Design with Microprocessors

Year lll Computer Science
1-st Semester

Lecture 11: I/O transfer with x86

1/O Transfer

address & Memory
control : address
interface MEMORY
data bus
CPU >

I/O address : :

& control /O Interface QOutside world
eg. keyboard
printer
CRT display
mass storage

Memory Disadvantage:
FFFFF A portion of the memory space

00000

IMX8

-a— Overlapped

spaces

Separate spaces

'O

is used for I'O devices.

Advantage:
IORC and IOWC not required.

Any data transfer instruction.

Disadvantage: -
Hardware using MIO and

W/R needed to develop

signals TORC and IOWC.

Requires IN, OUT, INS and
OUTS

/0 Instructions

We discussed IN, OUT, INS and OUTS as instructions for the transfer of data
to and from an 1/O device.

IN and OUT transfer data between an I/O device and the microprocessor’s
accumulator (AL, AX or EAX).

The 1/0O address is stored in:

A byte, immediately following the opcode (fixed address: O0H .. FFH).
IN AL, 19H ;8-bits are saved to AL from 1/O port 19H.
OUT 19H, AX ;16-bits are written to 1/0O port 0019H.

Register DX as a 16-bit I/O address (variable addressing: 100H ...)
IN AX, DX ;16-bits are saved to AX.
IN EAX, DX ;32-bits are saved to EAX (32 bit processors)
OUT DX, AX ;16-bits are written to port DX from AX.

OUT DX, EAX ;32-bits are written to port DX from EAX (32 bit
processors)

INS and OUTS transfer to I/O devices using ES:DI and DS:Sl, respectively.

Only 16-bits (AO to A15) are decoded (Address connections above A15 are
undefined for I/O instructions)

/0 Instructions

TABLE 10-1 Input/output instructions
Instruction Data Width Function

IN AL,p8 8 A byte is input from port p8 into AL

IN AX,p8 16 A word is input from port p8 into AX

IN EAX, p8 32 A doubleword is input from port p8 into EAX

IN AL,DX 8 A byte is input from the port addressed by DX into AL

IN AX,DX 16 A word is input from the port addressed by DX into AX

IN EAX,DX 32 A word is input from the port addressed by DX into EAX

INSB 8 A byte is input from the port addressed by DX into the extra segment
memory location addressed by DI, then DI =Dl £1

INSW 16 A word is input from the port addressed by DX into the extra segment
memory location addressed by DI, then DI =Dl £ 2

INSD 32 A doubleword is input from the port addressed by DX into the extra segment
memaory location addressed by DI, then DI £ 4

OUT p8,AL 8 A byte is output from AL to port p8

OUT p8,AX 16 A word is output from AX to port p8

OUT p8,EAX 32 A doubleword is output from EAX to port p8

OUT DX,AL 8 A byte is output from AL to the port addressed by DX

OUT DX, AX 16 A word is output from AX to the port addressed by DX

OuUT DX, EAX 32 A doubleword is output from EAX to the port addressed by DX

ouTSB 8 A byte is output from the data segment memory location addressed by Sl to
the port addressed by DX, then Sl =Sl £ 1

ouTsw 16 A word is output from the data segment memory locations addressed by Sl to
the port addressed by DX, then SI =51+ 2

OuUTSD 32 A doubleword is output from the data segment memory locations addressed

by Sl to the port addressed by DX, then Sl =S+ 4

PC I/0O map

PCI Bus, user apps
and main-board
functions

Computer system

and ISA Bus

FFFE

03Fe
03F0
03ED
0300

0380
0378
0330
0320
0300
02F8
00ed
00s60
o044
oo4n
op24
aozo
0010

— [0o0aao

I'O Expansion Area
o

Udﬂdfﬂﬂ___ﬁ---ﬂﬁﬂr’

COM 1

Floppy disk

CGI adapter

LPT1

Hard disk

COM 2

8255(FPPI)

