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Abstract. This paper presents a prototype system for pedestrian detec-
tion on-board a moving vehicle. The system uses a generic two-step ap-
proach for eÆcient object detection. In the �rst step, contour features are
used in a hierarchical template matching approach to eÆciently "lock"
onto candidate solutions. Shape matching is based on Distance Trans-
forms. By capturing the objects shape variability by means of a template
hierarchy and using a combined coarse-to-�ne approach in shape and pa-
rameter space, this method achieves very large speed-ups compared to a
brute-force method. We have measured gains of several orders of mag-
nitude. The second step utilizes the richer set of intensity features in
a pattern classi�cation approach to verify the candidate solutions (i.e.
using Radial Basis Functions). We present experimental results on pedes-
trian detection o�-line and on-board our Urban TraÆc Assistant vehicle
and discuss the challenges that lie ahead.

1 Introduction

We are developing vision-based systems for driver assistance on-board vehicles
[7]. Safety and ease-of-use of vehicles are the two central themes in this line of
work. This paper focusses on the safety aspect and presents a prototype system
for the detection of the most vulnerable traÆc participants: pedestrians. To
illustrate the magnitude of the problem, consider the numbers for Germany:
more than 40.000 pedestrians were injured in 1996 alone due to collisions with
vehicles [6]. Of these, more than 1000 were fatal injuries. Our long-term goal is to
develop systems which, if not avoid these accidents altogether, at least minimize
their severity by employing protective measures in case of upcoming collisions.

An extensive amount of computer vision work exists in the area of "Looking-
at-People", see [8] for a recent survey. The pedestrian application on-board ve-
hicles is particulary diÆcult for a number of reasons. The objects of interest
appear in highly cluttered backgrounds and have a wide range of appearances,
due to body size and poses, clothing and outdoor lighting conditions. They stand
typically relatively far away from the camera, and thus appears rather small in
the image, at low resolution. A major complication is that because of the mov-
ing vehicle, one does not have the luxury to use simple background subtraction



methods to obtain a foreground region containing the human. Furthermore, there
are hard real-time requirements for the vehicle application which rule out any
brute-force approaches.

The outline of this paper is as follows. After reviewing past work on pedes-
trian detection, in Section 2, we present an eÆcient two-step approach to this
problem. The Chamfer System, a system for shape-based object detection based
on multi-feature hierarchical template matching, is described in Section 3. The
following Section 4 deals with a Radial Basis Function (RBF)-based veri�cation
method employed to dismiss false-positives. Special measures are taken to obtain
a "high-quality" training set. Section 5 lists the experiments on pedestrian de-
tection; it is followed by a discussion of the challenges that lie ahead, in Section
6. We conclude in Section 7.

2 Previous Work

Most work on pedestrian detection [8] has taken a learning-based approach,
bypassing a pose recovery step altogether and describing human appearance in
terms of simple low-level features from a region of interest. One line of work has
dealt speci�cally with scenes involving people walking laterally to the viewing
direction. Periodicity has provided a quite powerful cue for this task, either
derived from optical 
ow [17] or raw pixel data [5]. Heisele and W�ohler [10]
describe ways to learn the characteristic gait pattern using a Time-Delay Neural
Network with local receptive �elds; their method is not based on periodicity
detection and extends to arbitrary motion patterns.

A crucial factor determining the success of the previous learning methods is
the availability of a good foreground region. Standard background subtraction
techniques are of little avail because of a moving camera; here, independent mo-
tion detection techniques can help [17], although they are diÆcult to develop,
themselves. Yet, given a correct initial foreground region, some of the burden
can be shifted to tracking. For example, work by Baumberg and Hogg [2] applied
Active Shape Models, based on B-splines, for tracking pedestrians. The inter-
esting feature of this approach is that the Active Shape Models only deform in
a way consistent with the training set; they can be combined with scale-space
matching techniques to increase their coverage in image space [3]. In other work
[10], color clusters are tracked over time; a pre-selection technique is used to
identify the clusters that might correspond to the legs. Work by Curio et al.
[4] uses a general- purpose tracker based on the Hausdor� distance to track the
edges of the legs. Rigoll, Winterstein and M�uller [18] perform Kalman �ltering
on a HMM-based representation of pedestrians.

