palm according to the second approach could be
the following [17]:

1. Generate a 2D region of interest (ROI) of the hand from
the depth map

2. Decrease the noise
3. Classify the contour or inside pixels
4. Differentiate hands and calculate their contour
5. Allocate inside points
6. Find the center of the palm
7. Find the fingertips
8. Allocate points in a 3D space

C. Naïve Bayes Classifier

The Naïve Bayes Classifier technique is based on the so-
called Bayesian theorem and is particularly suited when the
dimensionality of the inputs is high. Despite its simplicity,
Naïve Bayes can often outperform more sophisticated
classification methods. The Naïve Bayes classifier is used in
text classification, spam filter, online applications and so on.

1) Bayes' theorem
Known alternatively as Bayes' law or Bayes' rule, it relates

current probability to prior probability. To predict future
events we must use knowledge about past events [31].

P(h/D) =
P(D/h)P(h)

P(D)
 (5)

where:
P(h) : posterior probability of the hypothesis
P(D) : posterior probability of the training data set
P(h/D) : the probability of h given D
P(D/h) : the probability of D given h

2) MAP (Maximum A Posteriori) hypothesis generation
Generally we want to find the most probable hypothesis given
the training data. We define:

hMAP = arg max P(h/D) (where h is part of H and H is the
hypothesis space) [32].

hMAP = arg max
P(D/h)P(h)

P(D)
, hMAP = arg max P(D/h) P(h) (6)

3) ML (Maximum Likelihood) hypothesis generation
We assume that p(hi) = p(hj) for all pairs i, j (uniform

priors, i.e. PH ~ Uniform) [32]. We can further simplify and
choose the maximum likelihood hypothesis as:

hML = arg max P(D/hi) (where hi is part of H) (7)

4) Naïve Bayes Classification
It is based on the Bayes' theorem and is used especially

when the dimensionality of the input is high. Parameter
estimation for Naïve Bayes models uses the ML method.
Despite the simplified assumptions, in many complex real
situations Naïve Bayes performs very well. The big advantage
of this type of classification is that it can use very little training
data to estimate the parameters [32].

Considering D a set of tuples, where each tuple is a n-
dimensional vector: X(x1, x2, x3, ... , xn) and having the classes
C1, C2, C3, ... ,Cm the Naïve Bayes classifier can predict that X
belongs to the Ci class if:

P(Ci/X) > P(Cj/X) for i<= j <= m, j<>i (8)

where P(Ci/X) is the Maximum Posteriori hypothesis :

P(Ci/X) =
𝑃(𝐗/Ci)𝑃(Ci)

𝑃(𝐗)
 (9)

The solution is to maximize P(X/Ci)P(Ci) because P(X) is a
constant. Because it is very expensive computationally to
evaluate P(X/Ci) the Naïve assumptions of class conditional
independence is used:

P(X /Ci) = ∏ 𝑃(𝑥𝑘/𝐶𝑖)𝑁
𝑘=1 (10)

P(X/Ci) = P(x1/Ci) * P(x2/Ci) * ... * P(xn/Ci)

IV. GESTURE RECOGNITION MECHANISM

A. Dynamic gesture recognition using the DTW algorithm

A feature vector is created using values retrieved from the
Kinect sensor. This vector may need to be centered using a
reference point and then normalized using a specific
anthropomorphic feature of the person. Normalization insures
the scale invariance of the processed data (for example the
height of a person). Training sequences Yq are created for
every gesture needed to be recognized. During a gesture, M
temporal instances of the feature vector are registered (M
depends on the duration of the gesture). In order to cope with
the inter/intra person gesture execution variability up to six

time series are registered per gesture (labeled with the same
gesture class). Finally, DTW can be applied on a test sequence
X. This procedure tries to find the best match (warping path)
between a subset of M temporal instances of X and every set
Yq.

