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1. Why Should You Learn AdaBoost?

• Despite our need to believe in the contrary,

our research contributions for the most part

are merely incremental.

• But, then, every once in a while some-

one does something that takes your breath

away.

• The AdaBoost algorithm for machine learn-

ing by Yoav Freund and Robert Schapire is

one such contribution.

• Until AdaBoost, the conventional wisdom

in pattern classification was that your cho-

sen features needed to be as class discrim-

inatory as possible.
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• AdaBoost turned that conventional wisdom

on its head.

• With AdaBoost, it is possible to use even

weak features for creating a pattern clas-

sifier, assuming you have a sufficient num-

ber of such features and assuming you just

want to carry out binary classifications (or

multiclass classifications in the manner de-

scribed in Section 11 of this tutorial).
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2. The Conventional Wisdom

• Revisiting the conventional wisdom, if you

want to predict the class label for a new

data element, you undertake the steps de-

scribed below:

• You first get hold of as much training data

as you can.

• You come up with a decent number of fea-

tures. You try to select each feature so

that it can discriminate well between the

classes. You believe that the greater the

power of a feature to discriminate between

the classes at hand, the better your classi-

fier.
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• If you have too many features and you

are not sure which ones might work the

best, you carry out a feature selection step

through either PCA (Principal Components

Analysis), LDA (Linear Discriminant Anal-

ysis), a combination of PCA and LDA, or

a greedy algorithm like the one that starts

by choosing the most class-discriminatory

feature and then adds additional features,

one feature at a time, on the basis of the

class discriminations achieved by the fea-

tures chosen so far, etc. [See my “Constructing

Optimal Subspaces Tutorial” for further information regarding

this issue.]

• Once you have specified your feature space,

you can use one of several approaches for

predicting the class label for a new data

element:

– If your feature space is sparsely populated with
the training samples and you have multiple classes
to deal with, you are not likely to do much bet-
ter than a Nearest Neighbor (NN) classifier.
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– For NN based classification, you calculate the
distance from your new data element to each of
the training samples and you give the new data
point the class label that corresponds to the
nearest training sample. [As a variation on this,

you find the k nearest training-data neighbors for your

new data element and the class label you give your new

data element is a majority vote (or a weighted majority

vote) from those k training samples. This is known as

the k-NN algorithm. In such algorithms, the distance

calculations can be speeded up by using a k-d tree to

represent the training samples.]

– For another variation on the NN idea, you might
get better results by using NN to the class means
as calculated from the training data as opposed
to the training samples directly.

– If you don’t want to use NN and if you are
trying to solve a binary classification problem
for the case of two linearly separable classes,
you could try using linear SVM (Support Vector
Machine) for your classifier. This will give you
a maximum-margin decision boundary between
the two classes. Or, if your classes are not lin-
early separable, you could construct a nonlinear
SVM that uses a “kernel trick” to project the
training data into a higher-dimensional space
where they become linearly separable.

7



AdaBoost Tutorial by Avi Kak

– If you have multiple classes and you are comfort-
able using parametric models for the class distri-
butions, you should be able to use model-based
similarity criterion to predict the class label for
your new data element. If you can fit Gaus-
sians to your training data, you could, for ex-
ample, calculate Mahalanobis distance between
your data element and the means for each of
the Gaussians to figure out as to which Gaus-
sian provides the best class label for the new
data element.

• Regardless of how you carry out classifica-

tion, all the approaches listed above have

one thing in common: The better the fea-

tures are at discriminating between the classes,

the better the performance of the classifi-

cation algorithm.
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3. Introduction to AdaBoost

• AdaBoost stands for Adaptive Boosting.

[Literally, boosting here means to aggregate a set of weak

classifiers into a strong classifier.]

• This approach is founded on the notion of

using a set of weak classifiers and pooling

the classification results of such classifiers

to produce a provably strong classifier.

• In the sequence of weak classifiers used,

each classifier focuses its discriminatory fire-

power on the training samples misclassified

by the previous weak classifier. You could

say that by just focusing on the training

data samples misclassified by the previous

weak classifier, each weak classifier con-

tributes its bit — the best it can — to

improving the overall classification rate.
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• The AdaBoost approach comes with the

theoretical guarantee that as you bring in

more and more weak classifiers, your final

misclassification rate for the training data

can be made arbitrarily small.

• The AdaBoost approach also comes with

a bound on the generalization error. This

classification error includes the testing data

that was NOT used for training, but that

is assumed to be derived from the same

data source as the training data.

• The main reference for the AdaBoost algo-

rithm is the original paper by Freund and

Schapire: “A Decision-Theoretic General-

ization of On-Line Learning and an Appli-

cation to Boosting,” Proc. of the 2nd Eu-

ropean Conf. on Computational Learning

Theory, 1995.
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• AdaBoost has become even more famous

after it was shown by Viola and Jones how

the algorithm could be used to create face

detectors with false positive rates as low

as 10−6. Any face detection algorithm that

scans moving subwindows in images for de-

tecting faces must possess extremely low

false-positive rates for the detector to be

effective. False positive here means declar-

ing a blob of non-face pixels as a face.
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4. The Notation

• We represent our labeled training data by

the set

{(x1, y1), (x2, y2), . . . , (xm, ym)}

with xi ∈ X and yi ∈ {−1,1}. The set

X represents our training data and the set

{−1,1} the two class labels for the data el-

ements. Note that each training data sam-

ple xi can be a point in a multidimensional

feature space.

• You can think of X as representing the fea-

ture space.
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• AdaBoost maintains a probability distribu-

tion over all the training samples.This dis-

tribution is modified iteratively with each

selection of a weak classifier. We’ll denote

this probability distribution by Dt(xi). The

subscript t refers to the different iterations

of the AdaBoost algorithm.

• Initially, the probability distribution is uni-

form over the training samples.

• The weak classifier chosen at iteration t of

the AdaBoost algorithm will be denoted ht.

And the class label predicted by this weak

classifier for the training data element xi
denoted ht(xi). By comparing ht(xi) with

yi for i = 1,2, . . . ,m, we can assess the

classification error rate for the classifier ht.

• We will use ǫt to denote the classification

error rate for the weak classifier ht.
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• We will use αt to denote how much trust

we can place in the weak classifier ht. Ob-

viously, the larger the value of ǫt for a clas-

sifier, the lower our trust must be. We use

the following relationship between αt and

ǫt:

αt =
1

2
ln

1− ǫt

ǫt

• We will use H to denote the final classi-

fier. This classifier carries out a weighted

aggregation of the classifications produced

by the individual weak classifiers to predict

the class label for a new data sample. The

weighting used for each weak classifier will

be proportional to the degree of trust we

can place in that classifier.
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5. The AdaBoost Algorithm

• Let’s say we can conjure up T weak clas-

sifiers. These classifiers can be as simple

as individual attributes (or, individual fea-

tures) that provide some discrimination be-

tween the objects of interest. [For illustration,

let’s say you are using the value of “yellow-ness” to weakly

classify fruit in a supermarket. Such a weak classifier could

work as follows: if the value of yellow color is below a de-

cision threshold dth, you predict the fruit’s label to be apple,

otherwise you predict it to be an orange. As long as such

a weak classifier does better than a monkey (meaning that

as along as its classification error rate is less than 50%, it’s

a good enough weak classifier. (Should it happen that this

decision rule gives an error rate exceeding 50%, you can flip

its “polarity” to yield a classification rule with an error rate

of less than 50%.]

15



AdaBoost Tutorial by Avi Kak

• What the note in blue on the previous slide

implies is that any attribute, if it is at all

relevant to the objects of interest, can be

used as a weak classifier.

• For t = 1,2, . . . , T , we do the following:

1. Using the probability distribution Dt(i),

we conjure up a weak classifier for the

training data. The role played by this

probability distribution could, for exam-

ple, be to influence the selection of train-

ing samples for the weak classifier. Note

that our wish for each such weak classi-

fier is to focus particularly on the train-

ing samples misclassified by the previous

weak classifier. We denote this weak

classifier by ht.

2. We apply ht to all of our training data.

In other words, we construct the map-

ping ht : X → {−1,1}
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3. We then estimate the classification error

rate Prob{ht(xi) 6= yi} for the ht classifier:

ǫt =
1

2

m
∑

i=1

Dt(xi) ·
∣

∣ht(xi)− yi
∣

∣

4. Next, we calculate the trust factor for

ht by

αt =
1

2
ln

(

1− ǫt

ǫt

)

5. Finally, we update the probability dis-

tribution over the training data for the

next iteration:

Dt+1(xi) =
Dt(xi)e

−αtyiht(xi)

Zt

where the role of Zt is to serve as a

normalizer. That is, we set a value for

Zt so that
∑m

i=1Dt+1(xi) = 1.
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6. We then go back to Step 1 for the next

iteration.