Timer

Interrupt controller

DMA controller

Fixed I'O areas

Varable Port
I'O instuctions

Fixed Port
I/O instuctions

I/O bus cycle

(44N, 7)1=Toy (E+Nyari=Teay
[Ty | T2 | T | Towr | Te T Tyl T2 | Ta | Tyar | T,
|
» AN aWaVaWal
T A [\ | [\
|
M0 >(X : X
|
ADDR/STATUS Xar= X 5752 YEEX 1 sts X
|
ADDR/DATA Xms-.nu)—-—{fﬁi;? 01500 Ek-—-----<ﬁ.115-#.ﬂ>< DATA OUT D15-00 }—CE
FE i]
RD L s :
|
READY N | L T
_ WA : WAIT |
DT/R _\ | / : \
DEN \ / \ /

—MEMORY ACCESS TIME —P»

/O and memory control signals

8086 — min. mode 8086 — max. mode

e
S

A
MHI_DI :>C
L -
Iow
WR -

ht E RS

I 82C38
S§2 | S1 | S0 | PROCESSOR STATE COMMAND
Loglc gates' 0] a 0 [Interrupt Acknowledge |INTA
I I 0 0 1 |Read I/O Port IORC
r JL
JL IL 0 1 0 | Write /O Port IOWC, AlOWC
(a) (b) 0 1 1 [Halt None
I 4 1r U4 n 1] o | o |codeAccess MRDC
] P o B =
— 9 — O 1 0 1 |Read Memory MRDC
(© (d) ———
1 1 0 | Write Memory MWTC, AMWC
(a) NAND, (b) AND, (c) OR, and (d) NOR gates
1 1 1 [|Passive Nong

How is an I/O transfer performed

1. Selection of the 1/O port through the I/O address (by an address

decoder)

2. Asserting #IORC or #/ OWC (low)

- 2 different ports can have the same address if they have different

types (input or output) !

Example:

An octal input port & an octal output
port decoded at the same address.

Each port (3-state buffer) is
activated by the IOR/IOW control
signal in conjunction with the
address decoder output.

DATA BUS

* | —| — — » D
- | ——— — » D

-

-

L J
 ——— — » D
|
ﬁl ’

-

-

-

OUTPUT
DATA FPORT

PORT [
ADDRESS
DECODER

INPUT
DATA PORT

Basic output port — data persistency

Example: driving 8 LEDs with continuous current

+5

7-SEGMENT {common anode) ?V
DATZ BUS 1

cC
QUTPUT b D flip-flops hold ' } A
DATA FORT data from microprocessor 33082
- \
IR 3

- A Y A Y A A A
A A A\‘\X\A\H\l

Y

*>—

Y

ADDRESS
BUS

Light-emitting
diodes emit
when Q output

_{/ is set to logic 0.

Y

PORT
ADDRESS
DECODER

Not recommended: - the LEDs will be driven for Solution: to latch the output in a latch or flip-flop
about 3 clock cycles and will not lit up register

[—— - The LEDs will lit up as long we do not change the
Tl T | Tuar | TT content of the register ;-

WAWAWAWAWAS vee

CLK c

18]

ALE

1
1
1
Ve !
[\ |
— cCA D 8R! LED
ws X X =
— - 8XLED, 330
ADDR/STATUS ¥ FE 5753 X & D9 yp7:0) g
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

[y

Q(7:0)
ADDR/IDATA - Gﬁm}-{ DATA COUT D15-00 }——O<— L cLK OF Ol 18K 2N2222
ﬁ = -
A(:2) | DEC
WR [\ / To lit up a LED with
) iIOWR

“1” output

Basic input port — data bus decoupling

On the data system bus there are many devices (ports) connected).
Only one device at a time (in one bus cycle) can have its outputs connected!

= Output pins of each input device (port / register) should be 3-stated
(enabled in the bus cycle when they are active and disabled — 3 state —

when are not active) !!!
= Enabling the output can be done trough the output of the address decoder

and/or IOR control signal $-bit input port 7o When tri-states are enabled,
microprocessor can read

Toggle switches 150 R R B B T state of toggle switches into
are data source. > > > > > > 5 5 ljowo AL (using IN instruction).

