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Abstract - Computational modeling of human behavior has 
become a very important field of computer vision. Gesture 
recognition allows people to interact with machines in a natural 
way without the use of dedicated I/O devices. This paper presents 
a simple system that can recognize dynamic and static gestures 
using the depth map and the higher level output (skeleton and 
facial features) provided by a Kinect sensor. Two approaches are 
chosen for the recognition task: the Dynamic Time Warping 
Algorithm is used to recognize dynamic gestures, while a 
Bayesian classifier is used for the static gestures/postures. In 
contrast with some specialized methods presented in the 
literature, the current approach is very generic and can be used 
with minimal modification for recognizing a large variety of 
gestures. As a result, it can be deployed in a multitude of fields 
from security (monitoring rooms and sending alarm signals), 
medicine (helping people with physical disabilities) to education 
and so on. The tests results show that the system is accurate, easy 
to use and highly customizable. 

Keywords—human computer interaction; Kinect; depth map; 
gesture recognition; dynamic time warping; Naïve Bayes classifier. 

I. INTRODUCTION 

Gestures recognition systems have various applications in 
the field of human computer interaction especially in 
developing assistive technologies for sensory/motor impaired 
people, communication, cognition, education, home 
automation, smart cars etc. Some examples are mentioned 
bellow: 

 Monitoring the drivers' attention when they are in 
traffic. The system can detect if a driver is tired or unfit 
to drive a car by analyzing his facial expressions and 
body language/gestures. Such a system can offer 
advices and trigger alarms [1]. 

 Creating perceptual human-computer interfaces. People 
with motoric disabilities can interact with a computer 
using their eyes movements or hands gestures [2]. 

 Sign language. A gestures recognition system can help 
people, who do not know sign language, to 
communicate more easily with their peers who are 
hearing impaired [3]. 

 Virtual control of certain electrical devices [4]. 

Regarding the type of the sensorial input used, several 
approaches were proposed for gesture recognition. Each 
solution deals with specific trade-offs regarding the equipment 
costs, computational complexity and results quality: 

 By using low cost 2D cameras [5], additional 
algorithms that require intensive computing resources 
(segmentation, objects detection) must be used. 

 The depth information provided by a stereo camera 
system eases the scene segmentation by reducing the 
search space for the object detection process but the 
system setup and the map generation are expensive,  
both financially and computationally [6]. 

 Wired gloves can be used to determine the position and 
rotation of the hands but they have only been available 
at a huge cost, with the finger bend sensors and the 
tracking device having to be bought separately [7]. 

Depth or range cameras [8] can generate directly a map of 
depth points of what is seen in a short-range. These points can 
then be further used to build a 3D representation of the scene. 

The current paper will describe a system that is able to 
recognize body and facial static and dynamic gestures using an 
affordable depth camera: the Kinect sensor [9]. The system 
uses the depth information provided by Kinect [8] in 
conjunction with the functions provided by its SDK and 
toolkits [10], [11]. 

The Kinect device is described in detail in [12]. A list of 
advantages and disadvantages of the Kinect camera is also 
presented. The Kinect sensor is a human motion tracking 
peripheral which was first released by Microsoft in November, 
2010 for the Xbox 360 console and in February, 2012 for the 
PC (version 1). The v.1 Kinect used in our experiments has a 
640 x 480 32-bit RGB color camera and a 320 x 240 11-bit 
depth camera, both running at 30 frames per second. The field 
of view (FOV) is 58º(h) x 47º(v) and the depth range is 
between 0.4 … 4.5 m. Additionally it has a microphone array 
which can be used for detecting voice commands. The version 
2 of the Kinect sensor, launched in 2014, came with some 
hardware and software improvements: increased resolution of 
the color (1920x1080) and depth (512x424) images with Time-
Of-Flight (ToF) measuring principle, increased FOV of 70º(h) 
x 60º(v). 

The Kinect v1.x SDK [10] provides the raw data for 
developing advanced gesture recognition, facial recognition 
and voice recognition applications. For example the Kinect's 
v.1 skeletal tracking tool is able to track up to 20 joints per 
active player but lacks in intrinsic gesture recognition 
implementations. Therefore gesture recognition application 
should be built by users over the SDK. 

A tool that performs gesture recognition on the skeletal 
data using the Dynamic Time Warping (DTW) algorithm is 
described in [13]. This tool applies DTW in 2D (on the front-
view projection of 3D body joints). A similar method that uses 



 

3D coordinates and an improved version of the DTW 
algorithm by feature weighting is presented in [14]. In [15] a 
method for static gestures recognition using the Kinect sensor 
is presented. A set of classification techniques (back 
propagation neural network, support vector machine, decision 
tree, and Naïve Bayes) were tested and compared for 3 very 
simple body postures: stand, sit down, and lie down. In [16] a 
more complex dynamic gesture recognition method able to 
recognize five basic human emotional states using classifiers is 
presented. Unfortunately their approach has some 
shortcomings: metric features are not normalized (lacking in 
scale invariance) and their implementation does not provide 
real-time capabilities (probably due to the off-line data 
exchange method between the Kinect sensor and the Matlab 
processing module which is not explained in the paper). 

