/¥ 01067 s6d TT le1deyD
|leH 801ue.d
uosgI9 pue nif

SwesAS PINdwodo.nIn

1Ay ON3 dINOD 10} Uo1onpoidel 8./ 851N0D

450

In Chap. 9 it was seen that a DMA controller could improve the system throughput
by concurrently performing I/O as the CPU continued its processing. This is possible
because the CPU does not utilize all of the bus cycles. An 8086 typically uses only
50 to 80 percent of the available bus time, depending on the application. A DMA
controller can steal bus cycles to transfer data while only minimally affecting the
processing. Also, it releases the CPU from performing the relatively slow I/O
functions. Such a system is a simple case of having more than one processor in the
system, with both processors operating in parallel to improve the system perform-
ance.

Although the capability of a DMA controller is rather limited, the concept
of concurrent operations, which has been proved to be an effective way of improving
a system’s operation, can be extended to components that are somewhat more
complex. If a system includes two or more components that can execute instructions
simultaneously, it is called a multiprocessing system. The added processors could
be special purpose processors which are specifically designed to perform certain
tasks efficiently, or other general purpose processors. For example, due to the
8086’s limited data width and its lack of floating point arithmetic instructions, it
requires many instructions to perform a single floating point operation. For a system
requiring a lot of computations, it would be desirable to perform such calculations
with a supporting numeric data processor that is specifically designed to quickly
operate on floating point numbers and numbers having larger than usual data
widths. Also, it is sometimes advantageous to include in a system an I/O processor
with greater capabilities than a DMA controller, one that can perform string ma-
nipulations, code conversion, character searching, and bit testing as well as the

e e i ari i s s sy .

normal DMA operations. This would permit the CPU to concentrate on higher-
level functions.

As the cost/performance ratio of single-chip microprocessors declines, it be-
comes more cost effective to use multiple processors than to use a single complex
multiple-chip processor in what has come to be known as the centralized approach.
In addition to improving the overall cost/performance ratio of a system, a multi-
processor configuration offers several desirable features not found in a one-proc-
essor design. First, several processors may be combined to fit the needs of an
application while avoiding the expense of the unneeded capabilities of a centralized
system. Yet the modularity of a multiprocessor system provides room for expansion
because it is easy to add more processors as the need arises. Second, in a multi-
processor system tasks are divided among the modules. Should a failure occur, it
is easier and cheaper to find and replace the malfunctioning processor than it is to
find and replace the failing part in a complex processor.

Two problems must be considered in designing a multiprocessor system, bus
contention and interprocessor communication. Because more than one processor
shares the system memory and I/O devices through a common system bus, extra
logic must be included to ensure that only one processor has access to the system
bus at a time. In order for one processor to dispatch a task or return a result to
another processor, an unambiguous way for the two processors to interact must
be provided. How the bus contention and processor communication problems are
resolved dictates the connections between the processors.

The maximum mode of the 8086 and 8088 is specifically designed to implement
multiprocessor systems. Multiprocessing features are provided in maximum mode
to accommodate three basic configurations. They are the coprocessor, closely cou-
pled, and loosely coupled configurations. The first two of these configurations are
very similar in that both the CPU and the supporting, or external, processor share
not only the entire memory and I/O subsystem, but as shown in Fig. 11-1, they
also share the same bus control logic and clock generator. In both of these con-

Figure 11-1 Closely coupled configuration.

Clock

8086/8088
Bus
:> control System bus
logic
Coprocessor
or
independent
processor
Memory 1/0

Local
™ Local
dwice’s memory

B3

System
bus
cantrol
logic

System
bus
control
logic

Local
ﬁ> bus
control
Local bus logic
Clock 8086/
8088
Local
70 Local
devices memory
@ Local
bus
“I > control
Local bus logic
8086/
Clock 8088 plus
8087
Local
/0 Local
devices memory
@ Local
control
Local bus logic

Closely coupled
multiprocessor
module

Figure 11-2 Loosely coupled configuration.