1) Body and fingers gestures recognition
1. A feature vector is created using the coordinates of the

upper body joints / fingertips. These are 3D points. The
Kinect SDK can return up to 20 body joint coordinates
(3D points) for a person for every frame. The algorithm
described in [17] can retrieve up to 6 points (5 fingers
and the center of the palm) for both hands of a person.

2. A reference point is chosen - middle point of the
segment between the two shoulders joints / the center of

the palm (Ur, Vr, Zr)

3. The joints / fingertips coordinates (Ui, Vi, Zi) (i = 1..J / J
- the number of control points) are centered against the
reference point:

Ui
c = Ui - Ur

Vi
c = Vi - Vr

Zi
c = Zi - Zr

4. The centered coordinates are normalized using the
Euclidian distance between the joints of the shoulders /
the center of the palm and the elbow. The set (Ui

n, Vi
n,

Zi
n) is obtained. The feature vector has the following

form:
v3D = {(Ui

n, Vi
n, Zi

n), i = 1..J}

5. A training sequence is created for every gesture that
needs to be recognized. During a gesture, M temporal
positions of the body members / fingers are registered:

Yq = { ⋃ (Ui
n,M

k=1 Vi
n , Zi

n), i = 1 .. j}, q = 1..N

 where: N – is the number of recognizable gestures.

6. The DTW algorithm is applied on a test sequence X in
order to recognize a specific body/hand gesture.

2) Facial gestures recognition
1. A feature vector/set is created using the animation units

(AU) for a temporal instance :

 V2D-face-AU = (AU0, AU1, AU2, AU3, AU4, AU5)

2. A training sequence is created for every gesture that
needs to be recognized. During a gesture M temporal
instances of the feature vector’s AUs are registered:

 Yq= ⋃ (AU0, AU1, AU2, AU3, AU4, AU5), q = 1..NM
K=1 ,

 where: N – is the number of recognizable gestures.

3. The DTW algorithm is applied on a test sequence X in
order to recognize a specific facial gesture.

3) Head gestures recognition
To recognize head gestures we follow the same steps as for

facial gestures recognition. The only difference is that the
feature vector is created using the rotation angles of the head:
VHead_Rotation= (X, Y, Z).

B. Static gesture recognition using the Naïve Bayes classifier

The WEKA tool [33] is used to create classification models
for programmatic use. These models can be manipulated and
used to evaluate data. The result of the evaluation indicates if a
static gesture is recognized or not. The same data structure that
is used for dynamic gestures can be used to create the
classification models for static gestures.

The following process is applied for every category of
static gestures (body, fingers or face static gestures):

1. Training data is created using feature vectors captured
over multiple frames for every static gesture. The
feature vectors are normalized.

2. An initial model is created using the training data, the
Naïve Bayes classifier and 10-fold cross-validation.

3. The model is loaded into the system.

4. For every frame the system can recognize static
gestures by running normalized test feature vectors
against the trained model.

V. TESTING AND VALIDATION

We tested the recognition of dynamic gestures and also
postures (static gestures). Due to the limited space in the
paper’s presentation, only the results for the quantitative
evaluation of the body and facial gestures recognition are
presented here. A qualitative assessment of the results for all
types of static and dynamic gestures recognition can be
watched in some test movies at the links provided at the end of
the paper (Media Files section).

In order to assess the performance of the system the
confusion matrix was used. The following gestures were tested
during the evaluation:

 8 types of body dynamic gestures :
a = Left_Hand_Goes_Up
b = Left_Hand_Goes_To_The_Left
c = Left_Hand_Goes_To_The_Right
d = Right_Hand_Goes_Up
e = Right_Hand_Goes_To_The_Left
f = Right_Hand_Goes_To_The_Right
g = Both_Hands_Go_Up
h = Both_Hands_Go_Down

 8 type of body static gestures (postures):
a = Left_Hand_Up
b= Left_Hand_To_The_Left
c = Left_Hand_To_The_Right
d = Right_Hand_Up
e = Right_Hand_To_The_Left
f = Right_Hand_To_The_Right
g = Both_Hands_Up,
h = Both_Hands_Down

 5 types of face dynamic gestures/static expressions:
a = Neutral
b = Yawn
c = Make_Frowny_Face
d = Be_Happy
e = Raise_Eyebrows.

