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Class Objectives/Announcements

• Objectives

– Examine pyramid representation of images 

– Review procedures for generating Gaussian and Laplacian pyramids

– Investigate applications for pyramid processing

• Announcements

– Homework 4 is posted.  Due date is 1 week from today  

– Lab sessions to resume Thursday
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• Let’s assume we are given a pattern template of interest (a target, 

face, etc.) and must locate it within the video image

• This template can be reduced to a series of numbers corresponding 

to its pixel values 

• We can compare these pixel values to similar size regions in the

video image

• The video image position of maximum correlation to the template 

corresponds to the location of our pattern in the video image

One Motivation: 

2D Pattern Recognition
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2-D Pattern Recognition Example

Template Search Region
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2D Pattern Recognition Example

Actual
Template

Max
Correlation
Template
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• For an m x n image…

• For a p x q template…

• The complexity of the 2D pattern recognition task is O(mnpq)  

�

• This gets even worse for a family of templates (e.g., to address 

scale and/or rotational effects)

• To reduce actual running time (not complexity) we can

– Reduce the image size

– Reduce the template size

• Why not just do this?

Complexity
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ISSUE:  Sampling Limits

• Shannon’s Sampling Theorem states that if a function f is 

sampled at a rate ≥ twice its highest frequency, f can be 

completely recovered from its samples 

• This is known as the Nyquist Frequency Limit

• The sampling rate in images is the pixels/unit distance
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Aliasing

• For an image sampled spatially, the shortest “wavelength” that be 

represented is 2 pixels

• When a signal is under-sampled, aliasing can result

• Aliasing is when a high frequency signal masquerades as a lower 

frequency signal
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Aliasing Examples

Original Scanned Image 

Moire
Pattern

* Wikipedia

Q:  How might we
handle this effect? 

A:  Kill off the higher 
frequencies before resampling
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Resampling Operations:

Decimation

• Decimation corresponds to subsampling from every 

other row/column in the image

• This reduces the image size by a factor of 4

• To eliminate potential aliasing effects, we first 

convolve the image with a low pass filter (e.g., a 

Gaussian kernel) to kill off high frequency signal 

components
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Decimation Example

Subsample

14641

41624164

62436246

41624164

14641

*

Filter
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Resampling Operations:

Expansion

• Expansion corresponds to increasing the image size by 

inserting a new row/column between each pixel

• This increases the image size by a factor of 4

• To fill in the new pixels, the values are interpolated 

from the current image

– Nearest neighbor

– Bilinear

– Bicubic, etc. 
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Interpolation

Expansion Example

Expand
Image
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Interpolation Techniques

• Nearest Neighbor (in this case pixel duplication)
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Bilinear Interpolation

• Linear Interpolation

– (215 + 215)/2 = 215
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• Linear Interpolation

– (215 + 221)/2 = 218
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Bilinear Interpolation
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• Bi-Linear Interpolation

– (215 + 221 + 215 + 219)/4 = 217
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Bilinear Interpolation
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Bilinear Interpolation Implementation

• Bilinear interpolation can be compactly implemented through a 

convolution operation with an appropriate averaging filter
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Interpolation Results

Original
Image

Nearest
Neighbor

Bilinear
Interpolation
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The 2-D Discrete Fourier Transform Revisited

• Since our images are nothing more than 2D discrete functions, we

are interested in the 2D DFT

for u=0,…,M-1 and v=0,…,N-1  and the iDFT is defined as
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• In the spatial domain, a single point corresponds to the 

integration of all contributing frequencies at that 

position

• Position is known well, but contributed frequency is 

“unlimited”

Spatial Domain
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• In the frequency domain, a single point corresponds to 

the strength of a single frequency

• Each point is influenced by the intensity of ALL points 

in space

• Frequency is known well, but spatial contributions are 

“unlimited”

Frequency Domain
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Pyramids

• Pyramids are an example of a multi-resolution representation of 

the image

• Pyramids separate information into frequency bands 

• In the case of images, we can represent high frequency 

information (textures, etc.) in a finely sampled grid

• Coarse information can be represented in a coarser grid (lower 

sampling rate acceptable)