System
bus
control
logic

System bus

a1y

System
memory

System
1/0 devices|

¢, 111 wugue dIaus anda e LoCK raciity oV

figurations, the 8086/8088 is the master, or host, and the supporting processor is
the slave. The bus access control is provided by the CPU; therefore, the bus request
signal from the supporting processor is connected to the CPU. In a closely coupled
configuration the supporting processor may act independently, but in a coprocessor
design it is dependent and must interact directly with the CPU. In a coprocessor
arrangement there are more direct lines between the processing elements. Since
the 8086/8088 always acts as the host in a coprocessor or closely coupled design,
two 8086/8088s cannot appear in these configurations.

Loosely coupled configurations are used for medium-size to large systems.
Each module in the system may be the system bus master and may consist of an
8086, an 8088, another processor capable of being a bus master, or a coprocessor
or closely coupled configuration. Several modules may share the system resources,
and system bus control logic must resolve the bus contention problem. As shown
in Fig. 11-2, each potential bus master runs independently and there are no direct
connections between them. Interprocessor communication is made possible through
the shared resources. In addition to the shared resources, each module may include
its own memory and I/O devices. The processors in the separate modules can
simultaneously access their private subsystems through their local buses and per-
form their local data references and instruction fetches independently, thus im-
proving the degree of concurrent processing.

This chapter first discusses the multiprocessing features of 8086/8088 proces-
sors, including their special instructions and control signals. Implementation of the
various 8086/8088 multiprocessor configurations are examined in Sec. 11-2. The
last two sections describe Intel’s 8087 numeric data processor and 8089 integrated
1/0 processor, respectively.

1-1 QUEUE STATUS AND THE LOCK FACILITY

Although the maximum mode and the 8288 bus controller were introduced in Chap.
8, their multiprocessing features were not considered at that point. It is the purpose
of this section to extend that discussion to multiprocessing situations, even though
detailed discussions of their applications is left to later sections.

Because the 8086 has a 6-byte instruction queue and the 8088 has a 4-byte
queue, the instruction that has just been fetched may not be executed immediately.
In order to allow external logic to monitor the execution sequence, a maximum
mode 8086/8088 outputs the queue status through its QS1 and QSO0 pins. During
each clock cycle the queue status is examined and the QS1 and QSO0 bits are encoded
as follows:

00—No instruction was taken from the queue.

01—The first byte of the current instruction was taken from the queue.
10—The queue was flushed because of a transfer instruction.

11—A byte other than the first byte of an instruction was taken from the
queue.

WIUIIPIULED2UT WUE HIYUT auus 1> whiap. 1|

By monitoring the bus and the queue status, external logic can simulate the CPU’
instruction execution sequence and determine which instruction is currently being
executed. This facility is necessary so that the 8086/8088 can indicate when ar
instruction is to be executed by a coprocessor. A

As pointed out in Chap. 7, it is necessary to control the accesses to the shareg
resources in a multiprogramming environment. Normally, semaphores are used to
ensure that at any given time only one process may enter its critical section of code
in which a shared resource is accessed. Let us now reconsider the semaphore
implementation:

MOV AL0
TRYAGAIN: XCHG SEMAPHORE AL

TEST ALAL

Jz TRYAGAIN

Critical section in which a process
accesses a shared resource

MOV SEMAPHORE,1

This implementation works fine for a system in which all of the processes are
executed by the same processor, because the processor cannot switch from one
process to another in the middle of an instruction. However, if competing processes
are running on different processors, the situation is more complex.

Suppose that processor A is concurrently ready to update a record in memory
while processor B is ready to sort the same record. Since both processors are
running independently, they might test the semaphore at the same time. Note that
the XCHG instruction requires two bus cycles, one which inputs the old semaphore
and one which outputs the new semaphore. It is possible that after processor A
fetches the semaphore, processor B gains control of the next bus cycle and fetches
the same semaphore.

Suppose that the location SEMAPHORE contains a 1 and both processors
A and B are executing

TRYAGAIN: XCHG SEMAPHORE,AL
and
1. Processor A uses the first available bus cycle to get the contents of SEMA-
PHORE.