The attributes used for body gestures / postures are:
HandLeft_X, HandLeft_Y, HandLeft_Z, WristLeft_X, WristLeft_Y, WristLeft_Z,
ElbowLeft_X, ElbowLeft_Y, ElbowLeft_Z, ElbowRight_X, ElbowRight_Y,
ElbowRight_Z, WristRight_X, WristRight_Y, WristRight_Z, HandRight_X,
HandRight_Y, HandRight_Z.

The attributes used for face gestures / expressions are:
BrowLover, BrowRaiser, JawLower, LipCornerDepressor, LipRaiser,
LipStretcher.

A. Testing the classifiers

We captured 198 frames of data (or feature vectors that
contain normalized attributes) for every type of static gesture,
in order to cope with the intra/inter person gesture execution
variability. We used the WEKA tool to train the models. The
total number of trained instances for body gestures was 1584
(198 frames x 8 gestures) and for face gestures was 990 (198
frames x 5 gestures). After testing multiple classifiers we
decided to choose the Naïve Bayes classifier (i.e. tables I and
II present such a comparison between the Naïve Bayes and
Lazy LWL classifiers). Tables III and VI show the Naïve
Bayes classifier performance for the provided training data set.

TABLE I. COMPARISON BETWEEN CLASSIFIERS WHEN LEARNING BODY

POSTURES

Classifier

Attribute

Naïve Bayes Lazy LWL

Total number of instances 1584 1584

Attributes 18 18

Test options 10-fold cross-valid. 10-fold cross-valid.

Correct classified instances 1584 100 % 1581 99.9369 %

Wrong classified instances 0 0 % 1 0.0631 %
Kappa statistic 1 0.9993

Mean absolute error 0 0.0745

Root mean squared error 0 0.1415

Relative absolute error 0 % 34.0365 %

Root relative squared error 0 % 42.7787 %

TABLE II. COMPARISON BETWEEN CLASSIFIERS WHEN LEARNING FACE

EXPRESSIONS

Classifier

Attribute

Naïve Bayes Lazy LWL

Total number of instances 990 990

Attributes 6 6

Test options 10-fold cross-valid. 10-fold cross-valid.

Correct classified instances 982 99.1919 % 980 98.9899 %

Wrong Classified instances 8 0.8081 % 10 1.0101 %

Kappa statistic 0.9899 0.9874

Mean absolute error 0.0079 0.113

Root mean squared error 0.0554 0.2152

Relative absolute error 1.437 % 35.32.39 %

Root relative squared error 13.8426 % 53.7905

TABLE III. CLASSIFIER PERFORMANCE FOR STATIC FACE EXPRESSIONS

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER

Class
code

TP
Rate

FP
RATE

Precision Recall F-
Measure

ROC
Area

Class name

a 0.985 0.006 0.975 0.985 0.98 0.999 Neutral

b 1 0 1 1 1 1 Yawn

c 1 0 1 1 1 1 Frowny_Face

d 0.99 0.004 0.985 0.99 0.987 1 Happy

e 0.99 0 1 0.985 0.992 1 Raise_Eyebrows

Avg. 0.992 0.002 0.992 0.992 0.992 1

TABLE IV. CLASSIFIER PERFORMANCE FOR BODY POSTURES

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER

Class
code

TP
Rate

FP
RATE

Prec. Recall F-
Measure

ROC
Area

Class name

a 1 0 1 1 1 1 Left_Hand_Up

b 1 0 1 1 1 1 Left_Hand_To_The_L

c 1 0 1 1 1 1 Left_Hand_To_The_R

d 0.995 0 1 0.995 0.997 0.995 Right_Hand_Up

e 1 0 1 1 1 1 Right_Hand_To_The_L

f 1 0.001 0.995 1 0.997 1 Right_Hand_To_The_Ri

g 1 0 1 1 1 1 Both_Hands_Up

h 1 0 1 1 1 1 Both_Hands_Down

Avg. 0.999 0 0.999 0.999 0.999 0.999

B. Testing the System

The following methodology was used to test the system:

 Record a series of static and dynamic gestures for two
different persons executing the gestures/postures in front
of the Kinect camera.