• At the end of T iterations, we construct

the final classifier H as follows:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

where x is the new data element whose

class label we wish to predict on the strength

of the information in the training data.

• If for a test data sample x, H(x) turns out

to be positive, the predicted class label for

x is 1. Otherwise, it is -1.
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6. An Example for Illustrating AdaBoost

• We will use the two-class example shown

below to illustrate AdaBoost.

• The red points were generated by the Perl

script shown on the next slide. We will

refer to the red points as the “red circles”

or as just “circles”.
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• Here is the script for the red circle points:
sub gen_points_in_circle {

my @points_in_circle;
foreach my $i (0..$N1-1) {

my ($x,$y) = (1,1);
while ( ($x**2 + $y**2) >= 1 ) {

$x = Math::Random::random_uniform();
$y = Math::Random::random_uniform();

}
($x,$y) = (0.4*($x-0.6), 0.4*($y-0.3));
push @points_in_circle, ["circle_$i",$x+0.6,$y+0.3];

}
return \@points_in_circle;

}

where $N1 specifies the number of points

you want in a circle of radius ≈ 0.4 centered

at (0.6,0.3).

• The green “square” points in the figure are
generated by the following Perl script:
sub gen_points_in_rest_of_square {

my @points_in_square;
foreach my $i (0..$N2-1) {

my ($x,$y) = (0.6,0.3);
while ( (($x-0.6)**2 + ($y-0.3)**2) < 0.2**2 ) {

$x = Math::Random::random_uniform();
$y = Math::Random::random_uniform();

}
push @points_in_square, ["square_$i",$x,$y];

}
return \@points_in_square;

}
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• In the second script on the previous slide,

the variable $N2 controls the number of green

square points you want in the rest of the

[0,1] × [0,1] box shown in the figure on

Slide 19.

• Note that we make no attempt to gen-

erate the training data points according

to any particular statistical distribution in

the respective domains. For example, the

red circle points are NOT uniformly dis-

tributed (despite the impression that may

be created by calls to Math::Random::random uniform)

in the area where they predominate. Along

the same lines, the green square points are

NOT uniformly distributed in the rest of

the [0,1]× [0,1] box. How the red and the

green points are statistically distributed is

NOT important to our illustration of Ad-

aBoost.
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• We can use any of a number of approaches

for solving the classification problem de-

picted in the figure on Slide 19. For exam-

ple, it would be trivial to construct an SVM

classifier for this case. Simpler still, an NN

classifier would in all likelihood work just

as well (although it would be a bit slower

for obvious reasons).

• The next section demonstrates how we can

use AdaBoost to solve this problem.
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7. Weak Classifiers for Our Example

Study

• A weak classifier for our example will be a

linear decision line as shown in the figure

below. Such a classifier will declare all of

the data points on one side of the line as

being “red circles” and the data points on

the other side as being “green squares”.

L

P

θ

d th

Decisio
n Line

Class "circles"

Class "squares"

(0,0) (1,0)

(1,1)(0,1)
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• This sort of a classifier is characterized by

the triple (θ, dth, p), where θ is the orien-

tation of the decision line L, and dth the

threshold on the projections of the data

points on the perpendicular P to L (with

the stipulation that the perpendicular pass-

ing through the origin). We say that the

polarity p of the classifier is 1 if it classifies

all of the data points whose projections are

less than or equal to dth as being “circle”

and all the data points whose projections

are greater than dth as being “square”. For

the opposite case, we consider the classi-

fier’s polarity to be -1.

• Although, for a given orientation θ, the de-

cision line L constitutes a weak classifier

for almost every value of dth (as long we

choose a polarity that yields a classification

error rate of less than 0.5), that will NOT

be our approach to the construction of a

set of weak classifiers.

24



AdaBoost Tutorial by Avi Kak

• For the discussion that follows, for each

orientation θ, we will choose that decision

line L as our weak classifier which yields

the smallest classification error.

• In our demonstration of AdaBoost, each it-

eration of the algorithm randomly chooses

a value for the orientation θ of the deci-

sion line L. Subsequently we step along

the perpendicular P to L to find the best

value for the threshold dth and the best po-

larity for the classifier. Best means yielding

the least classification error.

• The script that is shown on Slides 29 and

30 demonstrates how we search for the

best weak classifier for a given orientation

θ for the decision line. In lines 7 and 8, the

script first constructs a unit vector along

the perpendicular P to the decision line L.
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• At this point, it’s good to recall that, in

general, only a portion of the training data

is used for the training of each weak clas-

sifier. See Slide 16.

• The training data for the current weak clas-

sifier is sorted in lines 10 through 21 in the

ascending order of the data projections on

P .

• Subsequently, in lines 25 through 36, the

script steps through these projection points

on P , from the smallest value to the largest,

and at, each projection point on the per-

pendicular P , it calculates two types of

classification errors that are described next.

Let the projection point under considera-

tion be denoted s.
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• The first type of classification error cor-

responds to the case when the predicted

labels for all the data points whose projec-

tions are less than or equal to s are consid-

ered to be ”circle” and all the data points

whose projections are greater than s as be-

ing ”square”.

• The second type of the classification error

corresponds to the opposite case. That

is, when all the data points whose projec-

tions are less than or equal to s are labeled

“square”, and all the data points whose

projections are greater than s are labeled

“circle”.

• In the script, these two types of errors are

stored in the hashes %type_1_errors and %type_2_errors.
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• The polarity of the weak classifier chosen

for a given θ is determined by which of the

two minimum values for the two types of

errors is the least. And dth is the corre-

sponding threshold.

• Lines 37 through 42 sort the two types of

errors stored in the hashes %type_1_errors and

%type_2_errors in order to determine which type

of error is the least. The type that yields

the smallest value determines the polarity

of the weak classifier, as set in line 43.

• Subsequently, in lines 44 through 47, we

find the decision threshold dth that corre-

sponds to the best weak classifier for the

decision line orientation used.
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sub find_best_weak_linear_classifier_at_given_orientation {
1 my $orientation = shift;
2 my $training_sample_array_ref = shift;
3 my @training_samples = @{$training_sample_array_ref};
4 my $polarity;
5 my $PI = 3.14159265358979;
6 my $orient_in_rad = $orientation * $PI / 180.0;
7 my @projection_vec = (-1.0 * sin($orient_in_rad),
8 cos($orient_in_rad));
9 my %projections;
10 foreach my $label (@training_samples) {
11 my $projection = $all_sample_labels_with_data{$label}->[0] *
12 $projection_vec[0] +
13 $all_sample_labels_with_data{$label}->[1] *
14 $projection_vec[1];
15 $projections{$label} = $projection;
16 }
17 # Create a sorted list of class labels along the perpendicular
18 # line P with the sorting criterion being the location of the
19 # projection point
20 my @sorted_projections = sort {$projections{$a} <=>
21 $projections{$b}} keys %projections;
22 my (%type_1_errors, %type_2_errors);
23 my $how_many_circle_labels = 0;
24 my $how_many_square_labels = 0;
25 foreach my $i (0..@sorted_projections-1) {
26 $how_many_circle_labels++ if $sorted_projections[$i] =~
27 /circle/;
28 $how_many_square_labels++ if $sorted_projections[$i] =~
29 /square/;
30 my $error1 = ($N1 - $how_many_circle_labels +
31 $how_many_square_labels) / (1.0 * ($N1 + $N2));
32 $type_1_errors{$sorted_projections[$i]} = $error1;
33 my $error2 = ($how_many_circle_labels + $N2 -
34 $how_many_square_labels) / (1.0 * ($N1 + $N2));
35 $type_2_errors{$sorted_projections[$i]} = $error2;
36 }
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37 my @sorted_type_1_errors = sort {$type_1_errors{$a} <=>

38 $type_1_errors{$b}} keys %type_1_errors;

39 my @sorted_type_2_errors = sort {$type_2_errors{$a} <=>

40 $type_2_errors{$b}} keys %type_2_errors;

41 my $least_type_1_error = $type_1_errors{$sorted_type_1_errors[0]};

42 my $least_type_2_error = $type_2_errors{$sorted_type_2_errors[0]};
43 $polarity = $least_type_1_error <= $least_type_2_error ? 1 : -1;

44 my $error_for_polarity =$least_type_1_error <= $least_type_2_error ?

