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Abstract

In this paper, we consider the problem of automatically de-
tecting a facial symmetry axis in what we will call a stan-
dard human face image (acquired when the subject is look-
ing directly into the camera, in front of a clean gray back-
ground under controlled illumination). Images of this kind
are encountered in face recognition scenarios; this detec-
tion should facilitate more sophisticated facial image pro-
cessing. The proposed method is based on GLDH (gray
level difference histogram) analysis and consists of three
components: (1) the face region detection stage crops an
approximate face region out of the background, (2) symme-
try detection discovers a vertical axis to optimally bisect the
region of interest, assuming it is bilaterally symmetric, and
(3) orientation adjustment aligns the angle of the symme-
try axis with the orientation of the face. An implementation
of the method is described, and results are presented. This
detector’s robust performance is evidenced by its success
finding symmetry axes in more than 7,500 images collected
from 600 distinct subjects. One of our method’s most note-
worthy contributions is that, according to our experimental
results, many of the automatically detected axes are more
accurate than the reference axes. Our automated detector
is a powerful tool because it is not as susceptible to human
error as its manual counterpart and, as the first application
of its kind, it could potentially serve as a new biometric.

1. Introduction
Facial images are becoming increasingly significant in bio-
metrics research. Only a few researchers have tried to
make use of the facial symmetry feature. Quintiliano et
al. proposed a practical procedure to improve face recog-
nition based on symmetrization and principal component
analysis[1]. Symmetrization, in this case, means recon-
structing the dark side of the face from the clear side, or
calculating the face average with its inverse, thus equal-
izing the face illumination. Through the symmetrization
procedure, the eigenface algorithm, which performs poorly
with images collected under uncontrolled illumination con-
ditions, manifests significantly improved performance in

testing images acquired under unsuitable illumination con-
ditions, specifically when the face image has one well-
illuminated side.

Liu et al. defined asymmetry measurements for 3D and
2D facial images based on the mid line passing through the
midpoint of the line segment connecting the inner canthus
and the philtrum [2][3] [4] [5] [6] [7]. The three points were
found in real expression video sequences by hand-selecting
three points on the first frame and then automatically track-
ing the rest of the video frames, with the results verified
and corrected afterwards by a human user. They used facial
asymmetry in such applications as face identification, facial
expression classification and gender discrimination. The
symmetry measurement (Y score) quantitatively defined in
this paper could be at least as powerful as the asymmetry
measurement.

Julesz [8] highlights that the presence of axial symme-
try can facilitate spontaneous texture perception by humans.
Psychophysical experiments have also been used to study
the role of bilateral symmetry in face recognition. Troje
et al. concluded that the generalization performance of the
symmetric view of a face is much better than the general-
ization of other views. Furthermore, he found that mirror
reversal causes few additional errors even if it results in
an unrealistic view of the learned face [9] [10]. This re-
search confirmed the ability to identify mirror symmetric
patterns used for viewpoint generalization by approximat-
ing the view symmetric to the learned view by its mirror-
reversed image. Zaki et al. examined the recognition of
faces at novel orientations[11]. While performance tends to
decay as the difference between the study and the test an-
gles increases, an orientation that is symmetric with respect
to the study orientation shows strong performance and, in
many cases, results prove better than those obtained using
a frontal view. Symmetrized faces show surprisingly differ-
ent patterns of behavior than unsymmetrized faces, despite
the fact that many faces are already fairly symmetric.

An automatic facial symmetry axis detector is a valuable
tool to explore the use of the bilateral symmetry feature of
human faces because it:

1. frees researchers from tedious, manual ground-truth
writing in preprocessing the face images;



2. reduces human intervention, making results more ob-
jective and accurate;

3. proves more time-cost efficient.
Also, the quantitative symmetry measurement in this

research may represent a new biometric which can im-
prove discrimination among different categories of people.
Though symmetry is showing promise, little work has been
done to detect an image’s symmetric axis, a feature whose
location is crucial to using symmetry in various applica-
tions.

