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The problem 
Main goal: given a frame sequence from a fixed 
camera, detecting all the foreground objects

Naive description of the approach: detecting the 
foreground objects as the difference between the 
current frame and an image of the scene’s static 
background:

| framei – backgroundi | > Th
First consequent problem: how to automatically 
obtain the image of the scene’s static background?



The problem - requirements 
The background image is not fixed but must adapt to:

Illumination changes
• gradual
• sudden (such as clouds)

Motion changes
• camera oscillations
• high-frequencies background objects (such as tree 

branches, sea waves, and similar)

Changes in the background geometry
• parked cars, ...



The basic methods 
Frame difference:

| framei – framei-1 | > Th

The estimated background is just the previous frame
It evidently works only in particular conditions of 
objects’ speed and frame rate
Very sensitive to the threshold Th



The basic methods  (2)
Frame difference: an example

absolute 
differencethe frame

threshold:
too high

threshold:
too low



The basic methods  (3)

Background as the average or the median (Velastin, 
2000; Cucchiara, 2003) of the previous n frames: 

• rather fast, but very memory consuming: the memory 
requirement is n * size(frame)

Background as the running average:

Bi + 1 = α * Fi + (1 - α) * Bi
• α, the learning rate, is typically 0.05
• no more memory requirements



The basic methods – rationale

The background model at each pixel location is 
based on the pixel’s recent history
In many works, such history is:
• just the previous n frames
• a weighted average where recent frames have higher 

weight
In essence, the background model is computed as a 
chronological average from the pixel’s history
No spatial correlation is used between different 
(neighbouring) pixel locations



The basic methods - histograms
Example:
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The basic methods - selectivity

At each new frame, each pixel is classified as either 
foreground or background
What feedback from the classification to the 
background model?
→ if the pixel is classified as foreground, it is ignored 
in the background model
In this way, we prevent the background model to be 
polluted by pixel logically not belonging to the 
background scene



The basic methods – selectivity (2)

Running average with selectivity:

Similarly for other methods

( ) ( ) ( ) ( )y,xBα1y,xFαy,xB tt1i −+=+ if Ft(x,y) background

( ) ( )y,xBy,xB t1i =+ if Ft(x,y) foreground



The basic methods - limitations
They do not provide an explicit method to choose the 
threshold
Major: Based on a single value, they cannot cope 
with multiple modal background distributions; 
example:



Running Gaussian average

Pfinder (Wren, Azarbayejani, Darrell, Pentland, 1997):
• fitting one Gaussian distribution (µ,σ) over the 

histogram: this gives the background PDF
• background PDF update: running average:

• In test | F - µ | > Th, Th can be chosen as kσ
• It does not cope with multimodal backgrounds
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Mixture of Gaussians

Mixture of K Gaussians (µi,σi,ωi) (Stauffer and Grimson, 
1999)

In this way, the model copes also with multimodal 
background distributions; however:
• the number of modes is arbitrarily pre-defined 

(usually from 3 to 5)
• how to initialize the Gaussians?
• how to update them over time?



Mixture of Gaussians  (2)

All weights ωi are updated (updated and/or normalised) at 
every new frame
At every new frame, some of the Gaussians “match” the 
current value (those at a distance < 2.5 σi ): for them, µi,σi are 
updated by the running average
The mixture of Gaussians actually models both the 
foreground and the background: how to pick only the 
distributions modeling the background?: 
• all distributions are ranked according to their ωi /σi and the 

first ones chosen as “background”



Mixture of Gaussians  (3)
Example:

ωi

σi

(from: I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp, “Urban surveillance systems: from the 
laboratory to the commercial world,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1478 -1497, 2001)



Kernel Density Estimators
Kernel Density Estimators (Elgammal, Harwood, Davis, 
2000):
The background PDF is given by the histogram of the 
n most recent pixel values, each smoothed with a 
Gaussian kernel (sample-point density estimator)
If PDF(x) > Th, the x pixel is classified as background
Selectivity
Problems: memory requirement (n * size(frame)), time 
to compute the kernel values (mitigated by a LUT 
approach)