Hands and fingers tracking represent important body parts 
used in vision based human computer interaction. In [17] the 
author proposes a unique approach for hands and fingers 
recognition using a Kinect sensor for search space reduction 
and further analysis of the 2D projection of the hand.  In [18] 
the authors are performing the hand segmentation by 
combining both skin color and depth information and then 
fitting a 3D hand model to the observed data recovering the 
hand articulations. In [19] the authors propose a hand gesture 
recognition method based on a novel distance metric, Finger-
Earth Mover’s Distance (FEMD), to measure the dissimilarity 
between hand shapes 

For now, Kinect is mostly used in games and in 
commercial applications that use animated avatars [20]. But in 
[21] it is proposed the usage of Kinect in ADAS (Advances 
driver assistance systems) for monitoring the driver’s 
drowsiness or distraction while in [22] a driver awareness 
testing system is presented using a Kinect device as a driver 
interaction tool. 

In the current work we propose to combine two different 
recognition techniques (DTW and Naïve Bayes Classifier) in 
order to create an original and generic system that can be 
configured to learn and recognize every type of gesture a 
human can make, even if it is a dynamic gesture or a static 
posture. In contrast most of the current gesture recognition 
systems based on the Kinect sensor are very specialized for 
some specific body parts or gesture set.    

The same input is used for both techniques. We use 3D 
points for body and fingers movements, Animation Units (AU) 
for face expressions and head rotation angles for head 
movements. Every value used is normalized so the system 
works regardless of the body size and shape. The system can 
be used as a prototype when creating human-computer 
interfaces. By firing events when executing gestures we could 
easily control machines or we can use it in a large variety of 
applications as those mentioned in the introduction.   

The next section will present in more detail the output of 
the Kinect sensor and its SDK. Section 3 will describe the 
DTW algorithm and Naïve Bayes classifier. Section 4 will 
describe how the DTW and the classification algorithms were 
tailored to recognize gestures, postures and expressions. 
Section 5 presents some experimental results of the proposed 
system. Last section will conclude the current work. 

II. OUTPUT OF THE KINECT SENSOR AND SDK  

A. Skeleton tracking 

The Kinect SDK offers free tools that can be used to 
develop simple applications for detecting and tracking the 
body/skeleton [10] and the head [11] of a person. 

Skeletal Tracking allows Kinect to recognize people and 
follow their actions. Using the depth map, the sensor tracks up 
to 2 users in details and recognize up to 6 users in the field of 
view of the sensor. The tracked features are the joints of the 
body skeleton, each skeleton having a tracking ID. 

The skeleton is modeled as a list of 3D points (x, y, z) that 
corresponds to 20 types of joints [23] (HandLeft, HandRight, 
WristLeft, WristRight, ElbowLeft, ElbowRight, Head, 
Shoulder_Center, Spine, Hip_Center etc.). This list of points 
can be used as input for the DTW algorithm or for fun 
applications like finding a user's height, moving the mouse by 
using one of the joints, or changing the slides of a presentation 
by waving the arm. Every joint can be in one of the following 
three states: tracked for a clearly visible joint, inferred when a 
joint is not completely visible and Kinect infers its position 
based on the position of neighboring points, or non-tracked if 
the point is not tracked at the moment. 

B. The Candide face model 

A framework for face tracking was included in Kinect SDK 
since version 1.5. This framework uses two libraries: 
Microsoft.Kinect.Toolkit and a derived library called Face 
Tracking [11]. This library can return up to 87 2D points of the 
human face (Fig. 1.a)  and  13 additional points that are 
deduced from the existing ones (example : center of the eye, 
center of the nose etc.). These points can be used as inputs for 
different kinds of Human Machine Interface applications. 

Having the position of the top of the head (joint of the 
head), a parameterized face model consisting in 113 vertices 
and 168 surfaces (Fig. 1.b) based on the CANDIDE-3 [24] 
model is provided by the SDK. 

The Face Tracking module offers also the objects 
frame.Rotation containing the 3 rotations angles (pitch, yaw 
and roll) of the head around the 3 axes of the Kinect (Fig. 1 c), 
and frame.Translation object which contains the components 
of the translation vector  [Tx, Ty, Tz]. We can use these values 
to find the position of the human head. 