Chetverikov [12] successfully applied the feature-based
interaction map (FBIM) on texture (and even non-texture
face) pattern symmetry analysis. FBIM is based on spatial
gray level difference statistics which describe pairwise pixel
interactions. However, FBIM is neither robust nor efficient
when using standard face images, on which we can isolate
only an approximate face region. Motivated by [12] [13],
we propose a new method, which makes use of the statis-
tical characteristics of the gray tone dependence in a more
effective way for standard facial images.

2. Experimental Design

We developed a fully automatic facial symmetry detector
and used it to determine the axis of symmetry in standard
face images. For assessment purposes, we also manually
locate the face regions on the same face images by clicking
on the centers of each eye and the nose tip, and defining the
line passing through the middle point of the interocular line
segment (connecting the centers of each eye) and the nose
tip as a reference axis of symmetry. Two measurements are
used to quantitatively evaluate the performance of the de-
tector. The first, angle error � , is the difference between
these two axes, as illustrated by Figure 1. The other metric,
shift � , is the distance between points A and B in Figure 1.

� represents the distance between Point A, the intersection
of the reference axis and the interocular line, and point B,
the intersection of the detected symmetry axis and the inte-
rocular line. The calculations of � and � are used to assess
the detector’s performance. We also visually examine the
faces bisected by the detected axis to qualitatively evaluate
the detector’s performance, since in many cases, the facial
symmetry detector bisects faces visually better than the ref-
erence axis. The data used to obtain the results below was
acquired at the University of Notre Dame during the 2003
and 2004 academic years; 7,534 color images from 600 dis-
tinct subjects were acquired. Each set consists of two frontal
views with different facial expressions. Image acquisitions
were held weekly for each subject, and most subjects par-
ticipated multiple times. The sensor, a Canon Powershot
G2 camera, produces an 8-bit color image with a resolution
of 2272x1704. Two Smith-Victor A120 lights with Sylva-
nia Photo-ECA bulbs provided studio lighting. The lights

Figure 1: Angle error and shift for evaluation

were located approximately eight feet in front of the sub-
ject; they are placed approximately four feet to the subject’s
left and right. Both lights were trained on the subject’s face.
The lights were suspended at about six feet; we required all
subjects to remove eyeglasses during acquisition. Figure 2
shows one subject’s neutral and smiling expressions. Each
image features one frontal, vertically-oriented face that may
include some of the upper torso and gray background.

(a) Neutral (b) Smiling

Figure 2: Sample face images

3 Face Detection

We first locate the approximate face region since there is
significant background, clothes, non-facial skin, and hair in
the image. Our facial symmetry detector is robust and does
not require that we strictly exclude all non-face pixels. We
segment human skin regions from non-skin regions based
on a chromatic color model which has been effectively used
to segment color images in many applications [14]. Chro-



matic colors are defined as follows:

� � �
� � � � 	


 � 	
� � � � 	

A rectangular area on the forehead, chin, and cheek were
extracted for each training image, and each one of these
rectangular area’s pixels was used as one skin sample to
determine the color distribution of human skin in the color
space. Our samples were taken from thirteen images of thir-
teen persons of different ethnicities and genders, yielding a
variety of facial skin tones. As the skin samples were dis-
tilled from the color images, they were filtered using a low-
pass filter to reduce the effect of noise in the samples. Fig-
ure 3 (a) shows the color distribution of these skin samples
in the chromatic color space. The color histogram reveals
that the skin-color distribution of different people is clus-
tered in the chromatic color space that can be represented
by a Gaussian model  � � � � � , where:

� � � � � � � ! � " � � & ( � � � " � � � 
 � *
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Figure 3 (b) is the Gaussian skin color model of our train-
ing data. With this Gaussian-fitted skin color model, we can

(a) Empirical Skin Color Dis-
tribution

(b) Gaussian Skin Color Model

Figure 3: Skin color histograms in chromatic color space

now obtain the likelihood of skin for any pixel in an image.
Therefore, if a pixel, having transformed RGB color space
to chromatic color space, has a chromatic pair value of (r,b),
the likelihood that this pixel represents a subject’s skin sur-
face can then be computed [14]. The skin-likelihood image
will be a gray-scale image whose gray values represent the
likelihood of the pixel belonging to skin. A sample color
image and its resulting skin-likelihood image are shown in
Figure 4 (a) and (b), respectively. The detected regions may
not necessarily correspond to skin. We can only safely con-
clude that the detected regions have the same color as the
subject’s skin. Since the skin regions are brighter than the