 In order to cope with the inter/intra person gesture
execution variability, each person’s gesture execution
was tested/repeated for about 20 times.

 Set the Kinect sensor to: near mode and seated (we are
interested only in the upper body joints).

1) Testing static gestures using the Naïve Bayes classifier
For the body postures/facial expressions the test scenarios

contained the following key points:

 5 types of facial and 8 types of body postures
expressions (as shown in Fig. 3 and 4) were tested.

 Every person should remain approximately in the same
position / have the same expression for at least a few
frames in order to consider the gesture as recognized.

Fig. 3. Examples of tested static face gestures/expressions.

Fig. 4. Examples of tested static body gestures/postures.

 The system’s performance for static gestures/expressions is
shown in the form of the confusion matrix and precision
(positive predictive value): PPV=TP/(TP+FP) [34] (Tables V
and VI). The recognition of facial gestures a, c and d
obtained a lower PPV compared with b and e because the
degree of similarity between them is higher. This can be
observed from the confusion matrix: a was recognized as c 6
times and as d 3 times, d was recognized as c 5 times and c
was recognized as d 4 times.

TABLE V. SYSTEM PERFORMANCE FOR FACE EXPRESSIONS

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER (CONFUSION MATRIX

AND PRECISION/PPV)

a b c d e TP FP PPV[%]

27 2 6 3 2 a 27 13 67,5

0 31 3 3 3 b 31 9 77,5

3 2 28 4 3 c 28 12 70

4 2 5 27 2 d 27 13 67,5

4 0 2 1 33 e 33 7 82,5

38 37 44 38 43 Total 146 54 73

TABLE VI. SYSTEM PERFORMANCE FOR BODY POSTURES RECOGNITION

USING THE NAÏVE BAYES CLASSIFIER (CONFUSION MATRIX AND

PRECISION/PPV)

a b c d e f g h TP FP PPV[%]

31 3 4 0 0 0 2 0 a 31 9 77,5

3 31 3 0 1 0 0 2 b 31 9 77,5

5 3 27 0 1 0 0 4 c 27 13 67,5

0 0 1 32 3 1 3 0 d 32 8 80

0 0 1 3 28 4 3 1 e 28 12 70

0 0 0 1 2 30 3 4 f 30 10 75

3 1 1 2 0 0 33 0 g 33 7 82.5

0 1 2 1 2 1 0 33 h 33 7 82.5

42 39 39 39 37 36 44 44 Total 245 75 76,5

2) Testing dynamic gestures using the DTW algorithm
For the dynamic body and facial gestures the test scenarios

contained the following key points:

 5 types of dynamic facial gestures and 8 types of
dynamic body gestures (as defined at the beginning of
chapter)

 Every gesture tested consisted in a time series of 32
frames (sets of feature vectors)

 Each test sequences was compared with the registered
instance using the DTW algorithm

The system’s performance for dynamic gestures is shown
in the form of the confusion matrix and PPV (tables VII and
VIII):

TABLE VII. SYSTEM PERFORMANCE FOR DYNAMIC FACE GESTURES

RECOGNITION (CONFUSION MATRIX AND PRECISION/PPV)

a b c d e TP FP PPV[%]

29 1 5 3 2 a 29 11 72,5

1 33 2 2 2 b 33 7 82,5

4 1 28 5 2 c 28 12 70

6 1 4 27 2 d 27 13 67,5
2 1 2 3 32 e 32 8 80

42 37 41 40 40 Total 149 51 74,5

TABLE VIII. SYSTEM PERFORMANCE FOR DYNAMIC BODY GESTURES

RECOGNITION (CONFUSION MATRIX AND PRECISION/PPV)

a b c d e f g h TP FP PPV[%]