45 $least_type_1_error : $least_type_2_error;

46 my $thresholding_label =$least_type_1_error <= $least_type_2_error ?

47 $sorted_type_1_errors[0] : $sorted_type_2_errors[0];

48 return [$orientation, $projections{$thresholding_label}, $polarity,
49 $error_for_polarity];

}

• The next section presents the calling sub-

routine for the function shown above. That

subroutine constitutes an implementation

of the Steps 1 through 6 of Section 5.
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8. An Implementation of the AdaBoost

Algorithm

• We next present a Perl implementation of

the Steps 1 through 6 of the AdaBoost

algorithm as shown in Section 5.

• The script shown on Slides 35 and 36 starts

out in lines 4 through 14 by selecting a

subset of the training data on the basis

of the current probability distribution over

the data. The criterion used for choosing

the training samples is very simple: We

sort all the training samples in a descending

order according to their probability values.

We pick the top-ranked training samples by

stepping through the sorted list until the

accumulated probability mass is 0.5.

31



AdaBoost Tutorial by Avi Kak

• [A more sophisticated algorithm would first create a fine grid

in the [0,1]× [0,1] box, with its resolution set to the smallest

of the intervals between the adjacent point coordinates along

x and y. You would then allocate to each training sample a

number of cells proportional to its probability. Subsequently,

you would fire up a random-number generator for two values

for x and y. The two such random values obtained would

determine the choice of the training sample for each such

two calls to the random number generator.]

• Then, in lines 15 through 19, the script

fires up the random number generator for

an orientation for the weak classifier for

the current iteration of the AdaBoost al-

gorithm. It makes sure that the orientation

selected is different from those used previ-

ously.

• The decision line orientation selected is stored

in the array @ORIENTATIONS_USED.
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• The decision-line orientation chosen and

the training samples selected are shipped

off in lines 21 through 24 to the subroutine

find_best_weak_linear_classifier_ at_given_orientation() that

was presented in the previous section.

• Next, in lines 33 through 40, the script ap-

plies the weak classifier returned by the call

shown in the previous bullet to all of the

training data in order to assess its classifi-

cation error rate. This corresponds to Step

3 on Slide 17. This part of the code makes

a call to the subroutine weak_classify() that is

presented in the next section.

• Calculation of the classification error rate

is followed in line 42 by a calculation of

the trust factor α for the weak classifier

in the current iteration of the AdaBoost

algorithm.

33



AdaBoost Tutorial by Avi Kak

• Subsequently, in lines 43 through 65, we

update the probability distribution over all

the training samples according to Step 5

on Slide 17.

• Starting on Slide 37, the next section presents

the support routines needed by the Perl

code discussed so far.
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sub adaboost {
1 my @weak_classifiers;
2 my $decision_line_orientation = 0;
3 foreach my $t (0..$NUMBER_OF_WEAK_CLASSIFIERS-1) {
4 my @samples_to_be_used_for_training = ();
5 # Select training samples for the current weak classifier:
6 my $probability_mass_selected_samples = 0;
7 foreach my $label (sort {$PROBABILITY_OVER_SAMPLES{$b} <=>

8 $PROBABILITY_OVER_SAMPLES{$a} }
9 keys %PROBABILITY_OVER_SAMPLES) {
10 $probability_mass_selected_samples +=
11 $PROBABILITY_OVER_SAMPLES{$label};
12 last if $probability_mass_selected_samples > 0.5;
13 push @samples_to_be_used_for_training, $label;
14 }
15 while (contained_in($decision_line_orientation,
16 @ORIENTATIONS_USED)) {

17 $decision_line_orientation = int(180 *
18 Math::Random::random_uniform());
19 }
20 push @ORIENTATIONS_USED, $decision_line_orientation;
21 my $learned_weak_classifier =
22 find_best_weak_linear_classifier_at_given_orientation(
23 $decision_line_orientation,
24 \@samples_to_be_used_for_training);
25 $LEARNED_WEAK_CLASSIFIERS{$t} = $learned_weak_classifier;

26 my ($orientation, $threshold,
27 $polarity, $error_over_training_samples) =
28 @{$learned_weak_classifier};
29 # Now find the overall classification error (meaning error
30 # for all data points) for this weak classifier. That will
31 # allows us to calculate how much confidence we can place in
32 # this weak classifier:
33 my $error = 0;
34 foreach my $label (@all_sample_labels) {
35 my $data_point = $all_sample_labels_with_data{$label};
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36 my $predicted_label = weak_classify($data_point,
37 $orientation, $threshold, $polarity);

38 $error += $PROBABILITY_OVER_SAMPLES{$label}

39 unless $label =~ /$predicted_label/;

40 }

41 push @WEAK_CLASSIFIER_ERROR_RATES, $error;

42 $ALL_ALPHAS[$t] = 0.5 * log((1 - $error) / $error);
43 my %new_probability_over_samples;

44 for my $label (keys %PROBABILITY_OVER_SAMPLES) {

45 my $data_point_for_label =

46 $all_sample_labels_with_data{$label};

47 my $predicted_label = weak_classify($data_point_for_label,

48 $orientation, $threshold, $polarity);
49 my $exponent_for_prob_mod =$label =~ /$predicted_label/ ?

50 -1.0 : 1.0;

51 $new_probability_over_samples{$label} =

52 $PROBABILITY_OVER_SAMPLES{$label} *

53 exp($exponent_for_prob_mod * $ALL_ALPHAS[$t]);

54 }
55 my @all_new_probabilities =

56 values %new_probability_over_samples;

57 my $normalization = 0;

58 foreach my $prob (@all_new_probabilities) {

59 $normalization += $prob;

60 }

61 for my $label (keys %new_probability_over_samples) {
62 $PROBABILITY_OVER_SAMPLES{$label} =

63 $new_probability_over_samples{$label}

64 / $normalization;

65 }

66 }

}
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9. Some Support Routines

• Line 36 of the script shown in the previ-
ous section makes a call to the subroutine
weak_classify() shown below:

sub weak_classify {
1 my $data_point = shift;
2 my $decision_line_orientation = shift;
3 my $decision_threshold = shift;
4 my $polarity = shift;
5 my $PI = 3.14159265358979;
6 my $orient_in_rad = $decision_line_orientation * $PI / 180.0;
7 # The following defines the pass-through-origin perp to
8 # the decision line:
9 my @projection_vec = (-1.0 * sin($orient_in_rad),
10 cos($orient_in_rad));
11 my $projection = $data_point->[0] * $projection_vec[0] +
12 $data_point->[1] * $projection_vec[1];
13 return $projection <= $decision_threshold ?
14 "circle" : "square" if $polarity == 1;
15 return $projection <= $decision_threshold ?
16 "square" : "circle" if $polarity == -1;
}

• The subroutine shown above takes four ar-

guments that we describe in the next bul-

let.
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• The first argument, stored in the local vari-

able $data_point in Line 1, is for the (x, y)

coordinates of the point that needs to be

classified. The second, stored in the local

variable $decision_line_orientation, is for the ori-

entation of the decision line for the weak

classifier. The third, stored in $decision_threshold,

is for supplying to the subroutine the value

for dth. And the last, stored in $polarity,

is for the polarity of the weak classifier.

The logic of how the weak classifier works

should be obvious from the code in lines

9 through 16. We first construct a unit

vector along the perpendicular to the de-

cision lines 9 and 10. This is followed by

projecting the training data points on the

unit vector.

• Next let’s consider the implementation of

the final classifier H(x) described on Slide

18. The subroutine final_classify() does this

job and is presented on Slide 40.
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• In the loop that starts in line 3 of the code

shown on the next slide, we first extract

in lines 4 and 5 one weak classifier at a

time from all the weak classifiers stored in

the hash %LEARNED_WEAK_CLASSIFIERS. In lines 6 and

7, we call on the weak_classify() presented on

Slide 37 to classify our new data point.

• Subsequently, in lines 8 through 17, we for-

mat the numbers associated with the weak

classifiers in order to produce an output

that is easy to read and that allows for

the different weak classifier performances

to be compared easily. This formatting al-

lows for the sort of a printout shown on

Slide 46.