2. Processor B uses the next bus cycle to get the contents of SEMAPHORE.

3. Processor A clears SEMAPHORE during the next bus cycle, thus completing
its XCHG instruction.

4. Processor B clears SEMAPHORE during the next bus cycle, thus completing
its XCHG instruction.

After this sequence is through, the AL registers in both processors will contain 1
and the

TEST ALAL

Dec. -1 WUEBUE DIEIUS @ru uig LUUR rauniy o

instructions will cause the JZ instructions to fail. Therefore, both processors will
enter their critical sections of code.

To avoid this problem, the processor that starts executing its XCHG instruc-
tion first (which in this example is processor A) must have exclusive use of the bus
until the XCHG instruction is completed. On the 8086/8088 this exclusive use is
guaranteed by a LOCK prefix:

11110000

which for a maximum mode CPU, activates the LOCK output pin during the
execution of the instruction that follows the prefix. The LOCK signal indicates to
the bus control logic that no other processors may gain control of the system bus
until the locked instruction is completed. To get around the problem encountered
in the above example the XCHG instructions could be replaced with:

TRYAGAIN: LOCK XCHG SEMAPHOREAL

This would ensure that each exchange will be completed in two consecutive bus
cycles.

Physically, in a loosely coupled system each processing module includes a bus
arbiter and the bus arbiters are connected together by special control lines in the
system bus. One of these lines is a busy line which is active whenever the bus is
in use. When a processing module’s arbiter is given control of the bus it will activate
the busy line, which will prevent other arbiters from seizing the bus until after the
next bus cycle. If a LOCK signal is sent to the arbiter controlling the bus, then
that arbiter will retain control of the system by holding the busy line active until
the LOCK signal is dropped. Thus, if a processor applies a LOCK signal throughout
the execution of an entire instruction, its arbiter will not relinquish the system bus
until the instruction is complete. Bus arbiters are discussed further in Sec. 11-2-3,
where loosely coupled configurations are considered in detail.

In a module including a coprocessor or closely coupled configuration, if a bus
request is made through one of the 8086/8088’s RQ/GT pins while the LOCK pin
is active, then the request will be held until the LOCK signal is dropped. Then the
8086/8088 will respond to the request by returning a grant. In addition to being
activated by a LOCK prefix, an interrupt request on a CPU’s INTR pin will cause
the LOCK pin to be held low from the beginning of the first INTA pulse until
after the second INTA pulse. This guarantees availability of the bus until the
completion of an interrupt cycle.

Another possible application of the bus lock capability is to allow fast exe-
cution of an instruction which requires several bus cycles. For example, in a mul-
tiprocessor system a block of data can be transferred at a higher speed by using
the LOCK prefix as follows:

LOCK REP MOVS DEST,SRC

During the execution of this instruction the system bus will be reserved for the
sole use of the processor executing the instruction.

ou WIUIIPIULGD2UI DUl igur auunis wnap. |

A prefix is considered an extension of the instruction following the prefix
therefore, interrupts that occur during the execution of an instruction having :
LOCK prefix are not honored until the entire instruction is completed. However
if LOCK is combined with a REP prefix as in the above example, interrupts ma
be acknowledged at the end of each move operation. Furthermore, upon retun
from the interrupt, only the prefix immediately preceding the MOVS instructio
is restored. Therefore, it is usually best to disable interrupts before executing :
LOCK REP combination such as the one indicated above.

In addition to the multiprocessing capabilities of the 8086/8088, the 8288 bu
controller also provides control functions for supporting loosely coupled system
in which an 8288 is used in conjunction with a bus arbiter. These control function
are made possible by the presence of the address enable (AEN), I/O bus mod
(IOB), command enable (CEN), and master cascade enable/peripheral data enablk
(MCE/PDEN) pins. There applications are examined in the loosely coupled con
figurations discussion in Sec. 11-2-3. In the previous discussions the AEN, 10B
CEN, and MCE/PDEN pins were connected for using the 8288 in a single CPl
design.