Data Bus

Data Bus

PORT
ADDRESS
DECODER

L]

SEL

= L/O port address decoded to SEL é

* | — m— D, =
D, Vee b A C Inputs Outputs
: INPUT | Enable A, AB YAYB
. DATA PORT Enable B
8xR
D, gxCl L L L
8_ [™_BD(:0) L
I Cd
7 6 0 BIT SW{T'D)\ EN H X z
DEC T a72)

IORD

I/O port decoding

Using gates:

A2

A1E
Ald
Al13

Al
A0

A8

1A

74504

C
=}

},l

J—y -

[R o, L =Y]]

74L530

Address: EFXXh =
11101111 XXXXX XXX

Using LS 138 (3 to 8 line decoder):

L1
AD 1 :I,E FOH
Al 218 WEE— Fin
A2 3] ¢ vabli_ F2H
Y3 ple— Ej_ﬂ
A4 6 { G) YePl~ Esn
A3 44 G2A v6 p—2— F6H
—24 G2B Y7 p—— F7/H
lizA T4ALS13E
AS 1,
A6 ___ 2] 2
AT __134
T4LS510
The 3-to-8 Line Decoder (741.5138)
Inputs
Output
Enable Select
*E h 0 G| Gt [C|B A |0|1|2|3]|4]|5|6|7
B : T X [X X[X X[T[T[T[T[T[T]11
E_B : X T X (XX X[T[T [T]T1]1
g —C 2 o [X[X[OXIXIX[T[T[rtfi]r/r
b 3 Z oot ojorale ||
4 = [ojo [T [0j0 T T[T [T[T[T[TT
U:jGZA : O oo T ot o T[T
= 0[O0 [T[O[T [T | T[T[T[0[T[T|T/1
_-u':' o 2 0[O0 | T[L[O0|T[T[T[1[0T|T1
— 61 7 00 [T [T[0 T T|T[T[T]1[0]T]]
O[O0 | T [tltloT[T[T[T[T[1[01
0[O0 | T[T T | T[T[T[T[T[T|L[0

I/O port decoding

Using PLA, PAL PLA - AND & OR matrices are programmable
PAL - AND matrix is programmable, OR matrix is fix
H1 E: Han AMD 16L8 PAL decoder.
It has 10 fixed inputs (Pins 1-9, 11), two fixed outputs (P’ins 12 and 19)
l l T l and 6 pins that can be either (Pins 13-18).

Buffer Programmed to decode address lines A,q - A3 onto 8 outputs.

pins1 2 3 4 5 o6 7 8 9 10
1Rl L A19 A18 A17 A16 A15 A14 A13 NC NC GND
Vee spins 11 12 13 14 15 16 17 18 19 20
08 NC O8 O7 06 O5 04 03 02 O1VCC
83 Equations:

05 /O1=A19*A18* A17* A16* /A15* /A14* /Al3
04 /O2=A19*A18* A17* Al6* JA15* JA14* Al3
03 /O3=A19*A18* A17*Al6* /A15* Al4* /A13
02 /O4=A19* A18* A17* A16* /A15* Al14* Al3
:% JO5=A19* A18* A17* A16* Al5* /A14* /A13
JO6=A19* A18* A17* A16* A15* /A14* A13
JO7=A19* A18* A17* A16* A15* Ald* /A13
/O8=A19* A18* A17* A16* A15* Al4* A13

1
2
3
4
5
6
7
8
9
10

"
Lol —
-—

g
H

U1A
A2 1 2 U3 Homework:
Nl B ER
1 . .
741504 p—3lE s BE:DW—E—E% -write the /O1 .. /O8 programming
AtS RS M—3 I 05 PI3 EreC functions
A5 & 06 o.h_
A - as—2L 17 07 DI ErFE _ _
- : }a A7—F§] 18 o8 BIZ_EFFF -explain why the base address is
1 — 11! 110
¢]
AD K: — EFF8
Ag 12

74L530

I/O port decoding

/O space for 16 bit x86 family

BLE (A0)

FFFF

FFFD

_________ FFFB

0005

0003

0001

16 bit I/O port (very rare:

Example: 16 bit output port

e e 1 T T

FFFC BHE Ag Characteristics
FFFA

0 0 Whole word

0 1 Upper byte from/to odd address
0004 1 0 Lower byte from/to even address
0002 1 1 None
0000

ADC and DAC, video, disk interfaces)

Mote that only an E-bit IO
port address 15 decoded.

