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Abstract. This paper addresses robust feature tracking. We extend the Shi-Tomasi-Kanade scheme by
introducing a technique for rejecting spurious features. We employ a simple and efficient outlier rejection
rule, called X84, and prove that its theoretical assumptions are satisfied in the feature tracking scenario.
Experiments with real and synthetic images confirm that our algorithm makes good features to track
better; we show a quantitative example of the advantages of the algorithm for the case of fundamental
matrix estimation.

1 Introduction

Feature tracking is an important issue in computer vision, as many algorithms rely on the accurate com-
putation of correspondences through a sequence of images [9, 13, 17]. When an image sequence is
acquired and sampled at a sufficiently high time frequency, frame-to-frame disparities are small enough
to make optical-flow techniques viable [1]. If frame-to-frame disparities are large (e.g., the images are
taken from quite different viewpoints), stereo matching techniques [3] are used instead, often in com-
bination with Kalman filtering [7, 10, 16]. Robust tracking means detecting automatically unreliable
matches, or outliers, over an image sequence (see [8] for a survey of robust methods in computer vi-
sion). Recent examples of such robust algorithms include [15], which identifies tracking outliers while
estimating the fundamental matrix, and [14], which adopts a RANSAC approach to eliminate outliers for
estimating the trifocal tensor. Such approaches increase the computational cost of tracking significantly.

This paper concentrates on the well-known Shi-Tomasi-Kanade tracker, and proposes a robust ver-
sion based on an efficient outlier rejection scheme. Building on results from [6], Tomasi and Kanade
[12] introduced a feature tracker based on SSD matching and assuming translational frame-to-frame dis-
placements. Subsequently, Shi and Tomasi [11] proposed an affine model, which proved adequate for
region matching over longer time spans. Their system classified a tracked feature as good (reliable) or
bad (unreliable) according to the residual of the match between the associated image region in the first
and current frames; if the residual exceeded a user-defined threshold, the feature was rejected. Visual
inspection of results demonstrated good discrimination between good and bad features, but the authors
did not specify how to reject bad features automatically.

This is the problem that our paper solves. We extend the Shi-Tomasi-Kanade tracker (Section 2) by
introducing an automatic scheme for rejecting spurious features. We employ a simple, efficient, model-
free outlier rejection rule, called X84, and prove that its assumptions are satisfied in the feature tracking
scenario (Section 3). Experiments with real and synthetic images confirm that our algorithm makes good
features to track better, in the sense that outliers are located reliably (Section 4). We illustrate quantita-
tively the benefits introduced by the algorithm with the example of fundamental matrix estimation. The
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complete code of the robust tracker is available via ftp at:
ftp://taras.dimi.uniud.it/pub/sources/rtrack.tar.gz.

2 The Shi-Tomasi-Kanade tracker

In this section the Shi-Tomasi-Kanade tracker [11, 12] will be briefly described. Consider an image
sequence
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, with

���� ���������������
the coordinates of an image point. If the time sampling frequency

is sufficiently high, we can assume that small image regions are displaced but their intensities remain
unchanged: ����������	������������ 	!���#"%$&	!�

(1)

where
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is the motion field, specifying the warping that is applied to image points. The fast-sampling
hypothesis allows us to approximate the motion with a translation, that is,
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, where

-
is a

displacement vector. The tracker’s task is to compute
-

for a number of selected points for each pair of
successive frames in the sequence.

As the image motion model is not perfect, and because of image noise, Eq. (1) is not satisfied exactly.
The problem is then finding the displacement /- which minimises the SSD residual:0 �214354�����6"%-7����"8$&	 9:����������	;� �

(2)

where < is a small image window centered on the point for which
-

is computed. By plugging the
first-order Taylor expansion of

�����=">-7���?"@$&	
into (2), and imposing that the derivatives with respect to-

are zero, we obtain the linear system A -@��B&�
(3)

where A �2C 3EDGF �� F � F �F � F � F ��IH �JB=�2C 3LK  F � F � � � �
with

FNM �PO&�RQNOS� M �UT(�WVN�YX
. The tracker is based on Eq. (3): given a pair of successive frames, /- is the

solution of (3), that is, /-Z� A\[ � B
, and is used to predict a new (registered) frame. The procedure is

iterated according to a Newton-Raphson scheme, until convergence of the displacement estimates.