11-2 8086/8088-BASED MULTIPROCESSING SYSTEMS

Let us now consider the three fundamental multiprocessor configurations that th
8086 and 8088 are designed to support. This section gives a general description o
how the 8086 and 8088 general purpose microprocessors are used as the dominan
processors in these configurations, and the succeeding sections provide specifi
examples based on other Intel devices with processing capability.

11-2-1 Coprocessor Configurations

Although the 8086 and 8088 are powerful single-chip microprocessors, their in
struction set is not sufficient to effectively satisfy some complex applications. Fo
such applications, the 8086/8088 must be supplemented with coprocessors tha
extend the instruction set in directions that will allow the necessary special com
putations to be accomplished more efficiently. For example, the 8086/8088 has ni
instructions for performing floating point arithmetic, but by using an Intel 808
numeric data processor as a coprocessor, an application that heavily involves floal
ing point calculations can be readily satisfied.

It will be seen that, except for the coprocessor itself, a coprocessor desig
does not require any extra logic other than that normally needed for a maximur
mode system. Both the CPU and coprocessor execute their instructions from th
same program, which is written in a superset of the 8086/8088 instruction set. Othe
than possibly fetching an operand for the coprocessor, the CPU does not need t
take any further action if the instruction is executed by the coprocessor.

The interaction between the CPU and the coprocessor when an instructio
is executed by the coprocessor is depicted in Fig. 11-3. An instruction to be execute:

s

8086/8088

Coprocessor

Wake up the Coprocessor
—_——— T

Monitor the
8086 or 8088

Deactivate the
host’s TEST pin and
execute the specified
operation

Execute the
8086 instructions

Activate the
TEST pin

Figure 11-3 Synchronization between the 8086 and its coprocessor.

by the coprocessor is indicated when an escape (ESC) instruction appears in the
program sequence. Only the host CPU can fetch instructions, but the coprocessor
also receives all instructions and monitors the instruction sequencing of the host.
An ESC instruction contains an external operation code, indicating what the co-
processor is to do and is simultaneously decoded by both the coprocessor and the
host. At this point the host may simply go on to the next instruction or it may
fetch the first word of a memory operand for the coprocessor and then go on to
the next instruction. If the CPU fetches the first word of an operand, the coprocessor
will capture the data word and its 20-bit physical address. For a source operand
that is longer than one word, the coprocessor can obtain the remaining words by
stealing bus cycles. If the memory operand specified in the ESC instruction is a
destination, the coprocessor ignores the data word fetched by the host and later
the coprocessor will store the result into the captured address. In either case, the
coprocessor will send a busy (high) signal to the host’s TEST pin and, as the host
continues processing the instruction stream, the coprocessor will perform the op-
eration indicated by the code in the ESC instruction. This parallel operation con-
tinues until the host needs the coprocessor to perform another operation or must
have the results from the current operation. At that time the host should execute
a WAIT instruction and wait until its TEST pin is activated by the coprocessor.
The WAIT instruction repeatedly checks the TEST pin until it becomes activated
and then executes the next instruction in sequence.

An ESC assembler language instruction has two operands. The first of two
operands indicates the external op code, which determines the action to be taken
by the coprocessor. If the second operand specifies a memory location, then as

@0 ey ro——— = S

explained above, the 8086/8088 will fetch a word from this location for the copro-
cessor and may pass the coprocessor an address for storing a result. If the second
operand is a register, the register address is treated as part of the external op code
and the CPU does nothing.

The machine code for the ESC instruction may have either of the two forms
given in Fig. 11-4. In both cases the first byte consists of 11011 followed by 3 bits
of the external op code. For the form in Fig. 11-4(a) the second byte specifies a
memory addressing mode and 3 more bits of the external op code, thus permitting
up to 64 distinct external op codes. If the addressing mode calls for a displacement,
this form is extended to include 1 or 2 bytes for holding the displacement. The
second byte of the form in Fig. 11-4(b) consists of 11 followed by 6 additional
external op code bits. This gives a total of 9 external op code bits and permits up
to 512 of these op codes.