A complementary problem is to detect pedestrians whilst they stand still.
A system that can detect pedestrians in static images is described in [15]. It
basically shifts windows of various sizes over the image, extracts an overcomplete
set of wavelet features from the current window, and applies a Support Vector
Machine (SVM) classi�er to determine whether a pedestrian is present or not.



The proposed system is, like [15], applied on pedestrian detection in static
images. However, the brute-force window sliding technique used there is not
feasible for real-time vision onboard vehicles, because of the large computational
cost involved. We propose a shape-based system that does not require a region
of interest, yet can very quickly "lock" onto desired objects, using an eÆcient
coarse-to-�ne technique based on distance transforms. The pattern classi�cation
approach is only applied at the second stage, for veri�cation, allowing realtime
performance. The resulting system is generic can been applied to other object
recognition tasks as well.

3 Detection: The Chamfer System

We now discuss the basics and extensions of the Chamfer System, a system for
realtime shape-based object detection.

3.1 Basics

At the core of the proposed system lies shape matching using distance transforms
(DT) [11]. Consider the problem of detecting pedestrians in an image (Figure
1a). Various object appearances are modeled with templates such as in Figure
1b. Matching template T and image I involves computing the feature image of
I , (Figure 1c) and applying a distance transform to obtain a DT-image (Figure
1d).

A distance transform converts a binary image, which consists of feature and
non-feature pixels, into an image where each pixel value denotes the distance to
the nearest feature pixel. A variety of DT algorithms exist, di�ering in their use
of a particular distance metric and the way local distances are propagated. The
chamfer transform, for example, computes an approximation of the Euclidean
distance using integer arithmetic, typically in raster-scan fashion [1].

After computing the distance transform, the relevant template T is trans-
formed (e.g. translated) and positioned over the resulting DT image of I ; the
matching measure D(T; I) is determined by the pixel values of the DT image
which lie under the "on" pixels of the transformed template. These pixel values
form a distribution of distances of the template features to the nearest features
in the image. The lower these distances are, the better the match between im-
age and template at this location. There are a number of matching measures
that can be de�ned on the distance distribution; one possibility is to use simple
averaging. Other more robust (and costly) measures reduce the e�ect of miss-
ing features (i.e. due to occlusion or segmentation errors) by using the average
truncated distance or the f -th quantile value (the Hausdor� distance), e.g. [11].

For eÆciency purposes, we use in our work the average chamfer distance

Dchamfer(T; I) �
1

jT j

X

t2T

dI(t) (1)
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Fig. 1. (a) original image (b) template (c) edge image (d) DT image

where jT j denotes the number of features in T and dI(t) denotes the chamfer
distance between feature t in T and the closest feature in I .

In applications, a template is considered matched at locations where the
distance measure D(T; I) is below a user-supplied threshold �

D(T; I) < � (2)

The advantage of matching a template with the DT image rather than with
the edge image is that the resulting similarity measure will be smoother as a
function of the template transformation parameters. This enables the use of an
eÆcient search algorithm to lock onto the correct solution, as will be discussed
shortly. It also allows some degree of dissimilarity between a template and an
object of interest in the image.

3.2 Extensions

The main contribution of the Chamfer System is the use of a template hierarchy
to eÆciently match whole sets of templates. These templates can be geometrical
transformations of a reference template, or, more general, be examples capturing
the set of appearances of an object of interest (e.g. pedestrian). The underlying
idea is to derive a representation o�-line which exploits any structure in this



template distribution, so that, on-line, matching can proceed optimized. More
speci�cally, the aim is to group similar templates together and represent them
two entities: a "prototype" template and a distance parameter. The latter needs
to capture the dissimilarity between the prototype template and the templates
it represents. By matching the prototype with the images, rather than the indi-
vidual templates, a typically signi�cant speed-up can be achieved on-line. When
applied recursively, this grouping leads to template hierarchy, see Figure 2.