 
Fig. 1. Face points detection using FaceTracking (Kinect Toolkit) [11]: a. 2D 

points; b. 3D virtual surface extrapolated from 2D points using the CANDIDE-
3 model [24]; c. Representation of rotations angles and translation vector 

Facial gestures can be inferred based on the variability of 
lips, eyebrows and jaw position, lips stretcher, etc. These 
characteristics can be measured using 6 Animation Units (AU) 
and 11 Shape Units (SU), which are a subset of the 
CANDIDE-3 model.  



 

The Shape Units (SU) are specifying the affected vertices 
and the displacement (x, y, z) per affected vertex and can be 
used to estimate the particular shape of the human face: the 
neutral position of the mouth, eyebrows, eyes, etc. The shape 
units are coded as follows: SU0 - Head height, SU1 - Eyebrows 
vertical position, SU2 - Eyes vertical position, SU3 - Eyes 
width, SU4 - Eyes height, SU5 - Eye separation distance, SU8 - 
Nose vertical position, SU10 - Mouth vertical position, SU11 - 
Mouth width. 

The Animation Units (AU) represent deviations of the SU 
from the neutral shape of the face and are most commonly 
used to morph targets on animated avatar models so that the 
avatar acts as the tracked user does. Each AU is expressed as a 
numeric weight varying between -1 and +1 and are labeled as 
follows: AU0 - Upper Lip Raiser, AU1 - Jaw Lowerer, AU2 - 
Lip Stretcher, AU3 - Brow Lowerer, AU4 - Lip Corner 
Depressor, AU5 - Outer Brow Raiser. For a Neutral Face all 
AUs have null values. 

III. RELATED ALGORITHMS 

A. Dynamic Time Warping (DTW) Algorithm  

Given two time series X = (x1, x2, ..., xN); N ∈ N and Y = 
(y1, y2, ..., yM); M ∈ N, DTW[25] finds the optimal solution in 
O(MN). This complexity can be improved using techniques 
like multi-scaling [26]. 

The data sequences must be sampled at equidistant points 
in time (problem that can be solved by re-sampling). 

If we need to compare two sequences X, Y ∈ Φ which are 
taking values from another space of properties then we need to 
use a local distance measure: 

  d : Φ x Φ → R ≥ 0                     (1) 

Intuitively, d takes smaller values when the sequences are 
similar and bigger values when they are different. DTW is a 
Dynamic Programming algorithm so we can say that the 
distance function is a cost function. The task of finding the 
optimal alignment of the sequences becomes the task of 
arranging all sequence points by minimizing the cost function 
(or distance). 

The algorithm starts by building the distance matrix C ∈ 

RNxM which represents every pair of distance between X and 
Y. This distance matrix is called the local cost matrix of two 
sequences X and Y:  

Ct ∈ RNxM : ci , j = || xi - yj
 ||, i ∊ [1 : N], j ∈ [1 : M]       (2) 

Once the cost matrix is built, the algorithm finds an 
alignment path between the two sequences. This path (also 
called warping path) defines the correspondence of xi ∊ X to 

y
i
 ∈ Y. The first and last elements of X and Y must be 

assigned to each other. This alignment path must have a 
minimal cost. 

The alignment path build by DTW is a sequence of points p 
= (p1, p2, ..., pK) with pk = (pi, pj) ∈ [1:N] x [1:M]), k ∈ [1:K] 
which must satisfy the following conditions :  

1. The Boundary Criteria: p1 = (1, 1) and pK = (N, M). 
Given 2 sequences X and Y. The first and the final 

point from the X sequence must be aligned with the first 
and last point from the Y sequence. 

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ 
... ≤ mK. This condition keeps the order in time for the 
points. 

3. Step Size Condition: this criteria limits big jumps (time 
displacements) in the alignment of the sequences. For 
starters, we will use the function: 

   p
k+1

 - p
𝑘
 ∊ {(1, 1), (1, 0), (0, 1)}. 

The cost function that corresponds with the warping path 
(minimum cost path) will be:  

cp(X,Y) = ∑ c(x𝑛𝑘
, y

𝑚𝑘

K
k=1 )      (3) 

The minimum cost alignment path is called least cost path 
and is denoted by 𝑷∗. To find a minimum cost alignment path 
we must find every alignment paths between X and Y. 

This solution is very costly in terms of computation as the 
number of possible alignment paths increases exponentially 
when X and Y increase linearly. To prevent this from 
happening we must use Dynamic Programming [27] to 
implement DTW. The complexity will be reduced to O(MN). 