• Thus, coarse features can be detected in the coarse grid using a

small template size

• This is often referred to as a multi-resolution or multi-scale 

resolution
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Wavelength Domain

• Pyramid correspond to a mixture of the spatial and 

frequency domains

• Position information at each level is known to the 

accuracy of that grid resolution

• Contributing frequencies are bandwith limited at 

each grid resolution
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Generating the Gaussian Pyramid

• Im

Original Image
(Level 0)

Decimation
(Level 1)

Decimation
(Level 2)

Decimation
(Level 3)

The Number of levels is a 
function of the application
(3- 5 is typical) 
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Gaussian Pyramid Generation

• For each decimation, we convolve with the same size 

Gaussian kernel, e.g.

• While the width of this filter stays fixed, its effective 

width actually doubles at each pyramid level

14641

41624164

62436246

41624164

14641

Level 1 Level 2 Level 3
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Recall our Procedure for

Filtering in the Frequency Domain

3. Multiply F(u,v) by a filter G(u,v)

• As the kernel size in the spatial domain increases, 

it decreases in the frequency domain

• As a consequence, only lower frequencies are 

passed through (low-pass filtering)

14641

41624164

62436246

41624164

14641

g(x,y)

G(u,v)
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Gaussian Pyramid

Frequency Composition

Level 0

Level 1

Level 2

Level 3

f

f

f

f
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Pyramid Levels at Same Resolution

Level 0

Level 2 

Level 1

Level 3 
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Discrete Fourier Transforms (Gaussian)

Level 0

Level 2 

Level 1

Level 3 
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Employing Gaussian Pyramids for our 2D Pattern 

Recognition Example

Template Search Region

Original Image
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Level 3 Search 

• At the lowest pyramid level, we search the entire 

image with the correlation template
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Level 2 Search 

• Subsequent searches are constrained to a 

neighborhood of only several pixels in the x and y 

directions
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Level 1 Search 

• Subsequent searches are constrained to a 

neighborhood of only several pixels in the x and y 

directions
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Level 0 Search 

• In the end, the total time (in Matlab) was reduced 

from ≈ 31 seconds to ≈ 0.5 seconds while obtaining 

the same template match 
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Size of Search Neighborhood 

• In theory, each match should be off by no more than 

1 pixel in either the x or y direction

• A larger neighborhood can be used if so desired

Level 0

Level 1

Level 2

Level 3

(137,146)(138,146)

(69,73)(70,74)

(35,37)(36,38)

(18,19)

ActualPredicted
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Constructing the Laplacian Pyramid

Original Image

1.  Decimate
Image

2.  Expand
Image

Decimated/Expanded Image

3. Original -
D/E Image

Laplacian Level 0

4.  Input to Level 1
Construction
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The Laplacian Pyramid

Level 3

Level 0

Level 1

Level 2

The last level of a
Laplacian Pyramid is

a Gaussian equivalent

You can reconstruct the
original image from the

different frequency components!
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Laplacian Pyramid

Frequency Composition

Level 0

f

Level 1

f

Level 2

f

Level 3

f

The Laplacian Pyramid is
a band pass representation 

vice a low pass representation
for the Gaussian
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Discrete Fourier Transforms (Laplacian)

Level 0

Level 2 

Level 1

Level 3 
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Discrete Fourier Transforms

Level 0 Level 2 Level 1 Level 3 

Laplacian

Gaussian
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Laplacian Pyramid Application:  Image Fusion

• Because Laplacian pyramids are band pass representations, each 

level represents a different energy component that forms the 

image

• By maximizing the energy contributions of 2 images taken from 

different cameras (e.g. IR and day cameras), we can fuse the 

images and improve feature recognition as a result

• http://www.ece.lehigh.edu/SPCRL/
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Summary

• Pyramids correspond to a decomposition of an image into 

spatial/frequency bands

• Higher frequency require a larger image (sample) size to be 

represented, while lower frequency can be accommodate in a coarse 

image

• This “coarse to fine” approach can provide tremendous increases in 

computational efficiency

• Laplacian pyramids correspond to a band pass while Gaussian a low 

pass representation

• Pyramids are used in many applications beyond target tracking and 

image fusion

– Image alignment

– Mosaicing

– Blending images

– Data compression, etc. 