• We aggregate the individual weak classifi-

cation results in lines 25 through 33 ac-

cording to the formula shown on Slide 18.
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sub final_classify {
1 my $data_point = shift;

2 my @classification_results;
3 foreach my $t (0..$NUMBER_OF_WEAK_CLASSIFIERS-1) {

4 my ($orientation, $threshold, $polarity, $error) =

5 @{$LEARNED_WEAK_CLASSIFIERS{$t}};
6 my $result = weak_classify($data_point, $orientation,

7 $threshold, $polarity);
8 my $error_rate = $WEAK_CLASSIFIER_ERROR_RATES[$t];

9 $error_rate =~ s/^(0\.\d\d)\d+$/$1/;
10 $threshold =~ s/^(-?\d?\.\d\d)\d+$/$1/;

11 $threshold = $threshold < 0 ? "$threshold" : " $threshold";
12 if (length($orientation) == 1) {

13 $orientation = " $orientation";

14 } elsif (length($orientation) == 2) {
15 $orientation = " $orientation";

16 }
17 $polarity = $polarity > 0 ? " $polarity" : $polarity;

18 print "Weak classifier $t (orientation: $orientation " .
19 "threshold: $threshold polarity: $polarity " .

20 "error_rate: $error_rate): $result\n";

21 push @classification_results, $result;
22 }

23 #For weighted pooling of the results returned by the different
24 #classifiers, treat "circle" as +1 and "square" as -1

25 @classification_results = map {s/circle/1/;$_}
26 @classification_results;

27 @classification_results = map {s/square/-1/;$_}
28 @classification_results;

29 print "classifications: @classification_results\n";

30 my $aggregate = 0;
31 foreach my $i (0..@classification_results-1) {

32 $aggregate += $classification_results[$i] * $ALL_ALPHAS[$i];
33 }

34 return $aggregate >= 0 ? "circle" : "square";
}
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10. Using the Demonstration Code in an

Interactive Session

• All of the code shown so far is in the script

file AdaBoost.pl that you will find in the

gzipped tar archive available from the URL:

https://engineering.purdue.edu/kak/distAdaBoost/AdaBoostScripts.tar.gz

• After you have unzipped and untarred the

archive, executing the script AdaBoost.pl

will place you in an interactive session in

which you will be asked to enter the (x, y)

coordinates of a point to classify in the

[0,1]× [0,1] box. The script will then pro-

vide you with the “circle” versus “square”

classification for the point you entered. Be-

fore going into the details of this interac-

tive session, let’s first see what all is done

by the AdaBoost.pl script.
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• The script AdaBoost.pl needs values for the

following three user-defined global variables.

The values currently set are shown below.

But, obviously, you can change them as

you wish.

# USER SPECIFIED GLOBAL VARIABLES:
my $N1 = 100; # These are the "circle" points in Slide 19
my $N2 = 100; # Points outside the circle but inside the

# rest of the [0,1]x[0,1] box. We refer to
# to these points as "square" in Slide 19

my $NUMBER_OF_WEAK_CLASSIFIERS = 10;

• With regard to what it accomplishes, the

AdaBoost.pl script first calls the two func-

tions shown on Slide 20 for generating the

number of points specified through the global

variables $N1 and $N2.

• Subsequently, it initializes the probability

distribution over the training samples, as

mentioned by the second bullet on Slide

13.
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• Finally, AdaBoost.pl calls the following sub-
routines:

display_points_in_each_class( $outputstream );
visualize_data();
adaboost( $outputstream );
interactive_demo();

where the first two calls are for the visu-
alization of the training data. The call to

adaboost() accomplishes what was explained
in Section 8 of this tutorial. The last call

above, interactive demo() places the script in
an interactive mode in which the user is

prompted for the points (x, y) to classify
and the script returns the final classifica-

tions for the points, while also displaying
the results produced by each weak classi-

fier.

• Note the argument $outputstream in the calls
to display_points_in_each_class() and adaboost(). The

role played by this argument is explained on
the next slide.
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• The value of the variable $outputstream is set

at the very beginning when you fire up the

script AdaBoost.pl depending on how you re-

spond to the two prompts generated by

the script. These prompts ask you whether

you want the information related to the

construction of the weak classifiers to be

dumpted in a file or to be displayed in your

terminal window.

• When you are first becoming familiar with

this Perl code, I recommend that you an-

swer ’no’ to the two prompts. With that

answer, no information related to the weak

classifiers will be put out.

• Shown on the next slide is the code for

interactive_demo():
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sub interactive_demo {

1 # The following regex is from perl docs:
2 my $_num_regex = ’^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$’;

3 print "\n\nThis AdaBoost demonstration is based on the " .

4 "following randomly selected decision line orientations " .

5 "for the weak classifiers: @ORIENTATIONS_USED\n\n";

6 for (;;) {

7 print "\n\nEnter the coordinates of the point you wish to " .
8 "classify: ";

9 my $answer = <STDIN>;

10 die "End of interactive demonstration" unless $answer;

11 next if $answer =~ /^\s*$/;

12 my @nums = split / /, $answer;

13 unless (($nums[0] =~ /$_num_regex/) &&
14 ($nums[1] =~ /$_num_regex/)) {

15 print "You entered an illegal character. Try again " .

16 "or enter Contrl-D to exit\n";

17 next;

18 }

19 my $predicted_class = final_classify(\@nums);
20 print "The predicted class for the data point: " .

21 "$predicted_class\n";

22 }

}

• The user-interactive script shown above starts

out in lines 3 through 5 by printing out the

decision line orientations selected for the

weak classifiers.
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• The rest of the script on the previous slide

is an infinite loop in which the user is asked

for the (x, y) coordinates of a point in the

[0,1]×[0,1] box that needs to be classified.

In lines 13 through 17, the script makes

sure that the information entered by the

user is indeed a pair of floating point num-

bers.

• Finally, in line 19, it calls the final_classify()

function of the previous section to classify

the point.

• A command-line invocation such as

AdaBoost.pl

automatically places the script in the inter-

active mode.
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• In the interactive mode, after displaying

the training data through a plot such as

the one shown on Slide 19, and the infor-

mation related to each weak classifier con-

structed, the script prints out the following

message for the user:

Enter the coordinates of the point you wish to classify:

• Let’s say you enter the following coordi-
nates: 0.2 0.7. Subsequently, the script
will print out something like the following

Weak classifier 0 (or: 0 thr: 0.51 p: 1 err: 0.21): square
Weak classifier 1 (or: 151 thr: -0.10 p: -1 err: 0.35): square
Weak classifier 2 (or: 90 thr: -0.04 p: -1 err: 0.51): square
Weak classifier 3 (or: 25 thr: 0.30 p: -1 err: 0.57): circle
Weak classifier 4 (or: 3 thr: 0.41 p: -1 err: 0.46): circle
Weak classifier 5 (or: 162 thr: -0.07 p: -1 err: 0.45): square
Weak classifier 6 (or: 41 thr: 0.23 p: -1 err: 0.56): circle
Weak classifier 7 (or: 117 thr: -0.07 p: -1 err: 0.43): square
Weak classifier 8 (or: 135 thr: -0.09 p: -1 err: 0.50): square
Weak classifier 9 (or: 148 thr: -0.09 p: -1 err: 0.49): square

classifications: -1 -1 -1 1 1 -1 1 -1 -1 -1

The predicted class for the data point: square

Enter the coordinates of the point you wish to classify:
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• In the display you see on the previous slide,

I have abbreviated some of the labels the

script prints out so as not to overflow the

page boundaries. The ’or’ label is actually

printed out as ’orientation’, the ’thr’ label

as ’threshold’, ’p’ as ’polarity’, and, finally,

the ’err’ label as ’error rate’.

• You can exit the interactive session by en-

tering 〈Ctrl−d〉 in response to the prompt.
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11. Introduction to Codeword-Based

Learning for Solving Multiclass Problems

• The rest of this tutorial is concerned with

using AdaBoost when you have more than

two classes to deal with.

• A not-so-uncommon way to use a binary

classifier (such as, say, SVM or AdaBoost)

for solving a multiclass classification prob-

lem is to devise a set of binary classifiers,

with each binary classifier comparing one

class against all the others. So if your data

is modeled by Nc classes, you would need

Nc one-versus-the-rest binary classifiers for

solving the problem.

• In this tutorial, we will use a different strat-

egy for solving a multiclass classification

problem with AdaBoost. This strategy is

based on codeword based learning.
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• So what’s codeword based learning of mul-

ticlass discriminations?