(a) (b) (c) (d)

Figure 4: Face detection. (a) Original image; (b) Skin like-
lihood image; (c) Skin segmented image; (d) Final detected
face region.

other parts of the images, the skin regions can be segmented
from the rest of the image through a dynamic threshold-
ing process [14].The segmented skin graph (binary image)
of Figure 4 (a) is shown in Figure 4(c). Not all detected
skin regions contain faces. Some correspond to the neck,
shoulders and other exposed body parts, while others corre-
spond to non-skin objects (hair, clothes) with colors similar
to those of the skin. A skin region is defined as a connected
region in the image containing the largest number of skin
pixels.

We proceed to determine a more accurate face region
using some characteristics from the skin region described
above. The procedures are shown below:

1. Compute 8 � : <= ? @ A B = D B F AH , where � I is the column

number of a skin pixel, � J � : < = ? @ B =H and
�

is number of
skin pixels in that region. Given that clothes and hair could
make the detected face region wider than it should be, we
empirically selected a threshold P R 8 to remove the noise
created by hair and clothes, discarding any skin pixel whoseS � I 2 � J S

is larger than the threshold.

2. We now determine the height and width by moving 4
pointers: one from the left, right, top and bottom of the im-
age. If we find a pixel whose value is not zero, we stop and
select it as the coordinate of a boundary. When we have the
4 values, we compute the height by subtracting the bottom
and top values and the width by subtracting the right and
the left values.

3. The height to width ratio of the face region is approx-
imately one. In the interest of generalization, we set our
optimal maximum ratio at 1.5, and opted to eliminate any
region below the corresponding height. We determined, by
analyzing the results in our experiments, that one would be
an appropriate lower limit. We increased the height by ex-
tending the lower boundary until the ratio is two, because in
most of these cases, the region is very narrow.

Figure 4 (d) shows the final cropped face region, which
is ready for symmetry analysis.



4 Symmetry Detection

Given the real symmetry axis on an ideal bilaterally sym-
metric image, the gray level difference between a face pixel
and its symmetric counterpart should be zero. An imaged
human face is not perfectly bilaterally symmetric due to in-
trinsic facial attributes and environmental effects introduced
during acquisition. Also, after the face detection stage, we
have only an approximate face region, which could include
non-facial objects, making it less symmetric. However, gray
level difference can still be used as a good indicator of fa-
cial symmetry. As illustrated in Figure 5, we first manu-
ally locate the most accurate vertical axis which bisects the
face evenly. Then we sweep the axis horizontally to the left
in twenty-pixel intervals. For each axis location, we dis-
play the gray level difference histogram (GLDH). GLDH
exhibits greater variance when the axis deviates from the
true symmetric axis. In other words, the closer the detected
axis is to the true symmetric axis, the denser and more con-
centrated the GLDH becomes. To describe how wide and
loose the GLDH shape is, we employed two measurements,
MEAN and gray level difference variance.

(a)

(b) (c) (d)

Figure 5: GLDH. (a) Correct symmetry axis; (b) Axis
shifted 20 pixels away; (c) Axis shifted 40 pixels away; (d)
Axis shifted 60 pixels away.

4.1 MEAN

In most standard face regions, given a correct axis estimate,
the gray level differences should yield approximately the
same value from pixel to pixel. If the axis is incorrectly
determined, gray level differences (GLDs) exhibit greater
variance. We set a threshold of � �

�
units around the mean.

The number of the pixel pairs whose gray level difference

falls within the range is defined as MEAN. The higher the
MEAN is, the more symmetric the axis. Figure 6 (a) shows
the MEANs swiping the axis from left to right on the face
region. We observe that, in most cases, the ideal axis lies at,
or close to, the peak of MEAN.