Fig. 2. A hierarchy for pedestrian shapes (partial view)

The above ideas are put into practice as follows. O�ine, a template hierarchy
is generated automatically from available example templates. The proposed algo-
rithm uses a bottom-up approach and applies a partitional clustering algorithm
at each level of the hierarchy. The input to the algorithm is a set of templates
t1; :::; tN, their dissimilarity matrix (see below) and the desired partition size K.
The output is the K-partition and the prototype templates p1; :::;pK for each
of the K groups S1; :::; SK . The K-way clustering is achieved by iterative opti-
mization. Starting with an initial (random) partition, templates are moved back
and forth between groups while the following objective function E is minimized

E =

KX

k=1

max
ti2Sk

D(ti;p
�

k) (3)

Here, D(ti;p
�

k
) denotes the distance measure between the i-th element of group

k and the prototype for that group at the current iteration, p�
k
. The distance

measure is the same as the one used for matching (e.g. chamfer or Hausdor�



distance). Entry D(i; j) is the ijth member of the dissimilarity matrix, which
can be computed fully before grouping or only on demand.

One way of choosing the prototype p�
k
is to select the template with the

smallest maximum distance to the other templates. A low E-value is desirable
since it implies a tight grouping; this lowers the distance threshold that will be
required during matching (see also Equation 5) which in turn likely decreases
the number of locations which one needs to consider during matching. Simulated
annealing [13] is used to perform the minimization of E.

Online, matching can be seen as traversing the tree structure of templates.
Each node corresponds to matching a (prototype) template p with the image at
some particular locations. For the locations where the distance measure between
template and image is below a user-supplied threshold �p, one computes new
interest locations for the children nodes (generated by sampling the local neigh-
borhood with a �ner grid) and adds the children nodes to the list of nodes to
be processed. For locations where the distance measure is above the threshold,
search does not propagate to the sub-tree; it is this pruning capability that brings
large eÆciency gains. Initially, the matching process starts at the root and the
interest locations lie on a uniform grid over relevant regions in the image. The
tree can be traversed in breadth-�rst or depth-�rst fashion. In the experiments,
we use depth-�rst traversal, which has the advantage that one needs to maintain
only L� 1 sets of interest locations, with L the number of levels of the tree.

Let p be the template corresponding to the node currently processed during
traversal at level l and let C = ft1; :::; tcg be the set of templates correspond-
ing to its children nodes. Let Æp be the maximum distance between p and the
elements of C.

Æp = max
ti2C

D(p; ti) (4)

Let �l be the size of the underlying uniform grid at level l in grid units, and let �
denote the distance along the diagonal of a single unit grid element. Furthermore,
let �tol denote the allowed shape dissimilarity value between template and image
at a \correct" location. Then by having

�p = �tol + Æp +
1

2
��l (5)

one has the desirable property that, using untruncated distance measures such
as the chamfer distance, one can assure that the coarse-to-�ne approach using
the template hierarchy will not miss a solution. The thresholds one obtains by
Equation (5) are very conservative, in practice one can use lower thresholds to
speed up matching, at the cost of possibly missing a solution (see Experiments).

4 Veri�cation: RBF-based pattern classi�cation

As result of the initial detection step, we obtain a (possibly empty) set of candi-
date solutions. The latter are described by a template id and the particular image
location where the match was found. The veri�cation step consists of revisiting



the original image, extracting a rectangular window region corresponding to the
bounding box of the template matched, normalizing the window for scale, and
employing a local approximator based on Radial Basis Functions (RBFs) [16] to
classify the resulting M �N pixel values.