• The next several bullets explain this new

idea that was first introduced by Dietterich

and Bakiri in their seminal paper “Solv-

ing Multiclass Learning Problems via Error-

Correcting Output Codes,” Journal of Ar-

tificial Intelligence Research, 1995. The

example that I present to explain codeword

based learning is drawn from the introduc-

tion to the paper by Dietterich and Bakiri

• Consider the problem of digit recognition in

handwritten material. We want to assign

a digit to one of ten classes. A structural

approach to solving this problem consists

of identifying the presence or absence of six

features in each digit and basing the final

classification on which features are found

to be present and which ones to be absent.
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• The six structural features are:

vl: contains vertical line
hl: contains horizontal line
dl: contains diagonal line
cc: contains close curve
ol: contains curve open to the left
or: contains curve open to the right

• The presence or the absence of these fea-

tures for each of the 10 digit classes may

now be indicated by the following codeword

matrix:

Class vl hl dl cc ol or
---------------------------------------------

0 0 0 0 1 0 0
1 1 0 0 0 0 0
2 0 1 1 0 1 0
3 0 0 0 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 0 0 1 0 0
9 0 0 1 1 0 0

Note that each row in the table shown

above is distinct so that each digit has a

unique codeword.

51



AdaBoost Tutorial by Avi Kak

• Let’s now assume that we only have bi-

nary classifiers at our disposal. How can

we use such classifiers to solve the multi-

class recognition problem presented on the

previous slide?

• If all we have are binary classifiers, each

column of the matrix presented on the pre-

vious slide can be learned by a binary clas-

sifier from all of the training data in the

following manner: Let’s say we have 1000 training

samples of handwritten digits available to us, distributed uni-

formly with respect to all the ten digits. For the learning of

the first column, we divide the set of training samples into

two halves, one containing the digits labeled 1, 4, and 5, and

the other containing the digits labeled 0, 2, 3, 6, 7, 8, and 9.

We now use an SVM or AdaBoost to create a binary classi-

fier for making a distinction between these TWO categories,

the first corresponding to the digits 1, 4, and 5 and the sec-

ond category corresponding to the rest. We can refer to this

binary classifier as f vl.
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• In this manner, we construct six binary clas-

sifiers, one for each column of the code-

word matrix on Slide 51. We may labels

the six binary classifiers as

f_vl f_hl f_dl f_cc f_ol f_or

• Now when we want to predict the class la-

bel of a new digit, we apply each of these

six binary classifiers to the pixels for the

digit. If the output of each binary clas-

sifier is thresholded to result in 0,1 clas-

sification, the output produced by the six

binary classifiers will be a six-bit codeword

like 110001. We assign to the new digit

the class label of the row of the codeword

matrix which is at the shortest Hamming

distance from the codeword extracted for

the new digit.
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• For example, if the six binary classifiers

yielded the codeword 110001 for the new

data, you would give it the class label 4

since, of all the codewords shown in the

matrix above, the Hamming distance from

110001 is the shortest to the codeword

110000 that corresponds to the digit 4.

Recall that the Hamming distance mea-

sures the number of bit positions in which

two codewords differ.

• Does the basic idea of codeword based learn-

ing as presented above suffer from any short-

comings? We examine this issue next.

• If the six features that correspond to the

six columns of the codeword matrix shown

above could be measured precisely, then

the basic approach outlined above should

work perfectly.
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• In reality, unfortunately, there will always

be errors associated with the extraction of

those features from a blob of pixels. Yes,

the basic approach does give us a little bit

of wiggle room for dealing with such errors

since we only use 10 out of 32 (= 26) dif-

ferent possible codewords and since Ham-

ming distance is used to map the measured

codeword to the nearest codeword in the

matrix for classification. However, the de-

gree of protection against errors is rather

limited.

• If d is the shortest Hamming distance be-

tween any pair of the codewords in a code-

word matrix, the basic approach protects

us against making at most ⌊d−1
2 ⌋ errors in

the extraction of the codeword for a new

object to be classified.
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• For the codeword matrix shown on Slide

51, the smallest distance is only 1 between

the codewords for the digit 4 and 5. The

distance is also just 1 for the digit 7 and

8 and for 8 and 9. What that means is

that the codeword matrix of Slide 51 can-

not tolerate any errors at all in the output

of the six binary classifiers. [Even if we did not

use a set of binary classifiers to learn that codeword matrix

and relied on directly extracting the six structural features

listed at the top of Slide 51, representing the classes in the

manner shown in the matrix of Slide 51 does not allow for

any errors in the extraction of the six features.]

• Let’s now see how the basic idea of a code-

word matrix can be generalized to give us

greater protection against measurement er-

rors.
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• The idea that is used for the generalization

we need is based on what’s known as er-

ror correction coding (ECC) that’s used for

reliable communications over noisy chan-

nels and for increasing the reliability of data

storage in modern computers.

• In the ECC based approach to codeword

matrix design, we are allowed to assign

codewords of arbitrary length (subject to

the constraint that for k classes, you will

have a maximum of 2k columns in the code-

word matrix if you want the columns to be

distinct) to the classes.

• For the 10 classes of digit recognition, here

is an example drawn from the paper by Di-

etterich and Bakiri in which we assign 15-

bit codewords to the classes:
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Class f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
------------------------------------------------------------------

0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1
1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
2 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1
3 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1
4 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
5 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1
6 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1
7 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
8 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1
9 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1

• Note that the columns in the codeword ma-

trix shown above carry no meaning — un-

like the columns in the codeword matrix of

Slide 51 where each column stood for a

visual feature.

• So you can think of the codewords shown

above as having been assigned more or less

arbitrarily to the 10 different classes of in-

terest to us. [As we will soon see, there do exist

certain constraints on how the different codewords are laid

out. Nonetheless, these constraints do not arise from a need

to make the columns of the matrix meaningful in the sense

they are on Slide 51.]
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• One thing we can be certain about is that

with so many more codewords possible with

the 15 bits we now use (215 = 32768), we

can make sure that we have a large mini-

mum Hamming distance between any pair

of codewords in the matrix.

• As before, we can use either SVM or Ad-

aBoost classifier for the learning required

for each column of the codeword matrix of

the previous slide. [Let’s denote the binary clas-

sifier for learning the first column by f 0. We can acquire

f 0 by dividing our training samples into two categories, one

with the training samples for the classes {0,2,4,6,8}, and the

other for the classes {1,3,5,7,9}. The purpose of f 0 will be

to discriminate between these two categories. Similarly, to

learn f 1, the binary classifier for the second column of the

codeword matrix, we would need to divide the training data

between the positive examples consisting of the samples for

the classes {0,4,5,8,9} and the negative examples consisting

of the samples for the classes {1,2,3,6,7}. And so on.]
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• Dietterich and Bakiri list the following two

criteria for choosing the codewords for the

different classes for solving the multiclass

problem:

1. Row Separation: The minimum Hamming dis-
tance between any two rows of the codeword
matrix should be as large as possible.

2. Column Separation: The minimum Hamming
distance between any two columns should be
large. The minimum Hamming distance be-
tween any column and the complement of every
other column should also be large.

• The first criterion follows directly from how

the “decoding” step — meaning predicting

a class label for a binary code word as ex-

tracted from a test sample — is supposed

work (see the last bullet on Slide 53).
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• Regarding the second criterion on the pre-

vious slide, it is based on the fact that the

logic of error correction coding (assigning

to a codeword extracted for a new object

the class label for the Hamming-nearest

codeword in the codeword matrix) works

only when the bit-wise errors committed

for the different columns of the codeword

matrix are uncorrelated.

• If two columns are nearly the same, or if

one column is close to being the same as

the complement of another column, the

bit-wise errors for two different positions

in the codeword will be correlated (in the

sense that one error will be predictable from

the other).
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• As I said earlier, if you have k classes, the

largest number of columns you can have in

your codeword matrix is 2k. To all these

columns, you must apply the Column Sep-

aration criterion mentioned on the previous

slide.

• The Column Separation criterion makes it

difficult to create codeword matrices for

cases when the number of classes is less

than 5. [For example, when you have only 3 classes,

you have k = 3. In this case, you can have a maximum of 8

(= 23) columns. If you eliminate from these the all-zeros and

the all-ones columns, you are left with only 6 columns. Now

if you eliminate the complements of the columns, you will be

left with only 3 columns for the three classes. That does not

give you much error protection in a codeword based approach

to multiclass learning.]
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• The smallest number of classes in which

the codeword based approach to learning

works is k = 5. Dietterich and Bakiri have

provided the following codeword matrix for

this number of classes:

Class f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
------------------------------------------------------------------

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

• The above codeword matrix for a 5-class

problem was obtained by exhaustively search-

ing through the different possible 15-bit

codewords for the best set that satisfied

the two criteria on Slide 60.

