
Design with Microprocessors (DMP) – Lab. 4

1

Laboratory 4 – Usage of timers

1. Timer based interrupts

Beside external interrupt, the MCU responds to internal ones which are triggered by external events

(on the external pins). The source of the internal interrupts are hardware components inside the MCU

(like the Timers).

Using the timer/counter interrupts, you can trigger events at specific time intervals (without using

functions like delay and millis). Because these interrupts have an asynchronous behavior, the main

program flow can be executed normally and only when a temporal threshold is reached a specific ISR

is executed. The timer increments a counter register, and when its maximum counting capacity is

reached an overflow bit (flag) is set. The flag can be manually checked or it can trigger an interrupt

request. At the ISR execution the fag is reset.

Each timer needs a clock source, which most commonly is the development board’s oscillator; its

frequency can be divided by an auxiliary counter (prescaler).

Arduino Mega has 5 counters (2 / 8 bits and 3 / 16bits). The Arduino UNO has 2 / 8 bits and 1 / 16bits

counters. To use the counters the configuration registers must be properly set. Two of them are the

Timer Counter Control Registers TCCRxA and TCCRxB (x denotes the timer number). To start the

timer the most important bits are those that set the clock frequency division (prescaler) (and

consequently the counting speed): CSn2, CSn1 and CSn0.

By default CSx2, CSx1 and CSx0 are 0, meaning that the timer does not have a clock signal and

therefore is stopped. A valid configuration for the prescaler means starting the timer. If the selected

clock source is external, the timer will work only if such an external source is connected to the board

(which is not the case at the lab – such settings will be avoided!!!).

Design with Microprocessors (DMP) – Lab. 4

2

Below is a summary of the most important registers used with the timers:

- TCCRx - Timer/Counter Control Register: here you can set the clock source.

- TCNTx - Timer/Counter Register: stores the current value of the timer’s counter.

- OCRx - Output Compare Register: value set by the user and compared with the TCNTx to

generate waveforms or trigger events.

- ICRx - Input Capture Register: used to measure time intervals between external events (only

for 16 bit timers).

- TIMSKx - Timer/Counter Interrupt Mask Register: to enable/disable timer interrupts.

- TIFRx - Timer/Counter Interrupt Flag Register: signals the existence of an interrupt request.

In the following example we will increment a variable when TIMER1 overflows. The value of the

incremented variable will be displayed on the LCD.

#include <avr/io.h>

#include <avr/interrupt.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup()

{

 myVar = 0;

 //init Timer1

 cli(); // disable the global interrupts system in order to setup the timers

 TCCR1A = 0; // SET TCCR1A and B to 0

 TCCR1B = 0; // timer set to Normal mode (WGMx3:0 = 0)

 TIMSK1 = (1 << TOIE1); //timer overflow interrupt enable for timer 1

 //Set the prescaler to 1024

 // CPU freq. is 16 MHZ and Timer1 is on 16 bits

 // Counter increment at every dt = 1024 / (16 * 10^6) sec

 // Overflow event occurs at every: dt * 2^16 = 4.194 sec.

 TCCR1B |= (1 << CS10);

 TCCR1B |= (1 << CS12);

 lcd.begin(16, 2);

 lcd.print("Timers");

 sei(); // enable the global interrupts system

 }

void loop()

{

 lcd.setCursor(0,1);

 lcd.print(myVar);

 lcd.setCursor(5, 1);

 lcd.print(TCNT1);

}

ISR(TIMER1_OVF_vect)

{

 myVar = myVar + 1;

}

Design with Microprocessors (DMP) – Lab. 4

3

In order to trigger the timer interrupt at customized time intervals (not only on timer overflow), the

CTC (Clear Timer on Compare match) mode must be used. This way, the value of the TCNTx register

will be compared with the value of the OCRx register (set by the user) and at equality the value of

TCNTx is reset (becomes zero).

In order to obtain a T time interval between consecutive interrupt requests, the value pf OCRx register

must be set by the user:

OCRx + 1 = T / (P / (16 * 10^6)) (1)

Where:

T – the time interval between consecutive events (ex. 1 sec)

P – prescaler value (ex. 1024) (+ 1 is added to OCRx because the timer reset takes 1 clock

cycle)

Applying eq. 1 for T=1 sec, we get OCRx =15624.

