
Robust Real-Time 
Face Detection

International Journal of 
Computer Vision 57(2), 2004
(first published in CVPR ‘01)
Paul Viola, Microsoft Research
Mike Jones, Mitsubishi Energy 
Research Lab (MERL)

Presented by Eugene Weinstein



Intro to Face Detection
Given an image, determine

Whether any faces are 
present, and
Where the faces are located

Many applications
Video conferencing
Surveillance
Biometric Identification

Techniques relevant to 
general object recognition 
problem



Face Detection in Identification
Face detection is first step in an 
identification process
Typical face identification process:

“Eugene”

Detection Recognition



Viola/Jones Detector
Main focus: speed

Achieves detection rates comparable to best 
systems
But, is much faster than most of them

Main contributions
1. “Integral Image” representation allows fast 

feature computation
2. AdaBoost-based classifier training procedure
3. Classifier cascade allows fast rejection of non-

face images



Rectangular Features
Use rectangle features instead of pixels

Features model face better with limited data
Feature-based classifier much faster

Compute sum of pixels within a box, 
features are combinations of box sums:

B, W: Black, white regions
Two rectangles: W-B
Three: W1+W2-B
Four: W1+W2-(B1+B2)



Integral Image
Detector resolution: 24x24 160,000 possible 
rectangle features
Fast way to compute: integral image

Integral image is the sum of pixels above and to the left

Can compute in one pass 
using the recurrences



Using the Integral Image

Rectangular sums 
can be computed with 
four array references:



Learning the Classifier
Each 24x24 region has 
160,000 rectangle 
features >> # pixels!
Impractical to compute 
complete feature set
Idea: can make an 
effective classifier from 
a small number of 
features
But which features?



AdaBoost for Feature Selection
Standard AdaBoost scenario: boost classification 
performance of a “weak” classifier, e.g., perceptron

Apply to successively harder problems
Tweak parameters at each classification stage

This work: use box sum features as weak classifiers
AdaBoost finds sequence of best features

Training is more efficient than other algorithms
Linear in number of training examples: O(MNK)=1011

K: # features (160,000)
N: # examples (20,000)
M: # iterations of AdaBoost (200) 



AdaBoost Formal Guarantees
Training error approaches zero exponentially
Large margins are rapidly achieved

Large margins good generalization error



Features as Weak Classifiers
Take one feature, decide how to use it for 
classification

f = feature
p = polarity {+1,-1}
θ = threshold



AdaBoost for Feature Selection
Given: example images labeled +/-
Repeat T times
1.Select classifier with lowest weighted error over all

– Features
– Thresholds
– Polarities

2.Selected classifier is the hypothesis of this iteration
3.Update the weights to emphasize examples on 

which this step’s classifier is wrong
Final (strong) classifier is a weighted 
combination of the weak classifiers

Weighted according to their accuracy



AdaBoost Initialization
Given: example images xi and labels yi={0,1}
Initialize weights: 

m , l : # positive, negative
examples



AdaBoost Training Loop
For t=1,…,T
1.Normalize the weights:

2.Select min-error classifier ht :

3.If xi classified incorrectly, don’t change its 
weight. Otherwise, adjust its weight down: 



Final (Strong) Classifier

Linear combination of weak classifiers
Weighted by performance of each classifier

Note, if , classifier t does not 
contribute to combination



Classifier Characteristics
First two features selected are quite intuitive

Accurate, but not enough for real tasks
Fast: 0.7 seconds for 384x288 image

But, adding more features increases computation 
time linearly
So, how to improve accuracy and keep the speed?



Accuracy of Resulting Classifier
Detection tasks: to get more true detections, 
give up more false positives – ROC curve

At 95% detection rate:

False positive rate: 
0.0071% ≈ 1/14,000

Pretty good, you say? 
For real applications, 

need 1/1,000,000



The Attentional Cascade
Use degenerate decision tree of classifiers
A negative result from any classifier leads 
to immediate rejection
Idea: Vast majority of sub-windows are 
rejected very quickly



Cascade Training Methodology
Each classifier trained on false positives of 
previous stages
Second classifier gets harder task than 
first, and etc.
To train, first decide on accuracy and 
speed goals

Past systems get 85-95% detection rates at 
10-5-10-6 false positive rate
Goal is to match this with max performance



Cascade Performance Goals
Cascade of K classifiers

fi: false positive rate of ith classifier
di: detection rate of ith classifier

Total false positive, detection rates are



Setting Performance Goals

Can set goals for FP/det rate
E.g., to get 0.9 det rate from 10-stage 
cascade, need 0.99 det rate at each stage 
(0.9910≈0.9) 
But, only need FP rate of 30% (0.310 ≈6×10-6)

Want classifiers with high detection rate, 
and can accept large FP rates



AdaBoost Classifier Again

Linear combination of weak classifiers
Weighted by accuracy of each classifier



Tweaking the Thresholds

Remember the term ht(x)-1/2?
1/2 is the default AdaBoost threshold

But what if we try to tweak it?
Say we only care about detection rate

Can achieve 100% with only two features
But… with 50% false positive rate
And it’s fast! ≈60 CPU instructions



A Very Big But…

We can tweak the AdaBoost thresholds to 
give us desired detection/FP rates
But, effect on training and generalization 
guarantees of AdaBoost currently unclear!
Ideally, want to globally optimize

Number of classifier stages
Number of features in each stage
Threshold of each stage

But, not currently feasible



And Now for the Real Algorithm

Inputs
f, maximum acceptable FP rate per layer
d, minimum acceptable det rate per layer
Ftarget, target overall FP rate

Idea: keep adding classifiers until you 
meet the performance targets



Training Algorithm for Cascade
While global FP rate not met

n 0
Repeat

n n+1
Train a classifier from n features with AdaBoost
Evaluate it on validation set
Decrease threshold of classifier until its detection 
rate is at least d

Until we find a classifier with FP rate <f
Add classifier to cascade

Train future classifiers on false positives



An Experiment
To evaluate cascade approach, train

Single 200-feature classifier
Cascade of ten 20-feature classifiers



Final System – Training
4,916 faces cropped by hand, scaled to 24x24
9,500 non-face images



Final Cascade
Features for initial classifiers chosen by 
hand (“trial and error”):

2, 10, 25, 25, 50, 50, 50 features
Chosen manually “to reduce training time”

Then, use training algorithm – sort of…
Add 25 features at a time instead of one

Final result
38 classifier layers
6,060 total features



Training and Detection Speed
Training: “weeks” on 466 MHz Sun machine

Now can run in parallel in about a day
On average, eight features are evaluated
384x288 image takes .067 seconds

That’s 15Hz!
15 times faster than previous detector of 
comparable accuracy (Rowley et al., 1998)



Practical Issues

Faces can occur at multiple scales
Scale the detector, not the image

1.25 scale step works well: 1.0x, 2.25x, etc.
Sweep detector over all possible regions
Multiple detections can occur for one face

Combine overlapping detections into one
Then, take the average to get final position



Final System – Testing 
MIT+CMU frontal face set: 130 images, 507 faces



Comparing with Previous Work
MIT+CMU fontal face set: 130 images, 507 faces
Near state-of-the-art accuracy
State-of-the-art speed



Comments
Viola-Jones is by far the most widely used 
face detector
Works well, but some issues

AdaBoost theoretical guarantees not 
necessarily preserved
A lot of hand-tweaking
Not totally rotation invariant

±15° in plane, ±45° out of plane
Future work addresses this



Gratuitous Example Images



Thank You!

Any questions?