• In the next section, we will use the code-

word matrix shown above to solve a con-

trived 5-class problem.
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12. AdaBoost for Codeword-Based

Learning of Multiclass Discriminations

• In the code that you can download from

the URL:

https://engineering.purdue.edu/kak/distAdaBoost/AdaBoostScripts.tar.gz

in addition to the file AdaBoost.pl that I

have already talked about, you will also find

another file named MulticlassAdaBoost.pl

that is meant for showing how AdaBoost

can be used to learn multiclass discrimina-

tions. [By “multiclass”, I mean more than two classes.]

• Multiclass application of AdaBoost will be

demonstrated on the sort of randomly gen-

erated class distributions shown in the fig-

ure on the next slide.
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• When I say that the five distributions in the

above figure are “randomly generated,” what

I mean is that when you work with the code

in an interactive mode, for each interactive

session you will see a different distribution

for the five classes in the figure. Of course,

for each session you can feed in as many

test data points as you wish for classifica-

tion and all of those classifications will be

carried out with the same training data.
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• Since you already know how AdaBoost works,

I’ll present this part of the tutorial in a top-

down fashion with regard to the content of

the file MulticlassAdaBoost.pl.

• The file MulticlassAdaBoost.pl starts out

with the declarations:

my $NUMBER_OF_CLASSES = 5;
my $N = 20;
my $NUMBER_OF_WEAK_CLASSIFIERS = 10;
my %CODEWORD_MATRIX;
$CODEWORD_MATRIX{0} = [ qw/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 / ];
$CODEWORD_MATRIX{1} = [ qw/ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 / ];
$CODEWORD_MATRIX{2} = [ qw/ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 / ];
$CODEWORD_MATRIX{3} = [ qw/ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 / ];
$CODEWORD_MATRIX{4} = [ qw/ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 / ];

where the variable $N holds the number of

data samples per class, and the variable

$NUMBER_OF_WEAK_CLASSIFIERS specifies how many weak

classifiers to construct for each column of

the codeword matrix. The codeword ma-

trix shown above is the one recommended

by Dietterich and Bakiri.
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• Next, the file MulticlassAdaBoost.pl declares

the following global variables:

my %TRAINING_DATA;
my %ALL_SAMPLE_LABELS_WITH_DATA;
my %COLUMNS;
my $NUMBER_OF_COLUMNS;
my %POSITIVE_CLASSES_FOR_ALL_COLUMNS;
my %NEGATIVE_CLASSES_FOR_ALL_COLUMNS;
my %ORIENTATIONS_USED_FOR_ALL_COLUMNS;
my %WEAK_CLASSIFIERS_FOR_ALL_COLUMNS;
my %WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS;
my %ALPHAS_FOR_ALL_COLUMNS;

Several of these variables, whose names

should convey the purpose they serve, are

meant for convenience. [While all of the train-

ing data for all the classes is held in the hash %TRAINING DATA

where the keys are the class indexes, we also store the same

data in the hash %ALL SAMPLE LABELS WITH DATA where the keys

are the ”class-x-sample-i” tags associated with the different

data points. The hash %COLUMNS holds the individual columns

of the %CODEWORD MATRIX hash introduced earlier. The keys of

the %COLUMNS hash are the column indexes and the values the

columns of the codeword matrix. The variable $NUMBER OF COLUMNS

is set to the number of columns of the codeword matrix.]
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• The variables %POSITIVE_CLASSES_FOR_ALL_COLUMNS and

%CLASSES_CLASSES_FOR_ALL_COLUMNS shown on the pre-

vious slide store for each column the pos-

itive classes and negative classes, respec-

tively. [To explain what is meant by positive and negative

classes for a column, let’s look at the column indexed 0 in the

codeword matrix shown on Slide 66. For this column, there

exists just a single positive class, which is the class indexed

0. On the other hand, this column has 4 negative classes,

these being classes index 1, 2, 3, 4. Along the same lines,

for the column indexed 1 on Slide 64, the positive classes are

indexed 0 and 4, and the negative classes indexed 1, 2, and

3.] The positive and the negative classes

for the different columns of the codeword

matrix are set by:
sub set_positive_and_negative_classes_for_columns {
1 $NUMBER_OF_COLUMNS = @{$CODEWORD_MATRIX{0}};
2 foreach my $col_index (0..$NUMBER_OF_COLUMNS-1) {
3 my @column_bits = @{$COLUMNS{$col_index}};
4 my (@positive_classes, @negative_classes);
5 foreach my $bit_index (0..@column_bits-1) {
6 push @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}},
7 $bit_index if $column_bits[$bit_index];
8 push @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}},
9 $bit_index unless $column_bits[$bit_index];
10 }
11 }
}
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• Starting with Slide 72, we show the workhorse

of MulticlassBadaBoost.pl script. It’s this

script’s job to create all of the weak clas-

sifiers for the binary classification for the

positive and the negative examples desig-

nated by the 1’s and the 0’s of a given col-

umn of the codeword matrix. The index of

the column that this script is supposed to

work on is supplied as its argument. In the

script itself, the column index becomes the

value of the local variable $col_index in line 1.

• Lines 2 through 14 of the script on Slide

72 are primarily for initializing the proba-

bility distribution of the training samples in

accordance with the second bullet on Slide

13.
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• The search for the weak classifiers begins

in line 20. In lines 21 through 31, we use

the current probability distribution over the

training samples to choose a subset of the

training data for the next weak classifier.

• The logic used in lines 32 through 63 for

the construction of a weak classifier is ex-

actly the same as described in Section 7

of this tutorial. [For a weak classifier, we randomly

choose an orientation for the decision line, an example of

which was shown in the figure on Slide 23. We then move

this decision along its perpendicular until we find a position

where the classification error rate over the training samples

being used is the least. When we find the best position of

the decision line, we take into account both polarities for the

classification rule expressed by the decision line. The best

location of the line on the perpendicular gives us the decision

threshold dth to use for this weak classifier.]
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• In lines 65 through 70, we set the value of

αt as required by Step 4 on Slide 17. Note

that the implementation you see for the

calculation of αt differs from its analytical

form on Slide 22. The reason is that the

analytical form shown on Slide 22 becomes

problematic when the error rate ǫt is zero.

As as shown in line 69, when the error rate

is less than 0.00001, we clamp αt at a high

value of 5.

• Lines 71 through 103 are devoted to the

calculation of the new probability distribu-

tion over the training samples according to

the classification errors made by the weak

classifier just constructed. This calculation

uses the formula shown in Step 5 on Slide

17.
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sub generate_weak_classifiers_for_one_column_of_codeword_matrix {
1 my $col_index = shift;
2 my @positive_classes =

3 @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};
4 my @negative_classes =

5 @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};
6 my $N_positives = 0;
7 foreach my $class_index (@positive_classes) {

8 $N_positives += @{$TRAINING_DATA{$class_index}};
9 }

10 my $N_negatives = 0;
11 foreach my $class_index (@negative_classes) {
12 $N_negatives += @{$TRAINING_DATA{$class_index}};

13 }
14 my $N_total = $N_positives + $N_negatives;
15 my %probability_over_samples;

16 foreach my $label (keys %ALL_SAMPLE_LABELS_WITH_DATA) {
17 $probability_over_samples{$label} = 1.0 / $N_total;

18 }
19 my $decision_line_orientation = 0;
20 foreach my $t (0..$NUMBER_OF_WEAK_CLASSIFIERS-1) {

21 my @samples_to_be_used_for_training = ();
22 # Select training samples for the current weak classifier:
23 my $probability_mass_selected_samples = 0;

24 foreach my $label (sort {$probability_over_samples{$b} <=>
25 $probability_over_samples{$a} }

26 keys %probability_over_samples) {
27 $probability_mass_selected_samples +=
28 $probability_over_samples{$label};

29 last if $probability_mass_selected_samples > 0.8;
30 push @samples_to_be_used_for_training, $label;

31 }
32 while (contained_in($decision_line_orientation,
33 @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}})) {

34 $decision_line_orientation =
35 int(180 * Math::Random::random_uniform());
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36 }
37 push @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}},
38 $decision_line_orientation;
39 my $learned_weak_classifier =
40 find_best_weak_linear_classifier_at_given_orientation(
41 $decision_line_orientation, \@positive_classes,
42 \@negative_classes );
43 push @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}},