The interfacing of a coprocessor to a host CPU is shown in Fig. 11-5. Both
the host and the coprocessor share the same clock generator and bus control logic.
It is possible to have two coprocessors connected to the same host CPU. When
this is done, the coprocessors must be assigned distinct subsets of the set of external
op codes and each coprocessor must be able to recognize and execute the members
of its subset. For the most part parallel lines can be used to connect the host to
its coprocessors. For two coprocessors, one could use the RQ/GT0 pin on the 8086/
8088 and the other could use the RQ/GT1 pin. The two coprocessors would be
connected to separate 8259A interrupt request pins.

In order for a coprocessor to determine when the host is executing an ESC
instruction, it must monitor the host CPU’s status on the $2-S0 lines and the AD15-
ADO lines for fetched instructions. Because instructions are prefetched by the CPU,
an ESC instruction might not be executed immediately or, if it is preceded by a
branch instruction, it might not be executed at all. The coprocessor must track the
instruction stream by monitoring the queue status bits QS1 and QS0 and maintaining
an instruction queue identical to that of the host. If the queue’s status is 00, the
coprocessor does nothing, but if it is 01, it will compare the five MSBs of the first

Figure 11-4 Machine code formats for the ESC instruction.

lﬁonl ‘] ool Jam] [Loworse HIGH DISP
h -

¥
External op code Optional displacement
depending on MOD and

R/M fields

(a) Memory operand is used

EXIEXN] NN iy () B
S

(b) No memory operand is used

External op code

MN/MX
CLK
= - 8288
bus
READY 52.50 controller
8086 AD15-ADO DEN :>
RESET A19-A16 — DT/R Control
bus
RO/GT BHE ALE
TEST os1-aso INTR - + 1
STB OE =
> 8282 >
1] | Latches Add
Busy Queue status 3 bur:ss
Bus request/grant
L—»-| Ready Processor status
< ?—J LT
Clock oF
Coprocessor
Reset 15;3:2;5 Address/ 8266
) data Transceivers Data
(2)
bus
Interrupt request
_t\ 8259A*
INT
, Programmable IR i
er connections to the 8259A interrupt nes
as indicated in Chap. 8. controller

Figure 11-5 Coprocessor configuration.

byte in the queue to 11011. If there is a match, then an ESC instruction is ready
to be executed and, assuming that the coprocessor recognizes the external op codev,
it will perform the indicated operation; otherwise, this byte is ignored and is deleted
from the queue. The queue status 10 indicates that the queue in the host is being
flushed and, therefore, causes the queue in the coprocessor to also be emptied.
The 11 status combination indicates that the first byte in the queue is not the first
byte of an instruction and this byte is looked at by the coprocessor only if it is
known to be part of an ESC instruction. If not part of an ESC instruct{on, this
byte is ignored.

The coprocessor should be designed so that when an error occurs during the
decoding or execution of an ESC instruction, it will send out an interrupt request
(which is normally sent to an 8259A). The coprocessor should also be designed so
that it can steal bus cycles by making bus requests through one of the host’s RQ/

GT pins when additional data must be read from or stored in memory. Last, the
coprocessor must be able to apply a high signal to the host’s TEST pin while it is
busy.

It is necessary for a coprocessor to know whether it is working with an 8086
or an 8088 because they have different data bus widths and instruction queue
lengths. The type of host can be determined each time the system is brought up
by having the coprocessor examine the host’s pin 34 immediately following the
RESET. This pin is always high on a maximum mode 8088 and on an 8086 it is
the BHE/S7 pin. Recall that the first instruction following a reset is taken from
address FFFF0. Therefore, the first address on the bus is always even and BHE
is always initially low. In order for the coprocessor to know when to check pin 34
it must be connected to the same reset line as the 8086 or 8088.