AT 2374

Port 41H

\

Two separate
B-bit output

devices

7

Port 40H

F40
f41

/BLE =
/BHE -

Rules:
*16 bit write needs separate
BHE and BLE (AO) strobes

16 bit read does not (explain
why ?)

Homework: Design a 16 bit
input interface using 2x LS244
buffers

‘B4 * JA3 * SR2 % /Al
FA2 ¢ /Al

SIOWC * fAT * hH *
SIOWE * FAT Y BE %

/RS *
SRS Y R4 Y SR OH

Additional reading:

Barry B. Brey, The Intel Microprocessors: 8086/8088, 80186,80286,
80386 and 80486. Architecture, Programming, and Interfacing, 4-th
edition, Prentice Hall, 1994, pp. 362-375.

I/0O transfer techniques

1. Transfer trough the CPU (internal registers ~ buffers)
Programmed /O (CPU polls peripherals to check if I/O is needed)

- unconditioned (peripheral status is NOT checked)
- conditioned (peripheral status is checked)
Interrupt based 1/O

- peripheral sends an interrupt request to CPU for 1/O transfers

2. Direct transfer - peripheral writes directly to memory

Direct memory access (DMA) using a DMA controller

Using a dedicated I/O processor

TrOUgh CPU address &
Using a multiplexer channel v = ;
data bus

CPU = :
16 g J' Direct
address
T 4{& control |/O interface QOutside world

eg. keyboard
printer

CRT display
mass storage

Memory
interface sesess MEMORY

I/0O transfer techniques

Example: 1/O = memory transfer

PU — /0

Issue Read Issue Read
—» command tof{CPU — /O —» command to

1/0 module 110 module =~ else

Read status
/0 - CPU of 110
module

Read status
of 110

module 110 — CPU

Error
condition

Error
condition

Read word

/0 - CPU from 1/O
Module

Read word
from 1/O
Module

110 - CPU

Write word
into memory|

Write word

into memory CPU — memory

Next instruction
(b) Interrupt-driven 1/0

Next instruction
(a) Programmed 1/0

Do something

=== |nterrupt

CPU — memory

Issue Read PU — DMA .
block comman Do something
to I/O module [}~ "’e|se

Read status
of DMA
module

=== nterrupt

DMA — CPU

Next instruction

(c) Direct memory access

Interrupt system (x86)

References
(1] CompE475 chapter12.pdf, pp.1-12
2] ch13-interrupt.pdf, pp.1-20

3] Barry B. Brey, The Intel Microprocessors: 8086/8088, 80186,80286,
80386 and 80486. Architecture, Programming, and Interfacing, 4-th
edition, Prentice Hall, 1994, pp. 430-450 (optional: 450-462)

Three basic categories of interrupts:
1. Software interrupts: generated by an instruction: INT interrupt-vector
2. Hardware interrupts: generated by asserting the NMI or INTR pin

3. Automatic interrupts: generated by certain error conditions (eg.
Divide by 0), or at the end of every instruction if the TRAP flag is set
in the FLAGS register.