The Dynamic Programming part of the DTW algorithm 
uses the following distance function: 

D (X, Y) = C
p
*(X, Y) = min { Cp(X, Y), p ∈ PNxM}  (4) 

where PNxM is the set of every possible alignment path and it  
builds the global cost matrix or accumulated cost matrix 
defined below: 

1. First row : D(1, j) = ∑ c(x1,y
k
), j ∈ [1, M]

j

k=1  

2. Fist column : D(i, 1) = ∑ c(xk,y
1
), i ∈ [1, N]

j

k=1  

3. All other elements are:  

D(i, j) = min {

D(i-1, j-1), 

D(i-1, j), 

D(i, j-1)
}  + c (xi, yj

) , i ∈ 

[1, N], j ∈ [1, M]). 

The necessary time to build the matrix is O(NM). The 
algoritm that builds the matrix has X, Y and C as inputs. C is 
the matrix of local cost and represent all possible distances 
between X and Y. The algorithm to create the accumulated 
cost matrix is described in [9]. 

Once the accumulated cost matrix is build we can find the 
shortest path by going backwards from the point p

end
 = (M, N) 

to the point p
start

 = (1, 1) using the Greedy method described 

by the OptimalWarpingPath algorithm [25]. 

The following improvements can be added to the DTW 
algorithm: 

1. Step function (slope constraint): if DTW makes k 
consecutive steps in one direction, it must make at least 
l steps in a diagonal direction.  

2. Weighting: by adding weights to each of the distances 
based on the step direction we could penalize or favor 
certain types of point-to-point correspondences.  



 

3. Global path constraints: the Sakoe-Chiba band [28] 
and Itakura parallelogram [29] which are constraining 
the warping range: 

 

Fig. 2. a) Left - Itakura parallelogram b) right - Sakoe-Chiba band. 

4. Scaling: by decreasing the length of the time series 
(size of N and M) using coarsening. Scaling can be 
obtained using a low-pass filter or linear approximation 
[30].  

B. Hands and fingers detection 

In the past, the majority of the algorithms for hands and 
fingers recognition were based on the pigmentation of the 
hands. The problem is that these algorithms can only be used 
on one kind of pigmentation, light or dark. So, depending on 
the person, the algorithm must be changed. However we can 
still use some parts of these algorithms in conjunction with 
depth information. 

Two approaches can be used to recognize the hands and the 
fingertips:  

 By using a large database of hands images in order to 
train the system to find the correspondence between 
them. This method is computationally expensive. 

 Using some geometrical properties to approximate the 
location of the fingertips and the center of the palm. 

The steps necessary to recognize the fingertips and the 
center of the palm according to the second approach could be 
the following [17]: 

1. Generate a 2D region of interest (ROI) of the hand from 
the depth map 

2. Decrease the noise 
3. Classify the contour or inside pixels 
4. Differentiate hands and calculate their contour 
5. Allocate inside points 
6. Find the center of the palm 
7. Find the fingertips 
8. Allocate points in a 3D space 

C.  Naïve Bayes Classifier 

The Naïve Bayes Classifier technique is based on the so-
called Bayesian theorem and is particularly suited when the 
dimensionality of the inputs is high. Despite its simplicity, 
Naïve Bayes can often outperform more sophisticated 
classification methods. The Naïve Bayes classifier is used in 
text classification, spam filter, online applications and so on. 

1) Bayes' theorem  
Known alternatively as Bayes' law or Bayes' rule, it relates 

current probability to prior probability. To predict future 
events we must use knowledge about past events [31]. 

P(h/D) = 
P(D/h)P(h)

P(D)
       (5) 

where: 
P(h) : posterior probability of the hypothesis 
P(D) : posterior probability of the training data set 
P(h/D) : the probability of h given D 
P(D/h) : the probability of D given h 

2) MAP (Maximum A Posteriori) hypothesis generation 
Generally we want to find the most probable hypothesis given 
the training data. We define: 

hMAP = arg max P(h/D) (where h is part of H and H is the 
hypothesis space) [32]. 

hMAP = arg max 
P(D/h)P(h)

P(D)
, hMAP = arg max P(D/h) P(h) (6) 

3) ML (Maximum Likelihood) hypothesis generation 
We assume that p(hi) = p(hj) for all pairs i, j (uniform 

priors, i.e. PH ~ Uniform) [32]. We can further simplify and 
choose the maximum likelihood hypothesis as: 

hML = arg max P(D/hi) (where hi is part of H)  (7) 

4) Naïve Bayes Classification 
It is based on the Bayes' theorem and is used especially 

when the dimensionality of the input is high. Parameter 
estimation for Naïve Bayes models uses the ML method. 
Despite the simplified assumptions, in many complex real 
situations Naïve Bayes performs very well. The big advantage 
of this type of classification is that it can use very little training 
data to estimate the parameters [32]. 