When both a coprocessor and an independent processor which fetches its own
instructions are connected to a CPU, the coprocessor must be able to determine
whether an instruction is being fetched by the independent processor or the CPU:
otherwise, the instruction queue in the coprocessor may be erroneously updated.
This can be done by monitoring the $6 status bit, which is always low for the 8086
and 8088 and always high for the 8089.

Although at the present time the only Intel device which can be used as a
coprocessor with the 8086/8088 is the 8087, one could design a customized coproc-
essor to facilitate any particular application. However, any coprocessor design must
be compatible with a maximum mode 8086/8088 system. It must be able to read
the CPU status and queue status, make bus and interrupt requests, receive reset
and ready signals, receive bus grants, maintain an instruction queue, and decode
the external op codes in the ESC instructions.

11-2-2 Closely Coupled Configurations

The 8086/8088 also supports another type of external processor, referred to as an
independent processor, which, unlike a coprocessor, executes its own instruction
stream. To minimize costs, the independent processor can be tied to the CPU to
form a closely coupled multiprocessor system in which both share the same clock
and bus control logic. For instruction fetches and data references, the independent
processor accesses the bus through the CPU’s RQ/GT lines.

Instead of using special instructions such as ESC and WAIT, communication
between the host and the independent processor is accomplished through shared
memory space. As illustrated in Fig. 11-6, the host sets up a message in memory
and then wakes up the independent processor by sending a command to one of
the independent processor’s ports. The independent processor then accesses the
shared memory to get the assigned task and executes the task in parallel with
the host. After the task is completed, the external processor notifies its host of the
completion by using either a status bit or an interrupt request. The message format
varies depending on the design of the independent processor and the application.
Typically, 2 message should specify which operation is to be performed, the input
parameters, and the addresses of the locations in which to store the results. An

Independent
processor

Wait for
request

Fetch
message

Perform
assigned task

8086/8088

Set up
message

Wake up
independent

processor with an
OUT instruction

Execute
the 8086's
program sequence

Wait for
ready or
interrupt request

Notify CPU
of completion

Figure 11-6 Interprocessor communication through shared memory.

example of an independent processor is the Intel 8089 1/0O processor and the
message layout for the 8089 is described in Sec. 11-4. . ‘

A typical connection between the 8086 and an mdep;ndent processor in a
closely coupled configuration is given in Fig. 11-7. Smc_e an mdepender}t processl(l)r
executes its own program, the host’s queue status bits are not n:u)mtored. The
independent processor requests bus accesses via a req}lest/grant line. When/ (;)ne
processor is using the bus, the other processor forces \ts'status _and addressf ata
outputs to their high-impedance state so that they are logically disconnected rom
the bus. To wake up the independent processor, tl_le host executes an OUT in-
struction to output to a port that is assigned to the independent processor. Upordl
completion of a given task, the independent processor sets a status bit in the shsre
memory space and may also generate an interrupt. Because the 8086 and 8088 have
two request/grant pins, more than one independent processor and/or coprocessor
can be connected to the host, thus providing multiprocessing capabilities at a

‘—H]

CLK

RESET

READY
8284A

Clock
generator

Ready

Reset

MN/MX —j—
= 8288
CLK Bus
52-50 controller
READY 8086 52-50
RESET AD15-ADO DEN .
- N = ontrof
A19-A16 oT/R oo
—> ALE
INTR BHE ;
RQ/GTO L
STB OF =
8282 —
| tatches A19-AC, BHE
— (3) —1
Address
bus
Independent processor
(such as 8089)
- T
>>—> OE
8286 < >
Transceivers
& Data
iowc bus
INT
CA SEL
Address
decoder A15-A1
A0
8259A
programmable
interrupt
controller

Figure 11-7 8086 connections in a closely coupled configuration.