44 $learned_weak_classifier;
45 my ($orientation, $threshold, $polarity,
46 $error_over_training_samples) = @{$learned_weak_classifier};
47 my $error = 0;
48 foreach my $label (keys %ALL_SAMPLE_LABELS_WITH_DATA) {
49 my $data_point = $ALL_SAMPLE_LABELS_WITH_DATA{$label};
50 my $predicted_label = weak_classify($data_point,
51 $orientation, $threshold, $polarity);
52 $label =~ /class_(\d+)_sample/;

53 my $class_index_for_label = $1;
54 next if (contained_in($class_index_for_label,
55 @positive_classes) &&
56 ($predicted_label eq ’positive’)) ||
57 (contained_in($class_index_for_label,
58 @negative_classes) &&
59 ($predicted_label eq ’negative’));
60
61 $error += $probability_over_samples{$label};

62 }
63 push @{$WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS{$col_index}},
64 $error;
65 if ($error > 0.00001) {
66 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t] =
67 0.5 * log((1 - $error) / $error);
68 } else {
69 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t] = 5;
70 }
71 my %new_probability_over_samples;
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72 for my $label (keys %probability_over_samples) {

73 my $data_point_for_label =
74 $ALL_SAMPLE_LABELS_WITH_DATA{$label};

75 my $predicted_label = weak_classify($data_point_for_label,

76 $orientation, $threshold, $polarity);

77 my $exponent_for_prob_mod;

78 $label =~ /class_(\d+)_sample/;

79 my $class_index_for_label = $1;
80 if ( (contained_in($class_index_for_label,

81 @positive_classes) &&

82 ($predicted_label eq ’positive’)) ||

83 (contained_in($class_index_for_label,

84 @negative_classes) &&

85 ($predicted_label eq ’negative’)) ) {
86 $exponent_for_prob_mod = -1.0;

87 } else {

88 $exponent_for_prob_mod = 1.0;

89 }

90 $new_probability_over_samples{$label} =

91 $probability_over_samples{$label} *
92 exp($exponent_for_prob_mod *

93 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$t]);

94 }

95 my @all_new_probabilities = values %new_probability_over_samples;

96 my $normalization = 0;

97 foreach my $prob (@all_new_probabilities) {

98 $normalization += $prob;
99 }

100 for my $label (keys %new_probability_over_samples) {

101 $probability_over_samples{$label} =

102 $new_probability_over_samples{$label} / $normalization;

103 }

104 }
}
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• Another subroutine that plays a key role in

the codeword based multiclass discrimina-

tions is final classify for one column of codeword matrix()

whose job is to aggregate the classifica-

tions returned by each of the weak classi-

fiers for a given column and return the final

classifications of a new data point. Shown

on the next slide is the implementation of

this subroutine. [This subroutine takes two argu-

ments, the column index and the data point you want to

classify. These become the values of local variables in lines 1

and 2 on the next slide.]

• After fetching the weak classifiers for the

designated column in lines 3 and 4, the

loop in lines 8 through 26 queries each of

the weak classifiers and formats their out-

put for the presentation of the results in

lines 25 through 28.
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• For aggregating the results returned by the

individual weak classifiers, we use the for-

mula on Slide 18. This aggregation is im-

plemented in lines 33 through 44.

• Note that the call to weak classify() in line

11 has the same implementation as shown

previously on Slide 37.

sub final_classify_for_one_column_of_codeword_matrix {
1 my $col_index = shift;

2 my $data_point = shift;

3 my $number_of_weak_classifiers_for_this_column =

4 scalar( @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}} );

5 my @classification_results;

6 my @weak_classifiers_for_this_column =
7 @{$WEAK_CLASSIFIERS_FOR_ALL_COLUMNS{$col_index}};

8 foreach my $t (0..$number_of_weak_classifiers_for_this_column-1) {

9 my ($orientation, $threshold, $polarity, $error) =

10 @{$weak_classifiers_for_this_column[$t]};

11 my $result = weak_classify($data_point, $orientation,

12 $threshold, $polarity);
13 my $error_rate =

14 $WEAK_CLASSIFIER_ERROR_RATES_FOR_ALL_COLUMNS{$col_index}->[$t];
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15 $error_rate =~ s/^(0\.\d\d)\d+$/$1/;

16 $error_rate = " $error_rate" if length($error_rate) == 1;

17 $threshold =~ s/^(-?\d?\.\d\d)\d+$/$1/;

18 $threshold = $threshold < 0 ? "$threshold" : " $threshold";
19 if (length($orientation) == 1) {

20 $orientation = " $orientation";

21 } elsif (length($orientation) == 2) {

22 $orientation = " $orientation";

23 }

24 $polarity = $polarity > 0 ? " $polarity" : $polarity;
25 print "[Column $col_index] Weak classifier $t " .

26 "(orientation: $orientation threshold: $threshold " .

27 "polarity: $polarity error_rate: $error_rate): " .

28 "$result\n";

29 push @classification_results, $result;

30 }
31 #For weighted pooling of the results returned by the different

32 #classifiers, treat "positive" as +1 and "negative" as -1

33 @classification_results =

34 map {s/positive/1/;$_} @classification_results;

35 @classification_results =

36 map {s/negative/-1/;$_} @classification_results;
37 print "[Column $col_index] weak classifications:

38 @classification_results\n";

39 my $aggregate = 0;

40 foreach my $i (0..@classification_results-1) {

41 $aggregate += $classification_results[$i] *

42 $ALPHAS_FOR_ALL_COLUMNS{$col_index}->[$i];
43 }

44 return $aggregate >= 0 ? "positive" : "negative";

}
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13. An Interactive Session That Shows

the Power of a Single Column of

Codeword Matrix as a Binary Classifier

• When you first fire up MulticlassAdaBoost.pl, it

will prompt you for whether you want the

multiclass classifier as learned from the en-

tire codeword matrix, or a single binary

classifier for a single column of the matrix.

If you opt for the latter, the script will en-

ter the column-interactive mode and it will

ask you to enter the column index for the

column you are interested in.

• When you choose the single-column option

in your response to the prompts, the script

invokes the overall interactive() subroutine.

• Shown on Slide 80 is the implementation

of the subroutine column interactive().
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• The interactive part of the script is the infi-

nite loop in lines 12 through 36. The code

in lines 13 through 26 first prompts the

user for data entry and then checks that

what the user entered makes sense. Line

17 is to allow for a user to terminate the

interactive session at any time by entering

〈Ctrl − d〉.

• The result returned by calling final classify for

one column of codeword matrix() in line 27 is either

’positive’ or ’negative’. The former means

that the data point supplied by the user

belongs to one the positive classes for this

class as fetched in line 2 of the script. And

the latter means that the result belongs to

one of the negative classes fetched in line

4.
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sub column_interactive {
1 my $col_index = shift;
2 my @positive_classes =
3 @{$POSITIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};
4 my @negative_classes =
5 @{$NEGATIVE_CLASSES_FOR_ALL_COLUMNS{$col_index}};
6 generate_weak_classifiers_for_one_column_of_codeword_matrix(
7 $col_index);
8 print "\n\nThis column-specific demonstration is based on " .
9 "the following randomly selected decision line " .
10 "orientations for the weak classifiers: " .
11 " @{$ORIENTATIONS_USED_FOR_ALL_COLUMNS{$col_index}}\n\n’’;
12 for (;;) {
13 print "\n\nEnter the coordinates of the point you wish to " .
14 "classify: ‘‘;
15 my $answer = <STDIN>;
16 chomp $answer;
17 die ‘‘End of interactive demonstration’’ unless $answer;
18 next if $answer =~ /^\s*$/;
19 my @nums = split / /, $answer;
20 unless (($nums[0] =~ /$_num_regex/) &&
21 ($nums[1] =~ /$_num_regex/)) {
22 print "You entered an illegal character. " .
23 "Try again or enter Contrl-D to exit\n’’;
24 next;
25 }
26 my $predicted_class =
27 final_classify_for_one_column_of_codeword_matrix($col_index,
28 \@nums);
29 if ($predicted_class eq ’positive’) {
30 print "The data point (@nums) is predicted to be in " .
31 "one of these classes: @positive_classes\n’’;
32 } elsif ($predicted_class eq ’negative’) {
33 print "The data point (@nums) is predicted to be in " .
34 "one of these classes: @negative_classes\n’’;
35 }
36 }
}
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• When you invoke MulticlassAdaBoost.pl in
the column-interactive mode, you will see
a popup window with a plot such as the

one shown on Slide 65 and the following
sort of output in your terminal window:

=> MulticlassAdaBoost.pl
Prining out the points in class 0:
class_0_sample_0 0.0388130199253125 0.306701274378974
class_0_sample_1 -0.0483082434657033 0.333167487289401
........
Prining out the points in class 1:
class_1_sample_0 0.439181892150296 0.15767914403357
class_1_sample_1 0.341741264689717 0.290947662466462
........
Prining out the points in class 2:
class_2_sample_0 0.62339139639785 0.233743754191426
class_2_sample_1 0.663987994007291 0.185020510091793
........
Prining out the points in class 3:
class_3_sample_0 0.0119872353686556 0.505153721523502
class_3_sample_1 0.192827443382858 0.416779605628115
........
........
Column 0: 1 0 0 0 0
Column 1: 1 0 0 0 1
Column 2: 1 0 0 1 0
Column 3: 1 0 0 1 1........
This column-specific demonstration is based on the following
randomly selected decision line orientations for the weak
classifiers: 0 173 55 37 96 105 174 113 166 30

Enter the coordinates of the point you wish to classify:

You enter the coordinates of the point you

wish to classify in response to the prompt
you see at the bottom.
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• Let’s say you enter something like “0.2

0.6” in response to the prompt. Next, the

system will come back with the following

sort of classification results for your point:

[Column 5] Weak classifier 0 (.........): positive

[Column 5] Weak classifier 1 (.........): positive

[Column 5] Weak classifier 2 (.........): negative

[Column 5] Weak classifier 3 (.........): negative
[Column 5] Weak classifier 4 (.........): negative

[Column 5] Weak classifier 5 (.........): negative

[Column 5] Weak classifier 6 (.........): positive

[Column 5] Weak classifier 7 (.........): negative

[Column 5] Weak classifier 8 (.........): positive

[Column 5] Weak classifier 9 (.........): negative
[Column 5] weak classifications: 1 1 -1 -1 -1 -1 1 -1 1 -1

The data point (0.2 0.6) is predicted to be in one of these classes:

Enter the coordinates of the point you wish to classify:

where I have suppressed a lot of informa-

tion regarding each weak classifier that is

printed out inside the parentheses that cur-

rently just have dots.
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• Each row of the output shown on the pre-

vious slide starts with the column of the

codeword matrix whose discriminatory power

you are investigating. Recall that any sin-

gle column can only carry out a binary clas-

sification into two groups of classes, those

corresponding to the 1’s in the column and

those corresponding to the 0’s in the col-

umn.

• When a weak classifier reports ’positive’ for

the classification of the point you supplied,

it means that, according to the weak clas-

sifier, the point belongs to the classes cor-

responding to the 1’s in the column. Sim-

ilarly, for the ’negative’ classification.
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14. An Interactive Session for
Demonstrating Multiclass Classification

with AdaBoost

• If you entered “1” in response to the prompt

when you first fired up MulticlassAdaBoost.pl, the

demo will work in the overall-interactive

mode. In this mode, you will again see

the output that was shown in a highly ab-

breviated form on Slide 81 for the column-

interactive mode of operation of the script.

As mentioned there, the output ends in the

following prompt:

Enter the coordinates of the point you wish to classify:

• You are also shown a plot of the sort you

saw on Slide 65 to help you decide what

coordinates you should supply for classifi-

cation. Let’s say you entered “0.2 0.3” in

response to the question shown above, you

will see the kind of output that is displayed

on the next slide.

84



AdaBoost Tutorial by Avi Kak

[Column 0] Weak classifier 0 (..........): negative
[Column 0] Weak classifier 1 (..........): negative
........
[Column 0] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[Column 1] Weak classifier 0 (..........): negative
[Column 1] Weak classifier 1 (..........): negative
........
[Column 1] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[Column 2] Weak classifier 0 (..........): negative
[Column 2] Weak classifier 1 (..........): negative
........
[Column 2] weak classifications: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[Column 3] Weak classifier 0 (..........): negative
[Column 3] Weak classifier 1 (..........): negative
........
[Column 3] weak classifications: -1 -1 -1 -1 -1 -1 -1 1 -1 -1
[Column 4] Weak classifier 0 (..........): negative
[Column 4] Weak classifier 1 (..........): positive
........
[Column 4] weak classifications: -1 1 -1 1 1 -1 -1 -1 -1 -1
[Column 5] Weak classifier 0 (..........): positive
[Column 5] Weak classifier 1 (..........): positive
........
[Column 5] weak classifications: 1 1 -1 -1 -1 -1 -1 -1 1 -1
[Column 6] Weak classifier 0 (..........): positive
[Column 6] Weak classifier 1 (..........): positive
........
[Column 6] weak classifications: 1 1 -1 -1 -1 -1 -1 -1 -1 -1
[Column 7] Weak classifier 0 (..........): positive
[Column 7] Weak classifier 1 (..........): positive
........
[Column 7] weak classifications: 1 1 -1 1 1 1 -1 1 -1 -1
[Column 8] Weak classifier 0 (..........): negative
[Column 8] Weak classifier 1 (..........): negative
................
[Column 14] weak classifications: 1 1 1 1 1 1 1 1 1 1
Predicted codeword for point (.2 .3) is: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Predicted class label for (0.2 0.3): 1 [with Hamming Distance: 0]

Enter the coordinates of the point you wish to classify:
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• Note the final classification result near the

bottom of the display on the previous slide.

It says that the predicted class label is ’1’.

It also says that the Hamming distance be-

tween the binary code word obtained from

the 15 columns of the codeword matrix and

the codeword corresponding to class 1 is

zero. In this case, we happen to be right on

target. A cool thing about this user inter-

action is that you can verify the accuracy

of the predicted class label by examining

your point on the plot (like the one shown

on Slide 65) that stays on your screen.

• In the overall-interactive, the data point

you want to classify is handed over to the

function final classify with all columns() whose im-

plementation is shown on the next slide.

86



AdaBoost Tutorial by Avi Kak

sub final_classify_with_all_columns {

1 my $data_point = shift;

2 my @prediction_codeword;

3 foreach my $col_index (0..$NUMBER_OF_COLUMNS-1) {
4 generate_weak_classifiers_for_one_column_of_codeword_matrix(

5 $col_index) unless $WEAK_CLASSIFIERS_ALREADY_GENERATED;

6 my $predicted_class =

7 final_classify_for_one_column_of_codeword_matrix(

8 $col_index, $data_point);

9 push @prediction_codeword, 1 if $predicted_class eq ’positive’;
10 push @prediction_codeword, 0 if $predicted_class eq ’negative’;

11 }

12 print "\nThe predicted codeword for the data point " .

13 "(@{$data_point}) is: @prediction_codeword\n’’;

14 my $number_of_rows = scalar(keys %CODEWORD_MATRIX);

15 my %hamming_distance;
16 foreach my $row_index (0..$number_of_rows-1) {

17 my @codeword = @{$CODEWORD_MATRIX{$row_index}};

18 $hamming_distance{$row_index} = 0;

19 foreach my $bit_index (0..$NUMBER_OF_COLUMNS-1) {

20 $hamming_distance{$row_index}++

21 if $prediction_codeword[$bit_index] !=
22 $codeword[$bit_index];

23 }

24 }

25 my @sorted_rows = sort {$hamming_distance{$a} <=>

26 $hamming_distance{$b}} keys %hamming_distance;

27 print "\n\nPredicted class label for (@{$data_point}): " . "
28 "$sorted_rows[0] [with Hamming Distance: " .

29 "$hamming_distance{$sorted_rows[0]}]\n’’;

}
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• As it must, the subroutine on the previous

slide first calls on generate_weak_classifiers_for_one_

_column_of_codeword_matrix() in line 4 to generate

the weak classifiers for each column of the

codeword matrix.

• Subsequently, in lines 6 and 7, it calls on

final_classify_for_one_column_of_codeword_matrix() to use

weak classifiers for each column to carry

out a binary classification of the new data

point. When the class returned is ’posi-

tive’, the new data point belongs to one of

the classes whose bit is 1 in the column.

Otherwise, its classification would be ’neg-

ative’.

• From the ’positive’ or ’negative’ labels re-

turned for each of the column binary classi-

fiers, we construct a codeword for the new

data point in lines 9 and 10.
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• In the rest of the script, we compare the

codeword thus formed for the new data

point against the codewords for each of

the classes in the codeword matrix. This

gives us the Hamming distance between

the codeword for the new data point and

the class codewords. In lines (25) through

(30), we declare for the final classification

that class label which is at the shortest

Hamming distance to the codeword for the

new data point.
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