Considering D a set of tuples, where each tuple is a n-
dimensional vector: X(x1, x2, x3, ... , xn) and having the classes 
C1, C2, C3, ... ,Cm the Naïve Bayes classifier can predict that X 
belongs to the Ci class if: 

P(Ci/X) > P(Cj/X) for i<= j <= m, j<>i   (8) 

where P(Ci/X) is the Maximum Posteriori hypothesis : 

P(Ci/X) = 
𝑃(𝐗/Ci)𝑃(Ci)

𝑃(𝐗)
      (9) 

The solution is to maximize P(X/Ci)P(Ci) because P(X) is a 
constant. Because it is very expensive computationally to 
evaluate P(X/Ci) the Naïve assumptions of class conditional 
independence is used: 

P(X /Ci) = ∏ 𝑃(𝑥𝑘/𝐶𝑖)𝑁
𝑘=1      (10) 

P(X/Ci) = P(x1/Ci) * P(x2/Ci) * ... * P(xn/Ci)   

IV. GESTURE RECOGNITION MECHANISM 

A. Dynamic gesture recognition using the DTW algorithm 

A feature vector is created using values retrieved from the 
Kinect sensor. This vector may need to be centered using a 
reference point and then normalized using a specific 
anthropomorphic feature of the person. Normalization insures 
the scale invariance of the processed data (for example the 
height of a person). Training sequences Yq are created for 
every gesture needed to be recognized. During a gesture, M 
temporal instances of the feature vector are registered (M 
depends on the duration of the gesture). In order to cope with 
the inter/intra person gesture execution variability up to six 



 

time series are registered per gesture (labeled with the same 
gesture class). Finally, DTW can be applied on a test sequence 
X. This procedure tries to find the best match (warping path) 
between a subset of M temporal instances of X and every set 
Yq.   

1) Body and fingers gestures recognition 
1. A feature vector is created using the coordinates of the 

upper body joints / fingertips. These are 3D points. The 
Kinect SDK can return up to 20 body joint coordinates 
(3D points) for a person for every frame.  The algorithm 
described in [17] can retrieve up to 6 points (5 fingers 
and the center of the palm) for both hands of a person. 

2. A reference point is chosen - middle point of the 
segment between the two shoulders joints / the center of 

the palm  (Ur, Vr, Zr) 

3. The joints / fingertips coordinates (Ui, Vi, Zi) (i = 1..J / J 
- the number of control points) are centered against the 
reference point:  

Ui
c = Ui - Ur 

Vi
c = Vi - Vr 

Zi
c = Zi - Zr 

4. The centered coordinates are normalized using the 
Euclidian distance between the joints of the shoulders /  
the center of the palm and the elbow. The set (Ui

n, Vi
n, 

Zi
n) is obtained. The feature vector has the following 

form:  
v3D = {(Ui

n, Vi
n, Zi

n), i = 1..J} 

5. A training sequence is created for every gesture that 
needs to be recognized. During a gesture, M temporal 
positions of the body members / fingers are registered:              

Yq = { ⋃ (Ui
n,M

k=1 Vi
n , Zi

n), i = 1 .. j}, q = 1..N  

      where: N – is the number of  recognizable gestures.  

6. The DTW algorithm is applied on a test sequence X in 
order to recognize a specific body/hand gesture. 

2) Facial gestures recognition 
1. A feature vector/set is created using the animation units 

(AU) for a temporal instance : 

  V2D-face-AU = (AU0, AU1, AU2, AU3, AU4, AU5)  

2. A training sequence is created for every gesture that 
needs to be recognized. During a gesture M temporal 
instances of the feature vector’s AUs are registered:  

 Yq= ⋃ (AU0, AU1, AU2, AU3, AU4, AU5),  q = 1..NM
K=1 , 

 where: N – is the number of  recognizable gestures.  

3. The DTW algorithm is applied on a test sequence X in 
order to recognize a specific facial gesture. 

3) Head gestures recognition 
To recognize head gestures we follow the same steps as for 

facial gestures recognition. The only difference is that the 
feature vector is created using the rotation angles of the head: 
VHead_Rotation= (X, Y, Z).  

B. Static gesture recognition using the Naïve Bayes classifier 

The WEKA tool [33] is used to create classification models 
for programmatic use. These models can be manipulated and 
used to evaluate data. The result of the evaluation indicates if a 
static gesture is recognized or not. The same data structure that 
is used for dynamic gestures can be used to create the 
classification models for static gestures.  

The following process is applied for every category of 
static gestures (body, fingers or face static gestures): 

1. Training data is created using feature vectors captured 
over multiple frames for every static gesture. The 
feature vectors are normalized. 

2. An initial model is created using the training data, the 
Naïve Bayes classifier and 10-fold cross-validation. 

3. The model is loaded into the system. 

4. For every frame the system can recognize static 
gestures by running normalized test feature vectors 
against the trained model. 

