OpenCV
+
Face Detection

C0S429
Computer Vision

® The OpenCV Library
> Brief introduction
> Getting started
o Creating a face detector
> How it's done
> OpenCV implementation

o Using a face detector
> Example code, step-by-step

F

" The OpenCV Library - brief
~_introduction

® Open source computer vision library written in C/C+
+, created and maintained by Intel

® Cross-platform and extremely portable
® Targeted for real-time applications

Supported Platforms

IA32 (x86) EM64T (x64) 1A64 Other (PPC,
(Itanium) Sparc)

Partial
Support

? (not tested)

Others ; 5 - Reported to build
(BSD, on UltraSparc,
Solaris...) Solaris

" The OpenCV Library - getting
started

® Download OpenCV:
> http://sourceforge.net/projects/opencvlibrary/
o Setting up

> There's a comprehensive guide on setting up OpenCV
In various environments at the official wiki:
http://opencvlibrary.sourceforge.net/

http://sourceforge.net/projects/opencvlibrary/
http://opencvlibrary.sourceforge.net/

L O

Rt T Aete ; & g T

Library Architecture

.
|

Samples/Demos
CV + CVAUX MLL HighGUI
High-level components Statistical Classifiers, Simple GUI,
(face detection, Clustering Algorithms Image and
camera calibration), Video Input/Output
image processing,
motion analysis ...
CXCORE

Basic structures and algorithms {(matrix and math operations),
XML support, drawing functions

IPP
Optimized code for Intel CPUs

SSRGS ST IR e

5l

' Modules Descriptions:
HighGUI

Functionality Overview

“Smart” windows

Image 1/O, rendering

Processing keyboard and other events,
timeouts

Trackbars

Mouse callbacks

Video I/O

G

E WY

Windows

cvNamedWindow(window_name, fixed size flag);

creates window accessed by its name. Window handles repaint, resize events.
Its position is remembered in registry:

cvNamedWindow("ViewA", 1);
cvMoveWindow("ViewA" 300,100);
cvDestroyWindow("ViewA");

cvShowImage(window_name, image);

copies the image to window buffer, then repaints it when necessary. {8u|16s|
32s|32f{C1|3|4} are supported.

only the whole window contents can be modified. Dynamic updates of parts of the
window are done using operations on images, drawing functions etc.

On Windows native Win32 UI API is used
On Linux - GTK+ 2.X
On MacOSX - Carbon.

1/0

IplImage* cvLoadImage(filename, colorness flag);
loads image from file, converts it to color or grayscale, if needed.

image format is determined by the file contents.

L O

cvSavelmage(filename, image);

saves image to file, image format is defined by filename extension.

Supported formats: BMP, JPEG (libjpeg), JPEG 2000 (Jasper), PNG (libpng), TIFF
(libtiff), PPM/PGM.

I/l converting jpeg to png
Iplimage* img = cvLoadlmage(“picture.jpeg”,-1);

if(iImg) cvSavelmage(“picture.png”, img);

rram o A& — il

Waiting for keys...

cvWaitKey(delay=0);

waits for key press event for <delay> ms or infinitely, if delay is 0.

To make program continue execution if no user actions is taken, use
cvWaitKey(<delay ms!=0>); and check the return value

/| opencvisamples/c/delaunay.c
for(...) {

int ¢ = cvWaitKey(100);

if(fc>=0)
I/l key _pressed
break;

%

N

The OpenCV Library - getting
started

Hello World!

//This code is taken from http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-
//intro.html#SECTIONGOO25000000000000000

LT R [e el | ikl e o LTIl T ool T L Yo T [] L L YT

i/

// hello-world.cpp

//

// This is a simple, introductory OpenCV program. The program reads an

// image
//

from a file, inverts it, and displays the result.

s / /7 LA S T T e L TR T /T T e e L e]/

#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<math.h>
<cVv.h>
<highgui.h>

int main(int argc, char *argv[])

{

IplImage* img = 0O;

int height,width,step,channels;
uchar *data;

int i,j,k;

if(argc<2){
printf("Usage: main <image-file-name>\n\7");
exit(0);

}

// load an image

img=cvLoadImage(argv[1]);

if('img){
printf("Could not load image file: %s\n",argv[1]);
exit(0);

http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-

The OpénCV L’islc;farf—' getting
started

Hello World! (cont'd)

// get the image data

height img->height;

width img->width;

step img->widthStep;

channels img->nChannels;

data (uchar *)img->imageData;

printf("Processing a %dx%d image with %d channels\n",height,width, channels);

// create a window
cvNamedWindow("mainWin", CV_WINDOW AUTOSIZE);
cvMoveWindow("mainWin", 100, 100);

// invert the image
for(i=0;i<height;i++) for(j=0;j<width;j++) for(k=0;k<channels;k++)
data[i*step+j*channels+k]=255-data[i*step+j*channels+k];

// show the image
cvShowImage("mainWin", img);

// wait for a key
cvWaitKey(0);

// release the image
cvReleaseImage(&img);
return 0O;

Original Viola-Jones paper (CVPR, 2001)

o http://research.microsoft.com/~viola/Pubs/Detect/violajones CVPR2001.pc
Collection of training images, positives and negatives

Run AdaBoost to distill a set of Haar-like features
which give good classifiers

Combine the yielded classifiers appropriately into a

cascade

http://research.microsoft.com/~viola/Pubs/Detect/violaJones_CVPR2001.pdf

Creating a face detector - cont'd

= =

Good news — OpenCV comes with an implementation of Via-Jones!