Mean-shift based estimation
Mean-shift based estimation (Han, Comaniciu, Davis, 2004; 
Piccardi, Jan, submitted 2004)
• a gradient-ascent method able to detect the modes of a 

multimodal distribution together with their covariance 
matrix

• iterative, the step decreases towards convergence
• the mean shift vector:
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Mean-shift based estimation  (2)
Example of mean-shift trajectory in the data space:

9.66 10.05 11.21 11.70: convergenceinitial position: 9



Mean-shift based estimation  (3)
Problems: 
• a standard implementation (iterative) is way too slow
• memory requirements: n * size(frame)

Solutions:
• computational optimisations
• using it only for detecting the background PDF modes at 

initialisation time; later, use something computationally 
lighter (mode propagation)



Combined estimation and propagation
Sequential Kernel Density Approximation (Han, 
Comaniciu, Davis, 2004)

• mean-shift mode detection from samples is used only at 
initialisation time

• later, modes are propagated by adapting them with the 
new samples:

• heuristic procedures are used for merging the existing 
modes (the number of modes is not fixed a priori)

• faster than KDE, low memory requirements
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Combined estimation and propagation - 2
Example:

• above: exact KDE
• below: Sequential KD Approximation

(from: B. Han, D. Comaniciu, and L.. Davis, "Sequential kernel density approximation through mode 
propagation: applications to background modeling,“ Proc. ACCV 2004)



Eigenbackgrounds
Eigenbackgrounds (N. M. Oliver, B. Rosario, and A. P. 
Pentland, 2000)

• Principal Component Analysis (PCA) by way of 
eigenvector decomposition is a way to reduce the 
dimensionality of a space

• PCA can be applied to a sequence of n frames to 
compute the eigenbackgrounds

• The authors state that it works well and is faster 
than a Mixture of Gaussians approach



Eigenbackgrounds – main steps
1. The n frames are re-arranged as the columns of a matrix, A
2. The covariance matrix, C = AAT, is computed
3. From C, the diagonal matrix of its eigenvalues, L, and the 

eigenvector matrix, Φ, are computed
4. Only the first M eigenvectors (eigenbackgrounds) are 

retained
5. Once a new image, I, is available, it is first projected in the 

M eigenvectors sub-space and then reconstructed as I’
6. The difference I – I’ is computed: since the sub-space well 

represents only the static parts of the scene, the outcome of 
this difference are the foreground objects



Spatial correlation?
It can be immediately evident that there exists spatial 
correlation between neighboring pixels. How can that 
be exploited?
Low-end approach: binary morphology applied to the 
resulting foreground image
Better principled: at the PDF level (for instance: Elgammal, 
Harwood, Davis, 2000)

In the eigenbackground approach, the correlation 
matrix
An approach formally exploiting spatial correlation: 
background detection based on the cooccurrence of 
image variations (Seki, Wada, Fujiwara, Sumi, CVPR 2003)



Summary

Methods reviewed:

Average, median, running average

Mixture of Gaussians

Kernel Density Estimators

Mean shift (possibly optimised)

SKDA (Sequential KD Approximation)

Eigenbackgrounds



Summary  (2)
From the data available from the literature

Speed
• Fast: average, median, running average
• Intermediate: Mixture of Gaussians, KDE, 

eigenbackgrounds, SKDA, optimised mean-shift
• Slow: standard mean-shift
Memory requirements
• High: average, median, KDE, mean-shift
• Intermediate: Mixture of Gaussians, 

eigenbackgrounds, SKDA
• Low: running average



Summary  (3)
Accuracy
• Impossible to say - an unbiased comparison with a 

significant benchmark is needed!
• Some methods seem to be better principled: KDE, 

SKDA, mean-shift
• Mixture of Gaussians and eigenbackgrounds

certainly can offer good accuracy as well
• Simple methods such as standard average, running 

average, median can provide acceptable accuracy 
in specific applications
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