V. TESTING AND VALIDATION 

We tested the recognition of dynamic gestures and also 
postures (static gestures). Due to the limited space in the 
paper’s presentation, only the results for the quantitative 
evaluation of the body and facial gestures recognition are 
presented here. A qualitative assessment of the results for all 
types of static and dynamic gestures recognition can be 
watched in some test movies at the links provided at the end of 
the paper (Media Files section).  

In order to assess the performance of the system the 
confusion matrix was used. The following gestures were tested 
during the evaluation: 

 8 types of body dynamic gestures :  
a = Left_Hand_Goes_Up  
b = Left_Hand_Goes_To_The_Left 
c = Left_Hand_Goes_To_The_Right 
d = Right_Hand_Goes_Up 
e = Right_Hand_Goes_To_The_Left 
f = Right_Hand_Goes_To_The_Right 
g = Both_Hands_Go_Up 
h = Both_Hands_Go_Down 

 8 type of body static gestures (postures):  
a = Left_Hand_Up 
b= Left_Hand_To_The_Left 
c = Left_Hand_To_The_Right 
d = Right_Hand_Up 
e = Right_Hand_To_The_Left 
f = Right_Hand_To_The_Right 
g = Both_Hands_Up,  
h = Both_Hands_Down 

 5 types of face dynamic gestures/static expressions:  
a = Neutral    
b = Yawn  
c = Make_Frowny_Face   
d = Be_Happy   
e = Raise_Eyebrows. 

The attributes used for body gestures / postures are: 
HandLeft_X, HandLeft_Y, HandLeft_Z, WristLeft_X, WristLeft_Y, WristLeft_Z, 
ElbowLeft_X, ElbowLeft_Y, ElbowLeft_Z, ElbowRight_X, ElbowRight_Y, 
ElbowRight_Z, WristRight_X, WristRight_Y, WristRight_Z, HandRight_X, 
HandRight_Y, HandRight_Z. 



 

The attributes used for face gestures / expressions are: 
BrowLover, BrowRaiser, JawLower, LipCornerDepressor, LipRaiser, 
LipStretcher. 

A. Testing the classifiers 

We captured 198 frames of data (or feature vectors that 
contain normalized attributes) for every type of static gesture, 
in order to cope with the intra/inter person gesture execution 
variability. We used the WEKA tool to train the models. The 
total number of trained instances for body gestures was 1584 
(198 frames x 8 gestures) and for face gestures was 990 (198 
frames x 5 gestures). After testing multiple classifiers we 
decided to choose the Naïve Bayes classifier (i.e. tables I and 
II present such a comparison between the Naïve Bayes and 
Lazy LWL classifiers). Tables III and VI show the Naïve 
Bayes classifier performance for the provided training data set. 

TABLE I.  COMPARISON BETWEEN CLASSIFIERS WHEN LEARNING BODY 

POSTURES  

Classifier 

Attribute 

Naïve Bayes Lazy  LWL  

Total number of instances 1584 1584 

Attributes 18 18 

Test options 10-fold cross-valid. 10-fold cross-valid. 

Correct classified instances 1584   100 % 1581   99.9369 % 

Wrong classified instances 0     0 % 1    0.0631 % 
Kappa statistic 1 0.9993 

Mean absolute error 0 0.0745 

Root mean squared error 0 0.1415 

Relative absolute error 0  % 34.0365  % 

Root relative squared error 0  % 42.7787  % 

TABLE II.  COMPARISON BETWEEN CLASSIFIERS WHEN LEARNING FACE 

EXPRESSIONS 

Classifier 

Attribute 

Naïve Bayes Lazy  LWL  

Total number of instances 990 990 

Attributes 6 6 

Test options 10-fold cross-valid. 10-fold cross-valid. 