2.1 Feature extraction

In this framework, a feature can be tracked reliably if a numerically stable solution to Eq. (3) can be
found, which requires that

A
is well-conditioned and its entries are well above the noise level. In practice,

since the larger eigenvalue is bounded by the maximum allowable pixel value, the requirement is that
the smaller eigenvalue is sufficiently large. Calling ] � and ] � the eigenvalues of

A
, we accept the

corresponding feature if ^`_ba � ] �c� ] �c	ed ] � where ] is a user-defined threshold [11].

2.2 Affine Model

The translational model cannot account for certain transformations of the feature window, for instance
rotation, scaling, and shear. An affine motion field is a more accurate model [11], that is,����� 	7��fg�h"8-��

(4)

where
-

is the displacement, and
f

is a
XgiWX

matrix accounting for affine warping, and can be written asf2�kjl"8m
, with

m6�W n Mpo �
a deformation matrix and

j
the identity matrix. Similarly to the translational

case, one estimates the motion parameters,
m

and
-

, by minimising the residual0 �L1 3q ���rfg�h"8-����s"8$&	t9:���������
	;� �Nu
(5)
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By plugging the first-order Taylor expansion of
���rf ��"P-����!"P$&	

into (5), and imposing that the derivatives
with respect to

m
and

-
are zero, we obtain the linear system��� ���s�

(6)

in which
� �k n ��� n �;� n ��� n ��� n � n � � �

contains the unknown motion parameters, and��� 143 K  � � F � � � F � � � F � � � F � F � F � � � � � � 143 D�� �� � A H �
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Again, Eq. (6) is solved for

�
using a Newton-Raphson iterative scheme. If frame-to-frame affine

deformations are negligible, the pure translation model is preferable (the matrix
f

is assumed to be the
identity).

3 Robust Monitoring

To monitor the quality of the features, the tracker checks the residuals between the first and the current
frame: high residuals indicate bad features which must be rejected. Following [11], we adopt the affine
model, as a pure translational model would not work well with long sequences: too many good features
are likely to undergo significant rotation, scaling or shearing, and would be incorrectly discarded. Non-
affine warping, which will yield high residuals, is caused by occlusions, perspective distorsions and
strong intensity changes (e.g. specular reflections). This section introduces our method for selecting a
robust rejection threshold automatically.

3.1 Distribution of the residuals

We begin by establishing which distribution is to be expected for the residuals when comparing good
features, i.e, almost identical regions. We assume that the intensity

����� ��� 	!���
	
of each pixel in the current-

frame region is equal to the intensity of the corresponding pixel in the first frame
�������(' 	

plus some
Gaussian noise )+*�, �-'R�cV 	 . Hence ����� ��� 	!���
	�9 �������(' 	 *., �-'R�cV 	 u
Since the square of a Gaussian random variable has a chi-square distribution, we obtain ��������� 	!���
	�9:�������(' 	;� � *0/ � � V 	 u
The sum of ) chi-square random variables with one degree of freedom is distributed as a chi-square with) degrees of freedom (as it is easy to see by considering the moment-generating functions). Therefore,
the residual computed according to (2) over a 1 i 1 window < is distributed as a chi-square with 1 �
degrees of freedom: 0 �L1 3q ��������� 	!����	�9:�������(' 	;� � *0/ � � 1 � 	 u (7)

As the number of degrees of freedom increases, the chi-square distribution approximates a Gaussian,
which is in fact used to approximate the chi-square whenever 1 d�2�'