34 3 2 0 0 0 1 0 a 34 6 85

3 33 3 0 1 0 0 0 b 33 7 82,5

3 4 27 0 4 0 1 1 c 27 13 67,5

0 0 1 32 3 3 1 0 d 32 8 80

0 0 4 4 26 4 1 1 e 26 14 65

0 0 0 1 4 34 1 0 f 34 6 85

2 0 0 2 1 0 35 0 g 35 5 85,5

0 0 1 0 2 0 0 37 h 37 3 92,5

42 40 38 39 41 41 40 39 Total 258 62 80,6

The results are encouraging considering the small size of the

training data. From our observations during testing, the size of

the training data and the degree of similarity between gestures
dictates the PPV up to a point.

VI. CONCLUSIONS

The implemented system represents a typical interface for
the natural human computer interaction paradigm, without the
help of classical peripherals like mousses or keyboards. The
system can recognize static gestures (body postures / facial
expressions) and more complex dynamic gestures in real time
at up to 30 frames per second.

The recognition of dynamic gestures was done using the
Dynamic Time Warping (DTW) algorithm applied on series of
3D features provided by the Kinect SDK (skeleton joints) or
inferred from the depth map (finger tips). For facial gestures,
the animation units (AUs) provided by the Kinect SDK were
used.

The recognition of static gestures was done by
implementing a Naïve Bayes classifier model using the WEKA
tool. The same data structures that were used for dynamic
gestures recognition were used to create the classification
models for the static gestures.

Regarding the performance of the dynamic body gestures
recognition method, the obtained results are similar with the
ones presented in [14]. Regarding the static body gesture
recognition method, our approach outperformed with about
20% the results reported in [15] in the case of the Naïve Bayes
classifier, even for far more complex static gestures/postures.
The better performance of other classification methods (i.e.
backpropagation, neural networks, support vector machines,
decision trees - as reported in [15] and [16]) will be further
investigated for our complex gestures set and our real time
constraints.

For the facial expressions and gestures the recognition
performance was a little bit (3 % for the static approach and 6
% for dynamic approach) lower. This can be explained due to
the increased complexity and variability of the face appearance
and consequently lower error margins for the face features
(AUs) computation that were reflected in the classification and
DTW models. No similar method based on the Kinect’s facial
features was found in literature for a quantitative performance
comparison of the method.

After performing validation test on several scenarios the
following conclusions can be drawn:

 The degree of similarity/dissimilarity between gestures
has an important impact on the recognized gestures
precision/PPV.

 The system proved reliable because it has a good
gestures recognition precision/PPV even if the system
wasn't intensively taught with multiple persons.

 To improve the precision of the recognized gestures the
system must be trained with multiple persons. Every
person should perform the entire set of gestures
multiple times.

 The application presents a high level of usability
because it has a graphical interface that is easy to learn
and use.

The algorithms that were implemented can be further
improved. Such an improvement would be the changing of the
DTW algorithm with its faster version FastDTW [26]. This
version has linear time and space complexity and it uses a
multilevel approach that recursively projects a solution from a
coarser resolution and refines the projected solution. Another
improvement is to add the possibility of using multiple Kinect
sensors to provide input for the system (we may run into some
interference problems [35]). Another idea would be to make
the recognition mechanism be accessible as a web service. This
would enable us to provide gesture recognition services
deployed in cluster architecture. The performance would be
significantly improved and would make the Kinect sensor be
interchangeable with another type of depth camera.

MEDIA FILES

Results for static gestures recognition (classification
approach):

 Body static gestures: https://vimeo.com/128776557

 Face static gestures: https://vimeo.com/128776558

 Finger static gestures: https://vimeo.com/128776559

Results for dynamic gestures recognition (DTW approach).
Results of the static gestures recognition performed on
individual frames are also shown for some gestures categories:

 Body dynamic gestures: https://vimeo.com/128787791

 Face dynamic gestures: https://vimeo.com/128787795

 Fingers dynamic gestures: https://vimeo.com/128787793

 Head orientation dynamic: https://vimeo.com/128787794

REFERENCES

[1] Q. Ji, X. Yang, “Real-time eye, gaze, and face pose tracking for monitoring
driver vigilance.” Real-Time Imaging, vol.8, no.5, pp. 357-377, 2002.

