
Design with Microprocessors

Year III Computer Science

1-st Semester

Lecture 11: I/O transfer with x86

I/O Transfer

I/O Instructions
We discussed IN, OUT, INS and OUTS as instructions for the transfer of data

to and from an I/O device.

IN and OUT transfer data between an I/O device and the microprocessor’s
accumulator (AL, AX or EAX).

The I/O address is stored in:

A byte, immediately following the opcode (fixed address: 00H .. FFH).

IN AL, 19H ;8-bits are saved to AL from I/O port 19H.

OUT 19H, AX ;16-bits are written to I/O port 0019H.

Register DX as a 16-bit I/O address (variable addressing: 100H ...)

IN AX, DX ;16-bits are saved to AX.

IN EAX, DX ;32-bits are saved to EAX (32 bit processors)

OUT DX, AX ;16-bits are written to port DX from AX.

OUT DX, EAX ;32-bits are written to port DX from EAX (32 bit
processors)

INS and OUTS transfer to I/O devices using ES:DI and DS:SI, respectively.

Only 16-bits (A0 to A15) are decoded (Address connections above A15 are
undefined for I/O instructions)

I/O Instructions

PC I/O map

I/O bus cycle

I/O and memory control signals

8086 – min. mode 8086 – max. mode

Logic gates:

(a) NAND, (b) AND, (c) OR, and (d) NOR gates

How is an I/O transfer performed

1. Selection of the I/O port through the I/O address (by an address

decoder)

2. Asserting #IORC or #IOWC (low)

- 2 different ports can have the same address if they have different

types (input or output) !

Example:

An octal input port & an octal output

port decoded at the same address.

Each port (3-state buffer) is

activated by the IOR/IOW control

signal in conjunction with the

address decoder output.

Basic output port – data persistency

Example: driving 8 LEDs with continuous current

Not recommended: - the LEDs will be driven for

about 3 clock cycles and will not lit up

Solution: to latch the output in a latch or flip-flop

register

- The LEDs will lit up as long we do not change the

content of the register

To lit up a LED with

“1” output

Basic input port – data bus decoupling
On the data system bus there are many devices (ports) connected).

Only one device at a time (in one bus cycle) can have its outputs connected!

 Output pins of each input device (port / register) should be 3-stated
(enabled in the bus cycle when they are active and disabled – 3rd state –
when are not active) !!!

 Enabling the output can be done trough the output of the address decoder
and/or IOR control signal

I/O port decoding

Address: EFXXh =

11101111XXXXXXXX

Using gates: Using LS 138 (3 to 8 line decoder):

I/O port decoding

Using PLA, PAL …. PLA - AND & OR matrices are programmable

PAL - AND matrix is programmable, OR matrix is fix

Example: address decoder using logic gates and PAL

Homework:

-write the /O1 .. /O8 programming

functions

-explain why the base address is

EFF8

I/O port decoding

I/O space for 16 bit x86 family

16 bit I/O port (very rare: ADC and DAC, video, disk interfaces)

Rules:

•16 bit write needs separate

BHE and BLE (A0) strobes

•16 bit read does not (explain

why ?)

Homework: Design a 16 bit

input interface using 2x LS244

buffers

Example: 16 bit output port

Additional reading:

Barry B. Brey, The Intel Microprocessors: 8086/8088, 80186,80286,

80386 and 80486. Architecture, Programming, and Interfacing, 4-th

edition, Prentice Hall, 1994, pp. 362-375.

I/O transfer techniques

1. Transfer trough the CPU (internal registers ~ buffers)

Programmed I/O (CPU polls peripherals to check if I/O is needed)

- unconditioned (peripheral status is NOT checked)

- conditioned (peripheral status is checked)

Interrupt based I/O

- peripheral sends an interrupt request to CPU for I/O transfers

2. Direct transfer - peripheral writes directly to memory

Direct memory access (DMA) using a DMA controller

Using a dedicated I/O processor

Using a multiplexer channel

I/O transfer techniques

Example: I/O  memory transfer

Interrupt system (x86)

References

[1] CompE475_chapter12.pdf, pp.1-12

[2] ch13-interrupt.pdf, pp.1-20

[3] Barry B. Brey, The Intel Microprocessors: 8086/8088, 80186,80286,

80386 and 80486. Architecture, Programming, and Interfacing, 4-th

edition, Prentice Hall, 1994, pp. 430-450 (optional: 450-462)

Three basic categories of interrupts:

1. Software interrupts: generated by an instruction: INT interrupt-vector

2. Hardware interrupts: generated by asserting the NMI or INTR pin

3. Automatic interrupts: generated by certain error conditions (eg.

Divide by 0), or at the end of every instruction if the TRAP flag is set

in the FLAGS register.