4.2 GLD Variance

The variance of gray level difference will become increas-
ingly large relative to the widening GLDH shape. Hence,
we show the variance when swiping the axis from left to
right in Figure 6 (a). We observe that, in most cases, the
ideal axis lies at or close to the minimum of variance. Both
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Figure 6: MEAN, variance, and Y score

MEAN and GLD variance are good indicators. In order to
combine them, we define the Y score as:

� �
� � � �� � � 	 � � �  �

The higher the Y value is, the more symmetric the axis is.
Figure 6 shows the Y scores sweeping the axis from left to
right.

5 Facial Orientation

In most cases, the face is not perfectly vertically oriented,
either due to the subject’s pose during acquisition, or the



position of the camera. Hence, a vertical symmetry axis
is not sufficient to evenly bisect the face. The range of
the slight rotations exhibited by the face images is repre-
sented by � � � � � � 
 � � � 
  . For each possible orientation

� � � � � � 
 � � �
�


 � � � � 
 � � � � � � � 
 � �
�


 � � � 
 � , we used the
method above to detect the symmetry axis and to calculate
a Y score for that axis. The rotation that yields largest Y
score is selected. Figure 7 (a) and (b) show the original
image and the Y score for each possible orientation angle.
The peak score appears at � � 
 , which means that the face
is rotated six degrees counter-clockwise. The axis which
corresponds to that rotation is illustrated by Figure 7 (c).
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(a) (b) (c)

Figure 7: Orientation adjustment. (a) Original image; (b) Y
score for each possible orientation; (c) The axis correspond-
ing to the largest Y value.

6 Results

Figure 8 shows the angle error and shift of the detected
symmetry axes for the 7,534 face images. � � �

�
� � of the

detected axes are within five degrees difference of the man-
ually detected axes, and � � � � � � detected shifts are within
10 pixels distance from the reference symmetry axes. Actu-
ally, the detected symmetry axis is more accurate in many
images exhibiting large angle error or shift. It is noteworthy
that, in a � � � � � � � �

�
image, a 10 pixel distance is barely

noticeable. In isolated cases, the detector did not yield ac-
curate symmetry axes due to the following factors:

1. Subject exhibits significant head rotation around the
y-axis, as shown in Figure 9 (a);

2. Subject wears asymmetric bangs (especially dark hair)
that shroud the forehead, as shown in Figure 9 (b);

3. Subject has light hair that is not easily distinguished
from skin tone, as shown in Figure 9 (c); Because, in many
cases, the detected axes are more accurate than the reference
axes, the shift and angle error provide only an approximate
performance evaluation. We find that when the symmetry
axis goes between the eye centers, it usually yields visually
satisfactory results. Seven of 7,534 images featured an in-
correctly determined axis despite the fact that there was no
significant noise from hair or other interference. We regard
these incorrect determinations as error. We may be able to
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Figure 8: Result

overcome these difficulties if we have more eye location in-
formation and restrict our axis search to only the location
between the eyes. Figure 10 shows some of the face images
whose symmetric axes have been detected.

7 Conclusions

We have developed a fully-automatic facial symmetry axis
detector, which can accurately bisect a standard human face
image. Fully automatic facial symmetry axis detection is a
valuable tool that provides faster and more accurate experi-
mental results than its manual counterpart. Our method de-
fines Y score as the measurement of bilateral symmetry for
human faces. This could be a new biometric. We intend to
implement this method in analyzing facial images acquired
under unstructured lighting conditions, and in acquisition
scenarios featuring multiple faces. Because our research’s
primary focus is automatically detecting the symmetry axis
of an isolated face image, face detection is a non-issue, or
at most a secondary concern in this paper. Though, there



(a) (b) (c)

Figure 9: Inaccuracy causes

Figure 10: Visual Evaluation

are several mature algorithms that detect the face region in a
complex background, more robust face detection algorithms
are desired in future applications, especially those that con-
sider facial feature points.

Our method’s merit lies in its innovative application of
the statistical attributes of GLDH to facial features to sim-
ply and efficiently detect the symmetric axis. Our anal-
ysis of the GLDH statistical attributes in a facial features
context represents a novel approach yielding a straightfor-
ward, robust method to automatically detect symmetry. Fur-
thermore, our research is the first to address automatically
finding the symmetry axis, and we have, in its course, de-
fined new metrics for facial symmetry and recognition that
could potentially expand the frontiers of face recognition
research.
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