CompE475_chapter12.pdf
ch13-interrupt.pdf

Interrupt system (x86)

Interrupt Response Sequence [2]
1. PUSH Flag Register

2. Clear IF and TF

3. PUSH CS

4. PUSH IP

5. Fetch Interrupt vector contents and place into both IP and CS to start
the Interrupt Service Procedure (ISP)

i SERVICE
Main Program PUSH FLAGS i PROCEDURE

CLEAR IF and TF

PUSH CS / PUSH REGISTER
PUSH IP ;
FETCH ISR ADDRESS

POP IP

POP CS ——__y POP REGISTER
POP FLAGS IRET

Interrupt system (x86)

The Interrupt Vector Table (IVT) [3]

%
32-255 User defined
oatlH
14-31 Reserved The interrupt vector table is located in
% the first 1024 bytes of memory at
040U Coniocacaor smae |16 addresses 000000H through 0003FFH.
03CH Unassigned 15
038H Page fault 14
034H General protection |13 There are 256 4-byte entries (segment
030H Stack seg overrun 12 and offset in real mode).
0ZCH Segment _not_present |11
02B8H Invalid task state seg |10
024H Coproc_seg overrun |9
020H Double fault g8 |Seg high |Seg lﬂ-WlOffSﬂt hjgﬂ Offset low
01CH|_Coprocessor not_avail |7
018H]_ Undefined Opcode 6 Byte 3 Byte:2 Bytel Syt
014H Bound 5
010H Overflow TO 4
0OCH 1-byte bhreakpoint |3
OOgH NMI pin 2
004H Single-step 1
000H Divide error 0

Interrupt system (x86)

Hardware Interrupts

- very efficient in handling peripheral devices, particularly I/O
operations, since the processor can perform other tasks and only
services the peripheral when required. _ Frcuing tak on the Mieroprosessor

Main program
progr
[Reyboard ISR
5] Printer ISR

-
_—

Time

} Interrupt input NMI is usually reserved for the most urgent
type of interrupt (eg. imminent power failure
of a peripheral).

* Int. no. 2
» edge triggered (0-to-1 transition)

NMI [¢——
INTR «—

INTA —» Interrupt output

INTR is used for “normal” interrupts (where the peripheral can wait if necessary
until the interrupt flag is set).

» level sensitive (must be held at logic “1”until it is acknowledged by INTA.
* INTR is automatically disabled when the uP is already servicing an INTR
 INTR is re-enabled at the end of the interrupt service routine

* Int. no. generated by an INTR is read from the data bus

Interrupt system (x86)

Hardware Interrupts
The INTR pin must be externally decoded to select a vector.

Any vector is possible, but the interrupt vectors between 20H and
FFH are usually used (Intel reserves vectors between 00H and

1FH).

INTA is an output of the microprocessor to signal the external
decoder to place the interrupt number on data bus connections D7-

DO.

NMI [——
INTR ¢—

INTA —»

Timing diagram of the handshake (2x INTA cycles) [1]

IN TR /
LOCK \ /
INTA \ / ____/

Interrupt system (x86)

Hardware Interrupts - simple methods to generating interrupt
vectors [1]

i VCC

Always generates mterrupt
vector FFH in response
to INTR.
27K
Dof—
M &
D, &
D; Low data
%4 bus
s &
Ds
D'." -
; Dy
INTA no connection %1 @
B
Dg ® Low data
%4 & bus
DS
Applies interrupt Dg +
vector 80H n

response to INTA.

INTA

Interrupt system (x86)

Hardware Interrupts - handling more than 1 IRQ

» |If several INTR are generated from different peripherals
simultaneously = is necessary to decide their priority and send the
INTA signal only to the highest priority peripheral.

« Two different methods can be used to establish the priority of
interrupt requests from different peripherals

1. Polling and daisy chaining
2. Interrupt priority management hardware

Priority Allocation by Polling and Daisy-Chaining

« Polling = asking each peripheral, in a predetermined order, whether
it needs attention from the microprocessor. The first peripheral
which responds “yes” is served by the appropriate routine.

« Daisy-chaining is a method of implementing the polling scheme by
hardware

Interrupt system (x86)

Hardware Interrupts - Priority Allocation by Daisy-Chaining [2]

« The INTA signal passes from one peripheral to the next only if the
peripheral is not requesting an interrupt.

