
Design with Microprocessors (DMP) – Lab. 3

1

Laboratory 3 – Working with the LCD shield and the interrupt system

1. Working with the LCD shield

The „shields” are PCBs (Printed Circuit Boards) that can be placed over the Arduino boards,

extending their capabilities. The mapping between the Arduino pins and the devices present on the

shields should be carefully taken into account in when programming for proper mapping and conflicts

avoidance (the pins provided/used by the shield are specified in the product datasheet). In the figure

bellow such shield examples are shown: an LCD shield, an SD Card shield and a voice recognition

EasyVR) shield.

Since the Arduino boards are very popular, many competitors are using the same design layout (see

the figure bellow: left - a Fez Domino board with ARM processor; right- a CipKit board with PIC

processor) being also able to use the Arduino compatible shields.

In this laboratory an LCD (Liquid Crystal Display) shield will be used. It contains the display and a

potentiometer for tuning its brightness.

Design with Microprocessors (DMP) – Lab. 3

2

The shield is placed over the Arduino board in such a way that the longer pin bars (10 + 8) correspond

to the digital pins (see the figure below). DO NOT remove the shield from the Arduino board

(because you will damage its pins)!!!

The LCD uses the digital pins 2 … 7: 7 – RS, 6 – En, 5 – DB4, 4 – Db5, 3 – DB6, 2 – DB7 (their

mining is in the table bellow).

The shield uses the classic LCD controller Hitachi HD44780. One such controller can be used for

LCDs with max. 80 characters and 4 lines. The pinout of the shield is shown bellow:

LCD pins

Pin No. Name Description

1 VSS Power supply (GND)

2 VCC Power supply (+5V)

3 VEE Contrast adjust

4 RS Register Select: 0 = Instruction input; 1 = Data input

5 R/W 0 = Write to LCD module; 1 = Read from LCD module

6 EN Enable signal

7 D0 Data bus line 0 (LSB)

8 D1 Data bus line 1

9 D2 Data bus line 2

10 D3 Data bus line 3

11 D4 Data bus line 4

12 D5 Data bus line 5

13 D6 Data bus line 6

14 D7 Data bus line 7(MSB)

LCD pins description

Design with Microprocessors (DMP) – Lab. 3

3

The HD44780 contains 2x 8 bits registers: a Data register and an Instruction register. The instruction

register is used to send command to the LCD (i.e. shift, clear etc.). The data register is used to buffer

the displayed data. When the EN signal is activated, the Data present on the data pins are transferred

firstly in the Data register and then moved in the DDRAM (Display Data RAM) and displayed on the

LCD. The Data register is used also to transfer data to the CGRAM (Character Generator RAM) –

the memory used to store the user defined characters.

The DDRAM (Display Data RAM) stores the data to be displayed, represented as 8 bit characters. Its

total capacity is 80x8 bits (80 characters). The remaining free DDRAM memory can be used as a

generic RAM (our LCD uses only 2x16=32 characters.

The graphical shape of the characters is stored in the CGROM (Character Generator Read Only

Memory). This memory contains the matrices of points for every character (5x8 or 5x10 – depending

on the device).

The character codes for 5 x 8 points chars

The shape of the characters with codes between 0x00 and 0x07 can be defined by the user. For each

character an 8 byte matrix will be specified (one byte for each row). The least significant 5 bits from

each row will specify which pixels will be turned on or off (see the example below).

Design with Microprocessors (DMP) – Lab. 3

4

Example of a user defined character

The LCD displays can communicate with the microcontroller on 8 or 4 bits. Usually the 8 bit

connection is preferred (to spare the number of pins). The LCD shield used in the lab is configured

(by default) with a 4 bit data interface (and uses only 7 pins from the Arduino board).

Example: display character strings and numerical values on the LCD

In this first example a string of characters will be displayed on the first line of the LCD while on the

second line a number representing the elapsed time (seconds) from the program start will be

displayed.

//includes the LCD library

#include <LiquidCrystal.h>

/* LCD RS - pin 7

 * LCD Enable - pinl 6

 * LCD D4 - pin 5

 * LCD D5 - pin 4

 * LCD D6 - pin 3

 * LCD D7 - pin 2

The 7-th pin of the LCD is connected to the display brightness control potentiometer! */

 // Init the LCD with the stated pin numbers

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

unsigned long time;

void setup()

{

 // Sets the no. of rows and columns of the LCD

 lcd.begin(16, 2);

}

void loop()

{

 // Read the number of elapsed seconds from the program start

 time = millis() / 1000;

 // Set the cursor on col 0, row 0 (first row)

 lcd.setCursor(0, 0);

 // Write a string of characters

 lcd.print("Hello Children");