Correct classified instances 982    99.1919 % 980 98.9899 % 

Wrong Classified instances 8     0.8081 % 10 1.0101 % 

Kappa statistic 0.9899 0.9874 

Mean absolute error 0.0079 0.113 

Root mean squared error 0.0554 0.2152 

Relative absolute error 1.437  % 35.32.39 % 

Root relative squared error 13.8426  % 53.7905  

TABLE III.  CLASSIFIER PERFORMANCE FOR STATIC FACE EXPRESSIONS 

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER  

Class 
code 

TP 
Rate 

FP 
RATE 

Precision Recall F-
Measure 

ROC 
Area 

Class name 

a 0.985 0.006 0.975 0.985 0.98 0.999 Neutral 

b 1 0 1 1 1 1 Yawn 

c 1 0 1 1 1 1 Frowny_Face 

d 0.99 0.004 0.985 0.99 0.987 1 Happy 

e 0.99 0 1 0.985 0.992 1 Raise_Eyebrows 

Avg. 0.992 0.002 0.992 0.992 0.992 1  

TABLE IV.  CLASSIFIER PERFORMANCE FOR BODY POSTURES 

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER  

Class 
code 

TP 
Rate 

FP 
RATE 

Prec. Recall F-
Measure 

ROC 
Area 

Class name 

a 1 0 1 1 1 1 Left_Hand_Up 

b 1 0 1 1 1 1 Left_Hand_To_The_L 

c 1 0 1 1 1 1 Left_Hand_To_The_R 

d 0.995 0 1 0.995 0.997 0.995 Right_Hand_Up 

e 1 0 1 1 1 1 Right_Hand_To_The_L 

f 1 0.001 0.995 1 0.997 1 Right_Hand_To_The_Ri 

g 1 0 1 1 1 1 Both_Hands_Up 

h 1 0 1 1 1 1 Both_Hands_Down 

Avg. 0.999 0 0.999 0.999 0.999 0.999  

B. Testing the System 

The following methodology was used to test the system: 

 Record a series of static and dynamic gestures for two 
different persons executing the gestures/postures in front 
of the Kinect camera. 

 In order to cope with the inter/intra person gesture 
execution variability, each person’s gesture execution 
was tested/repeated for about 20 times. 

 Set the Kinect sensor to: near mode and seated (we are 
interested only in the upper body joints). 

1) Testing static gestures using the Naïve Bayes classifier 
For the body postures/facial expressions the test scenarios 

contained the following key points: 

 5 types of facial and 8 types of body postures 
expressions (as shown in Fig. 3 and 4) were tested. 

 Every person should remain approximately in the same 
position / have the same expression for at least a few 
frames in order to consider the gesture as recognized. 

 

Fig. 3. Examples of tested static face gestures/expressions. 

 

Fig. 4. Examples of tested static body gestures/postures. 

 The system’s performance for static gestures/expressions is 
shown in the form of the confusion matrix and precision  
(positive predictive value): PPV=TP/(TP+FP) [34] (Tables V 
and VI). The recognition of facial gestures a, c and d 
obtained a lower PPV compared with b and e because the 
degree of similarity between them is higher. This can be 
observed from the confusion matrix: a was recognized as c 6 
times and as d 3 times,  d was recognized as c 5 times and c 
was recognized as d 4 times. 



 

TABLE V.  SYSTEM PERFORMANCE FOR FACE EXPRESSIONS 

RECOGNITION USING THE NAÏVE BAYES CLASSIFIER (CONFUSION MATRIX 

AND PRECISION/PPV) 

a b c d e  TP FP PPV[%] 

27 2 6 3 2 a 27 13 67,5 

0 31 3 3 3 b 31 9 77,5 

3 2 28 4 3 c 28 12 70 

4 2 5 27 2 d 27 13 67,5 

4 0 2 1 33 e 33 7 82,5 

38 37 44 38 43 Total 146 54 73 

TABLE VI.  SYSTEM PERFORMANCE FOR BODY POSTURES RECOGNITION 

USING THE NAÏVE BAYES CLASSIFIER (CONFUSION MATRIX AND 

PRECISION/PPV) 

a b c d e f g h  TP FP PPV[%] 

31 3 4 0 0 0 2 0 a 31 9 77,5 

3 31 3 0 1 0 0 2 b 31 9 77,5 

5 3 27 0 1 0 0 4 c 27 13 67,5 

0 0 1 32 3 1 3 0 d 32 8 80 

0 0 1 3 28 4 3 1 e 28 12 70 

0 0 0 1 2 30 3 4 f 30 10 75 

3 1 1 2 0 0 33 0 g 33 7 82.5 

0 1 2 1 2 1 0 33 h 33 7 82.5 

42 39 39 39 37 36 44 44 Total 245 75 76,5 

 

2) Testing dynamic gestures using the DTW algorithm 
For the dynamic body and facial gestures the test scenarios 

contained the following key points: 

 5 types of dynamic facial gestures and 8 types of 
dynamic body gestures (as defined at the beginning of 
chapter)  

 Every gesture tested consisted in a time series of 32 
frames (sets of feature vectors) 

 Each test sequences was compared with the registered 
instance using the DTW algorithm 

The system’s performance for dynamic gestures is shown 
in the form of the confusion matrix and PPV (tables VII and 
VIII): 

TABLE VII.  SYSTEM PERFORMANCE FOR DYNAMIC FACE GESTURES 

RECOGNITION (CONFUSION MATRIX AND PRECISION/PPV) 

a b c d e  TP FP PPV[%] 