» The first peripheral in the daisy-chain has the highest priority and the last
peripheral has the lowest priority (fixed scheme)

« Daisy chaining may be combined with software polling to determine which
routine is needed by the peripheral

l Device 1 ‘ ‘ Device 2 ‘
CPU and bus | |
control logic ‘ Interface ‘ Interface ‘
interrupt interrupt
acknowledge v request I
Daisy-Chain | ./ Daisy-Chain | ./
Logic pY4 Logic N

‘k A p_—
INTR | o | >

.
-
-,
e

- The number of devices which could be chained together is limited because
of the delays in passing the INTA through the chain!
- The microprocessor expects the interrupt number to be placed on the data
bus within a certain time after the INTA is sent out.

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

A Programmable interrupt controller(8259A) is usually used in practical
systems to determine the priority of interrupts

Example: a single

D
8259A connected in the D
8086 [1] g
- /CS must be decoded. 4
Other connections are 10K D
direct to micro Al
 Programmable IR il TORC
priority (defult: IRO JOWC
highest ... IR7 lowest) INTR
e 2

High indicates

master mode.

Write the program to decode the 8259A
at ports 0400H and 0402H.

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

The 8259A may be cascaded (one master 8259A and eight slave
8259A) to provide up to 64 interrupt lines).

MCE/PDEN \ Dat‘a ‘bus \
hufﬁ%ﬁguer \ Address bus
[ORC| o [-
INTA 10 C—T — »
I - °
i v

§ t __INTA WR RD
= SPIEN S Borivers [~ [0 ht}To other
% 2 D7-D0 CAS?2 — slaves
2 s .‘H
2 e » AO SP/EN CASO
8 |3 Master L CAST
p _ :
o |9 8259A
5 AD7-D0
< Address RO S|
L __ IR1 f— » AQ aveé |Ro|g¢-
| Gheace phCS : 8259A |R1ie
9 ’ _r\ Address .) Iileqluests
IR7 decode -{CS : 0 slaves
INTR |« INT /| logic R7 e
INT
From

: other
slavers

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

Interrupt vector number decoding: timing diagram of the handshake (2x
INTA cycles)

.l

first cycle second cycle
T1T2T3|T4"‘T1|T2T3T4

ck
ae [[[
ok /
INTA \ / \ /

AD,-AD,

VECTOR TYPE

Direct memory access (DMA)

Direct memory access (DMA) is a process in which an external
device takes over the control of system bus from the CPU.

DMA is for high-speed data transfer from/to mass storage
peripherals, e.g. hard-disk drive,CD-ROM, and sometimes video
controllers.

The basic idea of DMA is to transfer blocks of data directly between
memory and peripherals: the data don’t go through the
microprocessor but the system data bus is occupied.

“‘Normal” I/O transfer of one data byte takes up to 29 clock cycles.
The DMA transfer requires only 5 clock cycles.

Nowadays, DMA can transfer data as fast as 60 MB per second or
more. The transfer rate is limited by the speed of memory and
peripheral devices.

Direct memory access (DMA)

DMA transfer — general schematics

CFU

Address bus

Interrupt IREQ
controller
_ INTR DREQ
DACEKE
HOLD
= DA IORD I'o
HILDA
| controller IOWE. controller
EQOP
A0
MEMED
I*-iE:'-f'ﬂ-".-'E%_ Memory
b | Data bus

Direct memory access (DMA)

Basic process of DMA: 8088/8086 in minimum mode

The HOLD and HLDA pins are used to receive and acknowledge the

hold request respectively.

Normally the CPU has full control of the system bus. In a DMA operation, the
DMA controller takes over the system bus control temporarily.

Sequence of events of a typical DMA process

1) DMA controller asserts the request on the HOLD pin

2) 8086 completes its current bus cycle and enters into a HOLD state

3) 8086 grants the right of bus control by asserting a grant signal via the HOLDA pin.
8086 pins (Address, Data, C-trol pins = 3-rd state)

4) DMA operation starts

5) Upon completion of the DMA operation, the DMA controller asserts low the HOLD
pin again to relinquish bus control.