CompE475_chapter12.pdf
ch13-interrupt.pdf

Interrupt system (x86)

Interrupt Response Sequence [2]

1. PUSH Flag Register

2. Clear IF and TF

3. PUSH CS

4. PUSH IP

5. Fetch Interrupt vector contents and place into both IP and CS to start

the Interrupt Service Procedure (ISP)

Interrupt system (x86)

The Interrupt Vector Table (IVT) [3]

Interrupt system (x86)

Hardware Interrupts

- very efficient in handling peripheral devices, particularly I/O

operations, since the processor can perform other tasks and only

services the peripheral when required.

NMI is usually reserved for the most urgent

type of interrupt (eg. imminent power failure

of a peripheral).

• Int. no. 2

• edge triggered (0-to-1 transition)

INTR is used for “normal” interrupts (where the peripheral can wait if necessary

until the interrupt flag is set).

• level sensitive (must be held at logic “1”until it is acknowledged by INTA.

• INTR is automatically disabled when the mP is already servicing an INTR

• INTR is re-enabled at the end of the interrupt service routine

• Int. no. generated by an INTR is read from the data bus

Interrupt system (x86)

Hardware Interrupts

• The INTR pin must be externally decoded to select a vector.

• Any vector is possible, but the interrupt vectors between 20H and

FFH are usually used (Intel reserves vectors between 00H and

1FH).

• INTA is an output of the microprocessor to signal the external

decoder to place the interrupt number on data bus connections D7-

D0.

Timing diagram of the handshake (2x INTA cycles) [1]

Interrupt system (x86)

Hardware Interrupts - simple methods to generating interrupt

vectors [1]

Interrupt system (x86)

Hardware Interrupts - handling more than 1 IRQ

• If several INTR are generated from different peripherals

simultaneously  is necessary to decide their priority and send the

INTA signal only to the highest priority peripheral.

• Two different methods can be used to establish the priority of

interrupt requests from different peripherals

1. Polling and daisy chaining

2. Interrupt priority management hardware

Priority Allocation by Polling and Daisy-Chaining

• Polling = asking each peripheral, in a predetermined order, whether

it needs attention from the microprocessor. The first peripheral

which responds “yes” is served by the appropriate routine.

• Daisy-chaining is a method of implementing the polling scheme by

hardware

Interrupt system (x86)

Hardware Interrupts - Priority Allocation by Daisy-Chaining [2]

• The INTA signal passes from one peripheral to the next only if the

peripheral is not requesting an interrupt.

• The first peripheral in the daisy-chain has the highest priority and the last

peripheral has the lowest priority (fixed scheme)

• Daisy chaining may be combined with software polling to determine which

routine is needed by the peripheral

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

A Programmable interrupt controller(8259A) is usually used in practical

systems to determine the priority of interrupts

Example: a single

8259A connected in the

8086 [1]

• /CS must be decoded.

Other connections are

direct to micro

• Programmable IR

priority (defult: IR0

highest … IR7 lowest)

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

The 8259A may be cascaded (one master 8259A and eight slave

8259A) to provide up to 64 interrupt lines).

Interrupt system (x86)

Hardware Interrupts - Interrupt priority management hardware

Interrupt vector number decoding: timing diagram of the handshake (2x

INTA cycles)

• Direct memory access (DMA) is a process in which an external

device takes over the control of system bus from the CPU.

• DMA is for high-speed data transfer from/to mass storage

peripherals, e.g. hard-disk drive,CD-ROM, and sometimes video

controllers.

• The basic idea of DMA is to transfer blocks of data directly between

memory and peripherals: the data don’t go through the

microprocessor but the system data bus is occupied.

• “Normal” I/O transfer of one data byte takes up to 29 clock cycles.

The DMA transfer requires only 5 clock cycles.

• Nowadays, DMA can transfer data as fast as 60 MB per second or

more. The transfer rate is limited by the speed of memory and

peripheral devices.