. Therefore, since the window <
associated to each feature is at least 3 i 3 , we can safely assume a Gaussian distribution of the residual
for the good features: 0 *0, � 1 � �YX 1 � 	 u
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3.2 The X84 rejection rule

When the two regions over which we compute the residual are bad features (they are not warped by
an affine transformation), the residual is not a sample from the normal distribution of good features: it
is an outlier. Hence, the detection of bad features reduces to a problem of outlier detection, which is
equivalent to the problem of estimating the mean and variance of the corrupted Gaussian distribution. To
do this, we employ a simple but effective model-free rejection rule, X84 [5], which achieves robustness
by employing median and median deviation instead of the usual mean and standard deviation. This rule
prescribes to reject values which are more than

�
Median Absolute Deviations (MADs) away from the

median:

�����L� ^��	�M�
� 0 M 9 ^��	�o 0 o ��� u (8)

In our case, 0 M are the tracking residuals. A value of
� ��� u X

, under the hypothesis of Gaussian dis-
tribution, is adequate in practice, as it corresponds to about 3.5 standard deviations, and the range �>9 2 u ���?���@"�2 u �����

contains more than the 99.9% of a Gaussian distribution [5]. The rejection rule
X84 has a breakdown point of 50%: any majority of the data can overrule any minority.

3.3 Photometric normalisation

Our robust implementation of the Shi-Tomasi-Kanade tracker incorporates also a normalised SSD matcher
for residual computation. This limits the effects of intensity changes between frames, by subtracting the
average grey level (

���&�����
) and dividing by the standard deviation (

���&�����
) in each of the two regions

considered: 0 �2143 D�� �rf � "%-t	t9�� �
� � 9 ����� 	#9!���
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.
A more elaborate normalisation is described in [2]; [4] reports a modification of the Shi-Tomasi-

Kanade tracker based on explicit photometric models.

4 Experimental results

Fig. 1: First (left) and last frame of the Artichoke sequence.
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We evaluated our tracker in a series of experiments, of which we report only some, for reason of space.
Figure 1 shows the result of the tracking algorithm on the Artichoke sequence, the same used by [13]. It
is a 99-frame sequence (

����'6i��RVcX
pixels), taken by a camera translating in front of the static scene. In

the last frame, filled windows indicate features rejected by the robust tracker. We plotted the residuals of
all features against the frame number (Fig. 2). The residuals of all the 10 features involved in occlusions
become very high and are identified and rejected correctly by X84.
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Fig. 2: Residuals magnitude against frame number for Artichoke. The arrows indicate the thresh-
old (0.00004) set automatically by X84.

To illustrate quantitatively the benefits of our robust tracker, we used the feature tracked by robust
and non-robust versions of the tracker to compute the fundamental matrix between the first and last
frame of four sequences (not shown here), then computed the RMS distance of the tracked points from
the corresponding epipolar lines, using Zhang’s code [17] (if the epipolar geometry is estimated exactly,
all points should lie on epipolar lines). The results are shown in Table 1. In all cases, the robust tracker
brings a decrease in the RMS distance.

Artichoke Hotel House Stairs Platform
All 1.40 0.59 0.97 0.66 1.49
X84 0.19 0.59 0.96 0.15 1.49

Table 1: RMS distance of points from epipolar lines. The first row gives the distance using all the
features tracked, the second using only the features kept by X84.

5 Conclusions

We have presented a robust extension of the Shi-Tomasi-Kanade tracker, based on the X84 outlier re-
jection rule. The computational cost is much less than that of schemes based on robust regression and
random sampling like RANSAC or LMedSq [8, 14], yet experiments indicate excellent reliability in
the presence of non-affine feature warping (most reliable features preserved, all unreliable features re-
jected). Our experiments have also pointed out the pronounced sensitivity of the Shi-Tomasi-Kanade
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tracker to illumination changes. We believe that our robust tracker can be useful to the large commu-
nity of researchers needing efficient and reliable trackers. To facilitate dissemination and enable direct
comparisons and experimentation, we have made the code available on the Internet.
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