[2] P. Jia, H. Hu, T. Lu, K. Yuan, “Head gesture recognition for hands-free
control of an intelligent wheelchair,” Industrial Robot: An International
Journal, vol. 34, no.1, pp. 60-68, 2007.

[3] D. Kumarage et al., “Real-time sign language gesture recognition using
still-image comparison & motion recognition,” in Proc. of 6th IEEE
International Conference on Industrial and Information Systems (ICIIS), 2011,
pp. 169-174.

[4] X. Zhang, et al., “Hand gesture recognition and virtual game control based
on 3D accelerometer and EMG sensors,” In Proc. of the 14th International
Conference on Intelligent User Interfaces, 2009, pp. 401-406.

[5] G. Ushaw et al., “An Efficient Application of Gesture Recognition from a
2D Camera for rehabilitation of Patients with Impaired Dexterity,” in
HEALTHINF, 2013, pp. 315-318.

[6] X. Li, J. An, J. Min, K. Hong, “Hand gesture recognition by stereo camera
using the thinning method,” in Proc. of International Conference
on In Multimedia Technology (ICMT), 2011, pp. 3077-3080.

[7] M. Ganzeboom, (2011), “How hand gestures are recognized using a
dataglove,” Human Media Interaction (HMI) [Online]. Available:
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Ganzeboom-Mario-
3.pdf

[8] B. Langmann et al., “Depth Camera Technology Comparison and
Performance Evaluation,” in Proc. of the 1st International Conference on
Pattern Recognition Applications and Methods (ICPRAM) 2012, pp. 438-444.

[9] Microsoft (2013, June). Kinect for Windows [Online]. Available:
http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx.

[10] Microsoft Developer Network (2015, April), Kinect for Windows SDK
[Online]. Available: https://msdn.microsoft.com/en-us/library/hh855347.aspx)

[11] Microsoft Developer Network (2015, April). Face Tracking [Online].
Available: http://msdn.microsoft.com/en-us/library/jj130970.aspx.

[12] H. H. Wu, A. Bainbridge-Smith. (2015, April). Advantages of using a
Kinect Camera in various applications [Online]. Available:
http://www.academia.edu/2070005/Advantages_of_using_a_Kinect_Camera_i
n_various_applications

[13] (2013 June). Kinect gesture SDK [Online]. Available:
http://kinectdtw.codeplex.com/documentation.

[14] M. Reyes et al., “Feature weighting in dynamic timewarping for gesture
recognition in depth data,” in Proc. of 2011 IEEE International Conference on

Computer Vision Workshops, 2011, pp. 1182-1188.
[15] O. Patsadu, „Human gesture recognition using Kinect camera,” in Proc.
Of 2012 International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2012, pp. 28 – 32.

[16] S. Saha et al., “A study on emotion recognition from body gestures using
Kinect sensor,” in Proc. of IEEE 2014 International Conference on
Communications and Signal Processing (ICCSP), 2014, pp. 056-060.

[17] F. Trapero Cerezo, “3D Hand and Finger Recognition using Kinect,”
Universidad de Granada (UGR), Spain, Tech. Rep. 2012.

[18] I. Oikonomidis et al., “Efficient model-based 3D tracking of hand
articulations using Kinect”, In Proc. of the 22nd British Machine Vision
Conference, BMVC’2011, vol. 1, no. 2, pp. 3

[19] Z. Ren et al., “Robust part-based hand gesture recognition using kinect
sensor,” IEEE Transactions on Multimedia, vol.15, no.5, pp. 1110-1120, 2014.

[20] (2013, March). Face Shift [Online]. Available: http://www.faceshift.com/.