Direct memory access (DMA)

Basic process of DMA - 8088/8086 in maximum mode

The RQ/GT1 and RQ/GTO pins are used to issue DMA request and
receive acknowledge signals.

Sequence of events of a typical DMA process

1) DMA controller asserts one of the request pins, e.g. RQ/GT1 or
RQ/GTO0 (RQ/GTO has higher priority)

2) 8086 completes its current bus cycle and enters into a HOLD state

3) 8086 grants the right of bus control by asserting a grant signal via the
same pin as the request signal.

4) DMA operation starts

5) Upon completion of the DMA operation, the DMA controller asserts
the request/grant pin again to relinquish bus control.

B0BE and
bus

- Memory

cantrol
logc

HLDA

HOLD %

@ Bus request —

is made

Cantrol bus
Address bus

Bus grant is -

Data bus

Interface

@ DMA request is
aCk nowledged

M

A controller

returned

Lo

L (7

s o

DMA device places address
on sidress bus

@ Memory places data on data bus

10 device

@ Interiace latches data
‘——® Interface is ready to
receive data, DMA

FEQUEs] is made

DCLK

DRQ(n)} __]

DAK(n)#

HOLD
HLDA

D[7:0]

A[7:0]

READ#

WRITE#

Other device asserts DRQ
DMAC asserts HOLD ——

Processor acknowledges HOLD —

A[15:8] sent on data lines

Bus request s dropped and contral
15 returned 10 the 8086

\‘® Bus grant 1 dropped by the BOBG

A[7:0] sent on address lines, data sent on data lines
CMAC repands to ather device with DAK#

READ#/WRITE# asserted, depending on direction
(read/write cycles are repeated until TC, and wait states may socur)

Direct memory access (DMA)

DMA transfer types

Fly-by DMA Transfer

-Data don’t pass through the DMA
controller

-1 bys-cycle / transfer
- Mem < 1/O
- Simultaneous control signals

Flow-through DMA Transfer
- Data pass through controller

- Fetch-and-Deposit DMA Transfer:
2 cycles/transfer

- Mem & Mem, I/O & 1/0, Mem <
/0

DMA request remains

DMA Request / \

(IO Device) high for additional
DMA Acknowledge* transfers.

(DMA Controller) \ f

I/O Read*
(DMA Controller) \ f
Memory Write*
(DMA Controller) \—/7

Address H Memory Address F
(DMA Controller)

Data / >
'O Device AN Data

DMA Request / \
I/O Device
[1/O Read* 4\—/
Memory Write™
(DMA \ /
Controller
Address 4< I/O Address >—<Me1nory Address%

Direct memory access (DMA)

General organization of the DMA controller

Data bus > DMA request
Control and status registers e [from device

interface)
Bus request
EBus grant
DM A ack nowledge
Address register — {to device
interface)

< Control bus

Terminal count
. to interface or
Byte count register g ,'I
Y 9 interrupt request
l\ line)

Address

< Addressbusl/ daroder

i

|

* Nowadays is part of the system controller chipset

« DMA controller commonly used with 8088/8086 is the 8237 programmable
device

Direct memory access (DMA)

The 8237 DMA controller

4-channel device (each addressing a 64 K bytes section of memory)

Interface with
maximum-mode Yg¢ Vs
cPU |

DMA handshake
ADSTEB signals
o ———

MEMR <: DREQy-DREQy
control signals from f «——o DMA

requests for the 4 channels
and to memory LMW 4 s0A (|)

: 10R
cogt;ol mgp?]ls frlom{ *ﬁ*ﬂ :> DACK,-DACK;
and to peripherals *<+———0
Perip READY DMA acknowledge
—
RESET _ HRO
CLK

. HLDA

EOP

O

Ble—a

DBO - DB7 are used for ?O-Ai* are u;:g ;qrt -
1) transfer of data) accessing Internal ports

: 2) carrying memory address in DMA
2) 8237 programming read and write operations