While training the RBF classi�er, RBF centers are set in feature space by
an agglomerative clustering procedure applied on the available training data.
Linear ramps, rather than Gaussians, are used as radial functions, for eÆciency
purposes. Two radius parameters specify each such ramp, the radius where the
ramp initiates (descending from the maximum probability value) and the radius
where the ramp is cut o� (after which probability value is set 0). These param-
eters are set based on the distance to the nearest reference vector of the same
class and to that of the nearest reference vector of one of the other classes, in a
manner described in [14]. The recall stage of the RBF classi�er consists of sum-
ming probabilities that an unknown feature vector corresponds to a particular
class, based on the contributions made by the various RBF centers.

One quickly realizes that the two classes involved (i.e. pedestrian and non-
pedestrian) have quite di�erent properties. The pedestrian class is comparably
well localized in feature space, while the non-pedestrian class is wide spread-out.
Our aim is to accurately model the target class, the pedestrians, while mapping
the vast region of non-pedestrian is both impractical and unnecessary. The only
instances of the non-pedestrian class really needed are those which lie close to
the imaginary border with the target class. In order to �nd these, an incremental
bootstrapping procedure is used, similar to [15]. This procedure adapts at each
iteration the RBF classi�er based on its performance of a new batch of no-target
data. It only adds the non-target class examples which were classi�ed incorrectly
to the training set; then, it retrains the RBF classi�er.

We take incremental bootstrapping a step further and integrate the detection
system into the loop, re
ecting the actual system coupling between detection
and veri�cation. Each batch of new non-target data is thus pre�ltered by the
detection unit, which will introduce a useful additional bias towards samples
close to the imaginary target vs. non-target border in feature space.

5 Experiments

Experiments with pedestrian detection were performed o�-line as well as on-
board the Urban TraÆc Assistant (UTA) demo vehicle.

We compiled a database of about 1250 distinct pedestrian shapes at a given
scale; this number doubled when mirroring the templates across the y-axis. On
this set of templates, an initial four-level pedestrian hierarchy was built, follow-
ing the method described in the previous Section. In order to obtain a more
compact representation of the shape distribution and provide some means for
generalization, the leaf level was discarded, resulting in the three-level hierarchy
used for matching (e.g. Figure 2) with about 900 templates at the new leaf level,
per scale. Five scales were used, with range 70-102 pixels.



A number of implementation choices improved the performance and robust-
ness of the Chamfer System, e.g. the use oriented edge features, template subsam-
pling, multi-stage edge segmentation thresholds and ground plane constraints.
Applying SIMD processing (MMX) to the main bottlenecks of the system, dis-
tance transform computation and correlation, resulted in a speed-up of factor
3-4. See [9].

Our preliminary experiments on a dataset of 900 images with no signi�cant
occlusion (distinct from the sequences used for training) showed detection rates
in the 60-90 % range using the Chamfer System alone. With this setting, we ob-
tained a handful of false detections solutions per image, of which approximately
90 % were rejected by the RBF classi�er, at a cost of falsely rejecting 15 % of
the pedestrians correctly detected by the Chamfer System.

Figure 3 illustrates some candidate solutions generated by the Chamfer Sys-
tem. Figure 4 shows intermediate results; matches at various levels of the tem-
plate hierarchy are illustrated in white, grey and black for the �rst, second
and leaf level, respectively. We undertook various statistics on our dataset, one
of which is shown in Figure 5. It shows the cumulative distribution of average
chamfer distance values on the path from the root to the "correct" leaf template.
The correct leaf template was chosen as the one among the training examples to
be most similar with the shape labeled by the human for a particular image. It
was Figure 5, rather than Equation (5), that was used to determine the distance
thresholds at the nodes of the template hierarchy. For example, from Figure 5
it follows that by having distance thresholds of 5.5, 4.1 and 3.1 for nodes at the
�rst, second and leaf level of the hierarchy, each level passes through about 80%
of the correct solutions. Figure 5 provides in essence an indication of the quality
of the hierarchical template representation (i.e. how well the templates at the
leaf level represent the shape distribution and good the clustering process is).