 // Move the cursor in the middle of the second row (row 1)

 lcd.setCursor(7, 1);

 // Display the elapsed time

 lcd.print(time);

Design with Microprocessors (DMP) – Lab. 3

5

}

In the figure bellow the result is shown:

The result of the display operation

Example: generation of user defined characters

This example shows the user defined character generation and usage procedure

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

// Character matrix for the first character: every line is a row of pixels of the character

byte happy[8] = {

B00000,

B11011,

B11011,

B00000,

B00000,

B10001,

B01110,

};

// Matrix for the second character

byte sad[8] = {

B00000,

B11011,

B11011,

B00000,

B00000,

B01110,

B10001,

};

void setup() {

 lcd.begin(16, 2);

 // The 2 character are stored in the CGROM, user defined area, pos. 0 and 1

Design with Microprocessors (DMP) – Lab. 3

6

lcd.createChar(0, happy);

lcd.createChar(1, sad);

 // Display the first line: a string followed by the 1-stuser defined char

lcd.setCursor(0, 0);

lcd.print("Happy ");

lcd.write(byte(0)); // See the difference between print and write

/* When you are referring the “0” user defined char you must write a cast to the “byte” type,

otherwise the compiler throws an error. Exception is the case when you are referring a

varaiable:

byte zero = 0;

lcd.write(zero);

*/

 // Display the second line

lcd.setCursor(0, 1);

lcd.print("Sad ");

lcd.write(1); // when you are referring other characters then “0” it is not necessary to cast

}

void loop()

{ }

2. Working with the interrupt system

Interrupts are events that require immediate attention from the microcontroller. As a response to such

an event, the microcontroller stops its normal instruction execution sequence and “serves” the

interrupt (it executes am Interrupt Service Routine (ISR) – a routine attached to that specific interrupt

event). In order to respond to interrupt events, the microcontroller should have the Global Interrupt

Enable bit and the Interrupt specific bit enabled. The following issues are essential in order to have

proper interrupt system usage:

- The interrupt should be activated on its specific bit

- The Global Interrupt Enable bit (bit I in the Status Register – SREG) should be set

- The stack should be initialized (Arduino IDE does it by default)

- Every ISR ends with an RETI instruction (which resumes the normal program execution flow)

– added by default by the Arduino IDE compiler

Interrupts can by of 2 types: internal and external. The internal ones are associated with events related

to the microcontroller peripherals (ex. Timer/Counter, Analog Comparator etc.). External interrupts

are triggered on external pins (ex. Buttons connected to these pins).

Each AVR MCU has an interrupt list which includes the type of the event that triggers the interrupt.

When the interrupts are enabled and such an event occurs, the microprocessor will jump to a specific

address in the program memory (referred by the entry in the Interrupt Vector Table (IVT)

corresponding to the interrupt number). By writing an ISR (Interrupt Service Routine) and attaching

its address in the IVT (Interrupt Vector Table) the system will be determined to execute a specific

action as a response to a particular interrupt event.

In the first example external interrupts triggered by buttons will be used and corresponding messages

will be displayed on the LCD. To run this example you need the ATmega 2560 board with the LCD

shield and a PModBtn peripheral module. The ATmega 2560 has 6 external interrupt pins (the pin

correspondence is available here: http://arduino.cc/en/Hacking/PinMapping2560.

http://arduino.cc/en/Hacking/PinMapping2560

Design with Microprocessors (DMP) – Lab. 3

7

The buttons will be connected to the pins corresponding to the interrupts INT0 and INT1 (digital pins

20 and 21). In the figure bellow are shown the necessary connections are shown followed by the

corresponding code:

Connections for the 1-st example

// Include the header for the avr interrupt system

#include "avr/interrupt.h"

// Include the LCD library

#include <LiquidCrystal.h>

 // Init the LCD

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int buttonVariable; //public variable that can be modified by the ISR

void setup(void)

{

 buttonVariable = 0; // Init the variable shared between the ISR and the main program

// Set the LCD row and col number

 lcd.begin(16, 2);

 lcd.print("Incepe experimentul");

 delay(1000); // perform a 1 sec delay to display this massage on the LCD

// Set pin 21 as input (the pin corresponding to INT0)

 pinMode(21 ,INPUT);

// Set pin 20 as input (the pin corresponding to INT1)

 pinMode(20, INPUT);

 pinMode(13, OUTPUT); // Set pin 13 as output

 digitalWrite(13, HIGH); // Lit up the onboard LED

 delay(1000);