29 1 5 3 2 a 29 11 72,5 

1 33 2 2 2 b 33 7 82,5 

4 1 28 5 2 c 28 12 70 

6 1 4 27 2 d 27 13 67,5 
2 1 2 3 32 e 32 8 80 

42 37 41 40 40 Total 149 51 74,5 

TABLE VIII.  SYSTEM PERFORMANCE FOR DYNAMIC BODY GESTURES 

RECOGNITION (CONFUSION MATRIX AND PRECISION/PPV) 

a b c d e f g h  TP FP PPV[%] 

34 3 2 0 0 0 1 0 a 34 6 85 

3 33 3 0 1 0 0 0 b 33 7 82,5 

3 4 27 0 4 0 1 1 c 27 13 67,5 

0 0 1 32 3 3 1 0 d 32 8 80 

0 0 4 4 26 4 1 1 e 26 14 65 

0 0 0 1 4 34 1 0 f 34 6 85 

2 0 0 2 1 0 35 0 g 35 5 85,5 

0 0 1 0 2 0 0 37 h 37 3 92,5 

42 40 38 39 41 41 40 39 Total 258 62 80,6 

 
The results are encouraging considering the small size of the 

training data. From our observations during testing, the size of 

the training data and the degree of similarity between gestures 
dictates the PPV up to a point. 

VI. CONCLUSIONS 

The implemented system represents a typical interface for 
the natural human computer interaction paradigm, without the 
help of classical peripherals like mousses or keyboards. The 
system can recognize static gestures (body postures / facial 
expressions) and more complex dynamic gestures in real time 
at up to 30 frames per second. 

The recognition of dynamic gestures was done using the 
Dynamic Time Warping (DTW) algorithm applied on series of 
3D features provided by the Kinect SDK (skeleton joints) or 
inferred from the depth map (finger tips). For facial gestures, 
the animation units (AUs) provided by the Kinect SDK were 
used. 

The recognition of static gestures was done by 
implementing a Naïve Bayes classifier model using the WEKA 
tool. The same data structures that were used for dynamic 
gestures recognition were used to create the classification 
models for the static gestures. 

Regarding the performance of the dynamic body gestures 
recognition method, the obtained results are similar with the 
ones presented in [14]. Regarding the static body gesture 
recognition method, our approach outperformed with about 
20% the results reported in [15] in the case of the Naïve Bayes 
classifier, even for far more complex static gestures/postures. 
The better performance of other classification methods (i.e. 
backpropagation, neural networks, support vector machines, 
decision trees - as reported in [15] and [16]) will be further 
investigated for our complex gestures set and our real time 
constraints. 

For the facial expressions and gestures the recognition 
performance was a little bit (3 % for the static approach and 6 
% for dynamic approach) lower. This can be explained due to  
the increased complexity and variability of the face appearance 
and consequently lower error margins for the face features 
(AUs) computation that were reflected in the classification and 
DTW models. No similar method based on the Kinect’s facial 
features was found in literature for a quantitative performance 
comparison of the method. 

After performing validation test on several scenarios the 
following conclusions can be drawn: 

 The degree of similarity/dissimilarity between gestures 
has an important impact on the recognized gestures 
precision/PPV.  

 The system proved reliable because it has a good 
gestures recognition precision/PPV even if the system 
wasn't intensively taught with multiple persons.  

 To improve the precision of the recognized gestures the 
system must be trained with multiple persons. Every 
person should perform the entire set of gestures 
multiple times.  

 The application presents a high level of usability 
because it has a graphical interface that is easy to learn 
and use. 



 

The algorithms that were implemented can be further 
improved. Such an improvement would be the changing of the 
DTW algorithm with its faster version FastDTW [26]. This 
version has linear time and space complexity and it uses a 
multilevel approach that recursively projects a solution from a 
coarser resolution and refines the projected solution. Another 
improvement is to add the possibility of using multiple Kinect 
sensors to provide input for the system (we may run into some 
interference problems [35]). Another idea would be to make 
the recognition mechanism be accessible as a web service. This 
would enable us to provide gesture recognition services 
deployed in cluster architecture. The performance would be 
significantly improved and would make the Kinect sensor be 
interchangeable with another type of depth camera.  

MEDIA FILES 

Results for static gestures recognition (classification 
approach): 

 Body static gestures: https://vimeo.com/128776557 

 Face static gestures: https://vimeo.com/128776558 

 Finger static gestures: https://vimeo.com/128776559 

Results for dynamic gestures recognition (DTW approach). 
Results of the static gestures recognition performed on 
individual frames are also shown for some gestures categories: 

 Body dynamic gestures: https://vimeo.com/128787791 

 Face dynamic gestures: https://vimeo.com/128787795 

 Fingers dynamic gestures: https://vimeo.com/128787793 

 Head orientation dynamic: https://vimeo.com/128787794 
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