In general, given image width W , image height H , and K templates, a brute-
force matching algorithm would requireW�H�K correlations between template
and image. In the presented hierarchical approach both factors W �H and K

are pruned (by a coarse-to-�ne approach in image space and in template space).
It is not possible to provide an analytical expression for the speed-up, because
it depends on the actual image data and template distribution. Nevertheless, for
this pedestrian application, we measured speed-ups of three orders of magnitude.

The Urban TraÆc Assistant (UTA) vehicle (Figure 7) is the DaimlerChrysler
testbed for driver assistance in the urban environment [7]. It showcases the
broader Intelligent Stop & Go function, i.e. the capability to visually "lock" onto
a leading vehicle and autonomously follow it, while detecting relevant elements
of the traÆc infrastructure (e.g. lane boundaries, traÆc signs, traÆc lights).
Detected objects are visualized in a 3-D graphical world in a way that mimicks
the con�guration in the real world. See Figure 7a. The pedestrian module is a
recent addition to UTA. It is being tested on traÆc situations such as shown
in Figure 8, where, suddenly, a pedestrian crosses the street. If the pedestrian
module is used in isolation, the system runs at approximately 1 Hz on a dual-
Pentium 450 MHz with MMX; 3-D information can be derived from the 
at-



world assumption. In the alternate mode of operation the stereo-module in UTA
is used to provide a region of interest for the Chamfer System; this enables a
processing speed of about 3 Hz.

For updated results (including video clips) the reader is referred to the au-
thor's WWW site www.gavrila.net.

6 Discussion

Though we have been quite successfull with the current prototype pedestrian
system, evidently, we only stand at the beginning of solving the problem with
the degree of reliability necessary to actually deploy such a system. A number
of issues remain open in the current system. Starting with the Chamfer System,
even though it uses a multi-stage edge segmentation technique, matching is still
dependend on a reasonable contour segmentation. Furthermore, the proposed
template-based technique will not be very suitable for detecting pedestrians very
close to the camera. Currently, a multi-modal shape tracker is being developed
(i.e. [12]) to integrate results over time and improve overall detection perfor-
mance; single-image detection rates of 50% might not be problematic after all.
Regarding the veri�cation stage, the choice for a RBF classi�er is probably not
a determining factor; it would be indeed interesting to compare its performance
with that of a Support Vector Machine [15].

The experiments indicated that detection performance varied considerably
over parts of our database, according to the degree of contrast. Once the database
is extended to include partially occluded pedestrians, or pedestrians at night,
this variability is only going to increase, increasing the challenge how to report
the detection performance in a representative manner. Also, larger test sets will
be needed; we will have an enlarged pedestrian database of 5000 images with
ground truth (i.e. labeled pedestrian shapes) in the near future.

7 Conclusions

This paper presented a working prototype system for pedestrian detection on-
board a moving vehicle. The system used a generic two-step approach for eÆ-
cient object detection. The �rst step involved contour features and a hierarchical
template matching approach to eÆciently "lock" onto candidate solutions. The
second step utilized the richer set of intensity features in a pattern classi�cation
approach to verify the candidate solutions (i.e. using Radial Basis Functions). We
found that this combined approach was able to deliver quite promising results for
the diÆcult problem of pedestrian detection. With further work on (e.g. tempo-
ral integration of results, integration with stereo/IR) we hope to come closer to
the demanding performance rates that might be required for actual deployment
of such a system.
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Fig. 3. Pedestrian detection results obtained by the Chamfer System
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Fig. 5. Cumulative distribution of average chamfer distance values on the path from
the root to the "correct" leaf template: �rst (right curve), second (middle curve) and
leaf level (left curve).

This article was processed using the LATEX macro package with LLNCS style



Fig. 6. RBF-based veri�cation: accepted (top row) and rejected (bottom row) candi-
date solutions



(a)

(b)

Fig. 7. The Urban TraÆc Assistant (UTA) demonstration vehicle: (a) inside and (b)
outside view

Fig. 8. A potentially dangerous traÆc situation: a pedestrian suddenly crossing the
street