 EIMSK |= (1 << INT0); // Activate INT0

 EIMSK |= (1 << INT1); // Activate INT1

Design with Microprocessors (DMP) – Lab. 3

8

 EICRA |= (1 << ISC01); // Specify INT0 triggering behavior: falling edge of the

 EICRA |= (1 << ISC11); // Same behavior for INT1

 sei(); // Global interrupt system activation

 digitalWrite(13, LOW); // Turn off the onboard LED

 lcd.clear(); // Erase the LCD screen

}

void loop()

{

// If an interrupt was triggered/executed the LCD has to be erased and the main massage displayed

 if(buttonVariable == 1)

 {

 lcd.clear(); // Erase the LCD

 buttonVariable = 0; // Global variable re-initialized

 }

 delay(1000);

 lcd.setCursor(0,0); // Set the LCD cursor

 lcd.print("Liniste…"); // Display a message

}

// ISR for INT0 (“INT0_vect” is a predefined name (address) for INT0 ISR

ISR(INT0_vect)

{

 digitalWrite(13, !digitalRead(13)); // Change the status of pin 13

 lcd.setCursor(0,0); // Move the LCD cursor in the top-left corner

 lcd.print("Intrerupem");// Display message

 lcd.setCursor(0,1);

 lcd.print("ptr stirea zilei");

 buttonVariable = 1;

}

// ISR for INT1

ISR(INT1_vect)

{

 digitalWrite(13, !digitalRead(13));

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("Stirea Doi");

 buttonVariable = 1;

}

Delay() and milis() function does not work during an ISR (they are based on interrupts but the

interrupt system is deactivated during the execution of an ISR). In generally, during the execution of

an ISR the system does not respond to any other interrupt request. Therefore it is recommended that

the execution time of an ISR to be as short as possible.

If a variable is modified inside an ISR and if you want to access its modified value globally, declare

the variable as volatile. Hence the compiler knows that the variable can be modified any time,

discarding any code optimization and placing the variable in the RAM.

Design with Microprocessors (DMP) – Lab. 3

9

Arduino allows the usage of the interrupt system without microcontroller specific knowledge by using

generic functions. The first one is attachInterrupt(). It attaches an ISR to an external interrupt,

replacing any previous attachment:

attachInterrupt(interrupt, ISR, mode)

The first parameter is the interrupt number but does not match neither the external interrupt number

of the Atmega2560 nor the digital pin number of the board. It is a simple index. The table below

shows the difference between these numbers:

Therefore the use of the digitalPinToInterrupt(pin) function is recommended – it will return the

interrupt number attached to the digital pin (if exists):

The second parameter is the name (address) of the ISR.

The third parameter is the trigger response behavior: RISING edge, FALLING edge, LOW level or

HIGH level or level toggle (CHANGE).

Function noInterrupts() disables the interrupts. They can be reactivated using: interrupts().

The detachInterrupt(interrupt) function disables the interrupt with the number specified in the

parameter.

The previous example was implemented using the AVR configuration registers, being dependent on

the microcontroller specifications. In the following example the same functionality can be achieved

using Arduino specific functions:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7,6,5,4,3,2);

volatile int buttonVariable;

void setup()

{

 buttonVariable = 0;

 lcd.begin(16,2);

 lcd.print("A inceput");

 lcd.setCursor(0,1);

 lcd.print("din nou");

 delay(1000);

// The 2 interrupt pins 21 and 20 declared as inputs with pull-up resistors activated

Design with Microprocessors (DMP) – Lab. 3

10

 pinMode(20 ,INPUT);

 pinMode(21 ,INPUT);

 digitalWrite(20, HIGH);

 digitalWrite(21, HIGH);

// Atach ISRs to the interrupts corresponding to pins 21 and 20 (INT0 and INT1)

 attachInterrupt(digitalPinToInterrupt(20), functieUnu, RISING);

 attachInterrupt(digitalPinToInterrupt(21), functieDoi, CHANGE);

}

void loop()

{

// Insert here task for normal program flow ….

 Serial.println("Programul principal");

 delay(1000);

}

// First ISR function

void functieUnu()

{

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("Functia Unu");

}

// 2-nd ISR function

void functieDoi()

{

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("Functia Doi");

}

Individual Work

1. Run the presented examples.

2. Using the character generator, create an animation that indicates the time elapsed (a clock with a

rotating arm, an hourglass etc.).

3. Create a timer using the interrupts. One button starts/stops the timer while the other resets the

timer.

4. Optional - combine 2 + 3: the animation runs as long the timer is running and is toped when the

timer is stopped.

References

https://www.arduino.cc/en/Reference/LiquidCrystal

https://www.arduino.cc/en/Reference/AttachInterrupt

https://www.arduino.cc/en/Reference/LiquidCrystal
https://www.arduino.cc/en/Reference/AttachInterrupt