#include <avr/io.h>

#include <avr/interrupt.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup()

{

 // Initialize Timer1

 cli(); // disable the global interrupts system in order to setup the timers

 TCCR1A = 0; // SET TCCR1A and B to 0

 TCCR1B = 0;

 // Set the OCR1A with the desired value:

 OCR1A = 15624;

 // Active CTC mode:

 TCCR1B |= (1 << WGM12);

 // Set the prescaler to 1024:

 TCCR1B |= (1 << CS10);

 TCCR1B |= (1 << CS12);

 // Enable the Output Compare interrupt (by setting the mask bit)

 TIMSK1 |= (1 << OCIE1A);

 lcd.begin(16, 2);

 lcd.print("Timere cu CTC");

 sei(); // enable global interrupts

}

void loop()

{

 lcd.setCursor(0,1);

 lcd.print(myVar);

 lcd.setCursor(5, 1);

 lcd.print(TCNT1);

}

Design with Microprocessors (DMP) – Lab. 4

4

ISR(TIMER1_COMPA_vect)

{

 myVar = myVar + 1;

}

In contrast to the previous example, when the variable is incremented at overflow (about every 4

seconds), in the current example we have more control over the incrementing period of the variable

(once per second).

In the following a much simpler method for using the timers, based on the TimerOne library, is

presented. The TimerOne library can be downloaded from the following location:

http://playground.arduino.cc/Code/Timer1, where detailed installation and usage instructions are

given.

In the example below a routine is called every second:

#include <TimerOne.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup(void)

{

 Timer1.initialize(1000000); // init the timing interval for event triggering (s = 10-6s)

 Timer1.attachInterrupt(ShowMessage); // The function is called at the preset time interval

}

void ShowMessage(void)

{

 lcd.setCursor(0,0);

 lcd.print(myVar);

 myVar++;

}

void loop(void)

{ // Do something else …

}

2. Tones generation

For that purpose Arduino offers the tone function, which generates specified frequency pulses with

50% fill factor. To call the function the length of the signal must be specified (otherwise the tone will

be generated until the noTone() function is called. Minimum tone frequency is 31 HZ. In order to

generate tones on different pins, noTone() must be called before switching the output pin.

The format of the tone function is:

tone (pin, frequency, duration)

or

tone (pin, frequency, duration)

http://playground.arduino.cc/Code/Timer1

Design with Microprocessors (DMP) – Lab. 4

5

In order to run the following example, the following connection must be made: connect the red

(signal) pin of the speaker to the digital pin 8 of the Arduino. The black pin of the speaker must

be connected to the ground (GND).

Afterwards, create a file named pitches.h. To create a new file inside a project, press the top-right

button from the IDE and select the “New Tab” option (see figure bellow):

Create a new file

Rename the new file pitches.h and insert the tones defined in appendix A. Save the document and go

back to the principal tab, where enter the following code:

#include "pitches.h“ // contains the frequency values for all the notes

// notes in the melody – constant values defining frequency for each used note

int melody[] =

 {NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4};

// note durations: 4 = quarter note, 8 = eighth note, etc.:

int noteDurations[] = { 4,8,8,4,4,4,4,4 };

void setup()

 {

 for (int thisNote = 0; thisNote < 8; thisNote++)

 { // iterate over the notes of the melody:

 // to calculate the note duration, take one second divided by the note type.

 // e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

 int noteDuration = 1000/noteDurations[thisNote];

 tone(8, melody[thisNote],noteDuration);

 // to distinguish the notes, set a minimum time between them: note's duration + 30%

 int pauseBetweenNotes = noteDuration * 1.30;

 delay(pauseBetweenNotes);

 noTone(8); // stop the tone playing for current note

 }

}

void loop() { } // no need to repeat the melody

Design with Microprocessors (DMP) – Lab. 4

6

3. PWM signal generation using Arduino

PWM (Pulse Width Modulation) is a technique used to obtain an analog signal from a digital one by

alternating periodically the output between “1” and “0”. The fraction of time for which the signal is

high (“1”) is called duty cycle. With Arduino the PWM signal can be generated in 3 ways:

- using the PWM working modes of the AVR timers

- using the analogWrite function

- by varying in software the amount of time at which a pin’s output is logic high

In the following, the analogWrite(duty-cycle) function will be used. The possible values for the

parameter duty_cycle are between 0 .. 255 (0 means no signal is generated; 255 means a continuous

signal of 5 V is generated). Any value X in between means a signal with a duty cycle of X/255. The

figure bellow illustrates some examples:

PWM signals with several duty cycles

In the following example we will generate a PWM signal for the piezoelectric speaker and a PWM

signal with the same duty cycle for the on-board LED. The signal pin of the piezoelectric speaker is

(red wire) is connected to digital pin 8 and the black wire to the ground.

int buzerPin = 8; // pin for attaching the piezoelectric speaker

int puls = 0; // duty cycle, initially 0

int step = 10; // duty cycle increment step

int ledPin = 13; // on-board LED

void setup() {

 // Pin direction setup

 pinMode(buzerPin, OUTPUT);

 pinMode(ledPin, OUTPUT);

}

void loop() {

 // set the duty cycle for both the buzzer and the LED

 analogWrite(buzerPin, puls);

 analogWrite(ledPin, puls);

 // increment the duty cycle

 puls = puls + step;

Design with Microprocessors (DMP) – Lab. 4

7

 // change the increment direction at the end of the interval

 if (puls <= 0 || puls >= 255) {

 step = -step ;

 }

 // small delay to sense the effects

 delay(30);

}

Individual work

1. Implement all the examples. Ask the teacher for any question related to theoretical or practical

aspects.

2. Using the interrupts, play the melody in the background while the main program displays an

animation on the LCD (ex. walking character). The animation speed should be variable to

demonstrate the asynchronous playing of the melody relative the main program.

3. Using the button block, implement a mini-piano with 4 notes. Be sure to end the sound generation

when the button is released.

4. Using the PWM technique and an LED block, implement an animation through which the intensity

of each LED is varied continuously

References

1.Datasheet ATMega 2560 http://www.atmel.com/images/atmel-2549-8-bit-avr-microcontroller-

atmega640-1280-1281-2560-2561_datasheet.pdf

2. Timer 1 library http://playground.arduino.cc/Code/Timer1

3. analogWrite functions https://www.arduino.cc/en/Reference/AnalogWrite

4. Tones generationi: https://www.arduino.cc/en/Reference/Tone

Apendix: contents of pitches.h file

#define NOTE_B0 31

#define NOTE_C1 33

#define NOTE_CS1 35

#define NOTE_D1 37

#define NOTE_DS1 39

#define NOTE_E1 41

#define NOTE_F1 44

#define NOTE_FS1 46

#define NOTE_G1 49

#define NOTE_GS1 52

#define NOTE_A1 55

#define NOTE_AS1 58

#define NOTE_B1 62

#define NOTE_C2 65

#define NOTE_CS2 69

#define NOTE_D2 73

#define NOTE_DS2 78

#define NOTE_E2 82

#define NOTE_F2 87

#define NOTE_FS2 93

http://www.atmel.com/images/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/images/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://playground.arduino.cc/Code/Timer1
https://www.arduino.cc/en/Reference/AnalogWrite
https://www.arduino.cc/en/Reference/Tone

Design with Microprocessors (DMP) – Lab. 4

8

#define NOTE_G2 98

#define NOTE_GS2 104

#define NOTE_A2 110

#define NOTE_AS2 117

#define NOTE_B2 123

#define NOTE_C3 131

#define NOTE_CS3 139

#define NOTE_D3 147

#define NOTE_DS3 156

#define NOTE_E3 165

#define NOTE_F3 175

#define NOTE_FS3 185

#define NOTE_G3 196

#define NOTE_GS3 208

#define NOTE_A3 220

#define NOTE_AS3 233

#define NOTE_B3 247

#define NOTE_C4 262

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

#define NOTE_B5 988

#define NOTE_C6 1047

#define NOTE_CS6 1109

#define NOTE_D6 1175

#define NOTE_DS6 1245

#define NOTE_E6 1319

#define NOTE_F6 1397

#define NOTE_FS6 1480

#define NOTE_G6 1568

#define NOTE_GS6 1661

#define NOTE_A6 1760

#define NOTE_AS6 1865

Design with Microprocessors (DMP) – Lab. 4

9

#define NOTE_B6 1976

#define NOTE_C7 2093

#define NOTE_CS7 2217

#define NOTE_D7 2349

#define NOTE_DS7 2489

#define NOTE_E7 2637

#define NOTE_F7 2794

#define NOTE_FS7 2960

#define NOTE_G7 3136

#define NOTE_GS7 3322

#define NOTE_A7 3520

#define NOTE_AS7 3729

#define NOTE_B7 3951

#define NOTE_C8 4186

#define NOTE_CS8 4435

#define NOTE_D8 4699

#define NOTE_DS8 4978