8088/8086 + 8237A

5 Hapeisuh;*;fn:mg;iw AEN=1 disables CPU comm. /
o R S r‘ '—l _______4_.-,k—r"'"'”"'_# enables MSB of address
synched with CPU B84 AEN e /\ Py
RDY ~Dc o O 74F373
RST CLK =|CLK
Y Y & u
READY AEN DREQ DACK ADSTB
RESET |== > RESET B e
K |- »
cL CLK iy DB,-DB, <::'J>
HLDA »{ HLDA
HOLE = —HRQ MEMR MEMW 1/OR 1/OW Ac-Ay AcA; €SP
T o] T e
B8
i il | MEMR
RD -
WR Control - MEMW
bus EGR Control
10/M decoder I - bus
Il \ . 1row i
AD- An =
AD; ALE Ay Y \
4/\—\ | Needed for _ P
AEN 237A Maps 8237A mternal | | | | gecoder
internal register registers to 'O space
T4F373 Address bus
(3}
= CLK
—> Also connects to I
OE /0 and memory
devices
AEN {
Wi
N Data bus

Generating 16 bit addresses

Address buss A0-AlS5

N T~
I>° OE# 8 BIT
STB LATCH
A0-AlS5 4 N/
] AEN A0-A3 A4-A7 CS/ ADSTB
HOLD HROQ DBO.DB7
HOLDA HLDA IS237A
DREQO0-3
CPU LK RESETMEMR# MEMW# [0R# Tows DACE0-3 >
| ™ ™
CLOCK
RESET
MEMRS P
MEMW
IORs
IOWr Control buss
D0-D7
_$ Sistemn data buss
b

Generating addresses > 16 bits

i8237A Address Latch and
Page Registers

DMA

I/O Mapped i A16..A23
to MPU, read Page [A16..A19
and write Regrs. for PC/XT]
DMA A8..A15
Addr. ”
e Latch
IOR DBO0..DB7
IoOW 4—
MEMR ADSTB
MEMW i8237

DMA AO.

four

HRQ bmMmA

HLDA 44— DREQ1
—» DACKI1
94— DREQ2 €
—» DACK2
<4— DREQ3
—» DACKS3

.A7 > AO0..A7

DREQO 4—\— Hi
channels
——» DACKO —l

Q D
A 15 usecs.
g ouT1
CLR
‘l’ 8253
(8254)
Timer/
Floppy Controller Counter

Direct memory access (DMA)

Functioning modes

|dle (slave)
— programming the device (#CS=0, HOLDA=0)

Active (master) — DMA transfer:

Single transfer Mode - release HOLD after each byte transferred. If
DREQ is held active HOLD is issued again.

Bloc transfer Mode — transfers a block of size specified in the count
register (DREQ need not to be held active).

Demand Transfer Mode — transfers data until external #EOP is
received or until DREQ becomes inactive

2ND LEVEL

Cascade Mode -

80C86/88
MICRO- 1ST LEVEL 82C37A

PROCESSOR
. HRQ DREQ = HRQ
»HLDA DACK »|HLDA

82C37A

DREQ HRQ
DACK »|HLDA

INITIAL DEVICE 82C37A

ADDITIONAL
DEVICES

Direct memory access (DMA)

Transfer Types

Write transfers move data from an I/O device to the memory by activating MEMW
and IOR.

Read transfers move data from memory to an I/O device by activating MEMR and
IOW.

Verify transfers are pseudo-transfers (memory and I/O control lines all remain
inactive). Verify mode is not permitted for memory-to-memory operation.

Memory-to-memory
e« Channel O — source address & counter
« Channel 1 — destination address & counter

» The data byte read from the memory is stored in the 82C37A internal Temporary
register

* The transfer is initiated by setting the software or hardware DREQ for channel 0.
The 82C37A requests a DMA service in the normal manner.

Autoinitialize — a channel may be set up as an Autoinitialize channel. During

Autoinitialization, the original values of the Current Address and Current Word
Count registers are automatically restored from the Base Address and Base
Word Count registers of the channel following EOP. Following Autoinitialization,
the channel is ready to perform another DMA service, without CPU intervention,
as soon as a valid DREQ is detected. or software request made.