A good reference -
http://note.sonots.com/SciSoftware/haartraining.htmi

n i

Three tools to use - “createsamples”, “haartraining” and
“performance”

createsamples
o Tool from OpenCV to automate creation of training samples
o Four functionalities
0 1. create training samples from one image applying distortions

0 2. create training samples from from a collection of images,
without distortions

0 3. create testing samples with ground truth from one image
applying distortions

o 4. show images from the .vec internal format which contains a
collection of samples

o Best to use a combination of the functionalities to create mg
samples from many images with distortions and merge th

http://note.sonots.com/SciSoftware/haartraining.html

Creating a face detector - cont'd

R ¥

aartraining

o The software that performs the viola-jones algorithm and creates the cascade file

2 Sample run:
opencv-haartraining -data class -vec samples.vec -bg negs.txt
-nstages 20 -nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos
3420 -nneg 4800 -w 24 -h 24 -mem 3072 -mode BASIC

0 “data” is the directory in which to store the output

0 “vec” is the .vec file containing the positive images

U “bg” is a text file with a collection of paths to background (negative) images
U “nstages” is the number of stages of boosting

U “nsplits” is the number of split nodes in the decision trees which are the weak
classifier for boosting

0 “minhitrate” and “maxfalsealarm” are cutoff values for hit rate and false
alarm, per stage

U “npos” and “nneg” are the number of positive and negative images to be used
from the given sets

0 “w” and “h” are the width and the height of the sample

U "mem” is the amount of memory that should be used for precalculation. The
default is 200MB

U “mode” is either “BASIC” or “ALL"”, stating whether (ALL) the full set of Hagz
features should be used (both upright and 45 degree rotated) or (BASIC)
upright features

Creating a face detector - cont'd

N

® performance

> A tool to test the performance of the obtained face
detector, given the testing set of annotated positives
and negatives (created with createsamples)

> Input is the haartraining output dir, and the description
file for testing samples generated by createsamples

> Qutput is the numbers of correctly detected objects,
not detected objects, and false positives (detected
objects which do not exist)

Creating a face detector - cont'd

Good news - OpenCV also comes with several
cascade files for detecting both frontal and profile
faces

Bad news — These work with “real” photographs,
won't work well for the cartoony frames in your final
project

Good news - you just learned how to train your own
cascade classifier

Bad news - it will take days on modern computers
(even with multiple processors)

Good news - you get a face detector for wii avatars
from us!

‘;.\-':y' AT Setw F . oy T

Detector Algorithm ’

Different Object size

Weak classifiers

Haar feature

(2-3 rectangles)

- i o FETT A F . - wlln

- Non maxima suppression ’

Using a face detector (code)

#include "cv.h"
#include "highgui.h"
#include <stdlib.h>

#ifdef EiC
#define WIN32
#endif

const char* cascade name = "wii frontalface4.xml";

int main (int argc, const char* argv[])
{
/* Load the classifier data from the .xml file */
CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade*)cvLoad(cascade name);

/* create a window with handle result */
cvNamedWindow("“result");

/* read the input image */
IplImage* image = cvLoadImage(argv[l], 1);

/*
create a b&w image of the same size object as a placeholder for now
- cvSize(width, height) is the object representing dimensions of the image
- 8 stands for 8-bit depth
- 1 means one-channel (b&w)
Hence a 24bit RGB image of size 800x600 would be created with
cvCreateImage(cvSize (800, 600), 8, 3);
it/
IplImage* gray = cvCreateImage(cvSize(image->width,image->height), 8, 1);

/* now convert the input image into b&w and store it in the placeholder */
cvCvtColor(image, gray, CV_BGR2GRAY);

/* create memory storage to be used by cvHaarDetectObjects */
CvMemStorage* storage = cvCreateMemStorage();

/* used cvHaarDetectObjects */

/* 8-bit depth RGB representation of color red */
static CvScalar RED = {0, 0, 255};

/* go through all the detected faces, and draw them into the input image */
for (int i = 0; i < (faces ? faces->total : 0); i++)

{

CvRect *r = (CvRect*)cvGetSeqElem(faces, i);
CvPoint ul; CvPoint 1lr;

ul.x = r->x; ul.y = r->y;

lr.x = r->x + r->width; lr.y r->y + r->height;

/* draws a rectangle with given coordinates of the upper left
and lower right corners into an image */
cvRectangle(image, ul, lr, RED, 3, 8, 0);

Using a face detector (code) cont'd

/* free up the memory */
cvReleaseImage(&gray);

/* show the result and wait for a keystroke form user before finishing */
cvShowImage("result", image);

cvWaitKey(0);

cvReleaselImage(&image);

cvDestroyWindow("result");

return 0;

F ol

Using a face detector (code) cont'd

result:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