[21] L. Li et al., “Multi-sensor soft-computing system for driver drowsiness
detection,” in Soft Computing in Industrial Applications, Springer International
Publishing, 2014, pp. 129-140.

[22] A. Turpen. (2015, Apr). Toyota using Driver Awareness Research Vehicle
with Microsoft Kinect to combat distracted driving [Online].
Avail.:http://www.carnewscafe.com/2013/11/toyota_darv_microsoft_kinect/

[23] K. Aitpayev, J. Gaber, “Creation of 3D Human Avatar using Kinect,”
Asian Transactions on Fundamentals of Electronics, Communication &
Multimedia, vol.1, no.5, pp. 12-24, 2012.

[24] (2013 March). CANDIDE-3 - A parameterized face [Online]. Available:
http://www.icg.isy.liu.se/candide/

[25] P. Senin, “Dynamic time warping algorithm review,” Information and
Computer Science Department University of Hawaii at Manoa Honolulu,
USA, Tech. Rep. 2008, pp. 1-23.

[26] S. Salvador, P. Chan, “FastDTW: Toward accurate dynamic time warping
in linear time and space,” Intelligent Data Analysis, vol.11, no.5, pp. 561-580,
2007.

[27] (2013 June). A Tutorial on Dynamic programming [Online]. Available:
http://www.avatar.se/lectures/molbioinfo2001/dynprog/dynamic.html

[28] H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol.
26, no.1, pp. 43-49, 1978.

[29] F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol. 23, no.1, pp.
67-72, 1975.

[30] S. Chu et al., “Iterative Deepening Dynamic Time Warping for Time
Series,” in Proc 2 nd SIAM International Conference on Data Mining, 2002,
pp. 195-212.

[31] (2015, April). Naïve Bayes Classifier Introductory Overview [Online].
Available: http://www.statsoft.com/textbook/Naïve-bayes-classifier

[32] W. Hsu. (2015 April). Bayes’s Theorem, MAP, and Maximum Likelihood
Hypotheses, CIS 732: Machine Learning and Pattern Recognitio, Kansas State
University [Online]. Available: http://www.kddresearch.org/Courses/Spring-
2008/CIS732/Lectures/Lecture-06-20080204.pdf

[33] M. Hall et al., “The WEKA Data Mining Software: An Update,” ACM
SIGKDD explorations newsletter , vol. 11, no 1, 2009, pp. 10-18.

[34] (2015 May). Confusion matrix [Online]. Available:

https://en.wikipedia.org/wiki/Confusion_matrix

[35] A. Maimone, H. Fuchs, “Reducing interference between multiple
structured light depth sensors using motion,” in 2012 IEEE Virtual Reality
Short Papers and Posters (VRW), 2012, pp. 51-54.

https://vimeo.com/128776557
https://vimeo.com/128776558
https://vimeo.com/128776559
https://vimeo.com/128787791
https://vimeo.com/128787795
https://vimeo.com/128787793
https://vimeo.com/128787794
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Ganzeboom-Mario-3.pdf
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Ganzeboom-Mario-3.pdf
http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
https://msdn.microsoft.com/en-us/library/hh855347.aspx
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://www.academia.edu/2070005/Advantages_of_using_a_Kinect_Camera_in_various_applications
http://www.academia.edu/2070005/Advantages_of_using_a_Kinect_Camera_in_various_applications
http://kinectdtw.codeplex.com/documentation
http://www.faceshift.com/
http://www.carnewscafe.com/2013/11/toyota_darv_microsoft_kinect/
http://www.icg.isy.liu.se/candide/
http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html
http://www.avatar.se/lectures/molbioinfo2001/dynprog/dynamic.html
http://www.statsoft.com/textbook/naive-bayes-classifier
http://www.kddresearch.org/Courses/Spring-2008/CIS732/Lectures/Lecture-06-20080204.pdf
http://www.kddresearch.org/Courses/Spring-2008/CIS732/Lectures/Lecture-06-20080204.pdf
https://en.wikipedia.org/wiki/Confusion_matrix