Direct memory access (DMA)

DMA transfer – general schematics

Direct memory access (DMA)

Basic process of DMA: 8088/8086 in minimum mode

The HOLD and HLDA pins are used to receive and acknowledge the

hold request respectively.

Normally the CPU has full control of the system bus. In a DMA operation, the

DMA controller takes over the system bus control temporarily.

Sequence of events of a typical DMA process

1) DMA controller asserts the request on the HOLD pin

2) 8086 completes its current bus cycle and enters into a HOLD state

3) 8086 grants the right of bus control by asserting a grant signal via the HOLDA pin.

8086 pins (Address, Data, C-trol pins  3-rd state)

4) DMA operation starts

5) Upon completion of the DMA operation, the DMA controller asserts low the HOLD

pin again to relinquish bus control.

Direct memory access (DMA)

Basic process of DMA - 8088/8086 in maximum mode

The RQ/GT1 and RQ/GT0 pins are used to issue DMA request and

receive acknowledge signals.

Sequence of events of a typical DMA process

1) DMA controller asserts one of the request pins, e.g. RQ/GT1 or

RQ/GT0 (RQ/GT0 has higher priority)

2) 8086 completes its current bus cycle and enters into a HOLD state

3) 8086 grants the right of bus control by asserting a grant signal via the

same pin as the request signal.

4) DMA operation starts

5) Upon completion of the DMA operation, the DMA controller asserts

the request/grant pin again to relinquish bus control.

Direct memory access (DMA)

DMA transfer types

Fly-by DMA Transfer

-Data don’t pass through the DMA

controller

-1 bys-cycle / transfer

- Mem  I/O

- Simultaneous control signals

Flow-through DMA Transfer

- Data pass through controller

- Fetch-and-Deposit DMA Transfer:

2 cycles/transfer

- Mem  Mem, I/O  I/O, Mem 

I/O

Direct memory access (DMA)

General organization of the DMA controller

• Nowadays is part of the system controller chipset

• DMA controller commonly used with 8088/8086 is the 8237 programmable

device

Direct memory access (DMA)

The 8237 DMA controller

4-channel device (each addressing a 64 K bytes section of memory)

Direct memory access (DMA)

8088/8086 + 8237A

Generating 16 bit addresses

D R EQ 0

D AC K0

D R EQ 1

D AC K1

D R EQ 2

D AC K2

D R EQ 3

D AC K3

D B 0..D B 7

A0..A7

i8237

DM A

four

D M A

channels
H R Q

H LD A

IO R

IO W

M EM R

M EM W

AD ST B

EO P

D M A

Addr.

Latch

D M A

Page

R egrs.

A16..A23

[A16..A19

for PC /XT]

I/O M apped

to M PU , read

and write

A8..A15

A0..A7

8253

(8254)

T im er/

C ounter

O U T 1
15 usecs.

D

H i

C LR

Q

Floppy C ontroller

i8 23 7A A ddres s La tc h a nd

P age R egis ters

Generating addresses > 16 bits

Functioning modes

Idle (slave)

– programming the device (#CS=0, HOLDA=0)

Active (master) – DMA transfer:

Single transfer Mode - release HOLD after each byte transferred. If

DREQ is held active HOLD is issued again.

Bloc transfer Mode – transfers a block of size specified in the count

register (DREQ need not to be held active).

Demand Transfer Mode – transfers data until external #EOP is

received or until DREQ becomes inactive

Cascade Mode -

Direct memory access (DMA)

Transfer Types

Write transfers move data from an I/O device to the memory by activating MEMW

and IOR.

Read transfers move data from memory to an I/O device by activating MEMR and

IOW.

Verify transfers are pseudo-transfers (memory and I/O control lines all remain

inactive). Verify mode is not permitted for memory-to-memory operation.

Memory-to-memory

• Channel 0 – source address & counter

• Channel 1 – destination address & counter

• The data byte read from the memory is stored in the 82C37A internal Temporary

register

• The transfer is initiated by setting the software or hardware DREQ for channel 0.

The 82C37A requests a DMA service in the normal manner.

Autoinitialize – a channel may be set up as an Autoinitialize channel. During

Autoinitialization, the original values of the Current Address and Current Word

Count registers are automatically restored from the Base Address and Base

Word Count registers of the channel following EOP. Following Autoinitialization,

the channel is ready to perform another DMA service, without CPU intervention,

as soon as a valid DREQ is detected, or software request made.

Direct memory access (DMA)