minimal cost. Closely coupled configurations typically comprise small to medium-
size multiprocessor systems. Figure 11-8 illustrates how the coprocessor and closely
coupled configurations may be combined. In the example, the 8087 and 8089 share !
the bus control logic with the host 8086, which provides the bus arbitration function.
Because RQ/GTO is connected to the 8089, for simuitaneous requests the 8086

always gives higher priority to the 8089. However, when the 8087 is using the bus,
an 8089’s request will not be honored until the 8087 releases the bus. To reduce
the maximum wait time, the 8089’s RQ/GT line could be connected to the RQ/
GT1 pin of the 8087. When this is done, a bus request from the 8089 will force
the 8087 to release the bus after the current bus cycle even though it may need
several more bus cycles to complete its current instruction.

i

8089 CLK
8288
~ SR
—>{RESET $2-50 — R Control bus
P READY OT/R
— ALE
RQ/G
sTB OE =
RQ/GTO MN/MX 1 8282 _—'__1 >
8086 = La:ghes Add b
= =) ress bus
CLK CLK 52-50 F—
RESET RESET AD15-ADO
READY READY A19-A16
8284A BHE T
Clock OE
generator 8286 <:>
Transceivers
(2) Data bus

Ready Reset TEST

CLK
RESET
READY

3
i
=]
O

VY

To/from 8089's
RQ/GT pin {optional)

NOTE: Interrupt system and other details are not shown,
Figure 11-8 Configuration involving both a coprocessor and an independent processor.

11-2-3 Loosely Coupled Configurations

In a multiprocessor system, two 8086s or 8088s cannot be tied directly together.
In a loosely coupled multiprocessor system, each CPU has its own bus control logic
and bus arbitration is resolved by extending this logic and adding external logic
that is common to all master modules. Therefore, several CPUs can form a very

large system and each CPU may have independent processors and/or a coprocessor
attached to it. A loosely coupled configuration provides the following advantages:

High system throughput can be achieved by having more than one CPU.

2. The system can be expanded in a modular form. Each bus master module is
an independent unit and normally resides on a separate PC board. Therefore,
a bus master module can be added or removed without affecting the other
modules in the system.

3. A failure in one module normally does not cause a breakdown of the entire
system and the faulty module can be easily detected and replaced.

4. Each bus master may have a local bus to access dedicated memory or I/O

devices so that a greater degree of parallel processing can be achieved.

In a loosely coupled multiprocessor system, more than one bus master module
may have access to the shared system bus. Since each master is running inde-
pendently, extra bus control logic must be provided to resolve the bus arbitration
problem. This extra logic is called bus access logic and it is its responsibility to
make sure that only one bus master at a time has control of the bus. Simultaneous
bus requests are resolved on a priority basis. There are three schemes for estab-
lishing priority:

1. Daisy chaining.
2. Polling.
3. Independent requesting.

Figure 11-9 illustrates the general concepts underlying these schemes. Implemen-
tation of the control logic may vary depending on the complexity of the bus access
logic included in each module.

The daisy chain method is characterized by its simplicity and low cost. All
masters use the same line for making bus requests. To respond to a bus request
signal, the controller sends out a bus grant signal if the bus busy signal is inactive.
The grant signal serially propagates through each master until it encounters the
first one that is requesting access to the bus. This module blocks the propagation
of the bus grant signal, activates the busy line, and gains control of the bus.
Therefore, any other requesting module will not receive the grant signal and the
priority is determined by the physical locations of the modules. The one located
closest to the controller has the highest priority.

Compared to the other two methods, the daisy chain scheme requires the
least number of control lines and this number is independent of the number of
modules in the system. However, the arbitration time is slow due to the propagation
delay of the bus grant signal. This delay is proportional to the number of modules
and, therefore, a daisy chain-based system is limited to only a few modules. Fur-
thermore, the priority of each module is fixed by its physical location and the failure
of a module causes the whole system to fail.

Master 1

Bus access
log

Master 2

Bus access
logic

Master N

Bus access
lo

Bus grant j

| HII

}

Controller
Bus request
Bus busy
{a) Daisy chain method
Master 1 Master 2 Master N
Bus access Bus access
Module logic logic
address
Controller 4 i i
Bus request
Bus busy
(b) Polling method
Master 1 Master 2 Master N
Bus access Bus access Bus access
logic logic logic
Controller | Busgrant1 '

Bus request 1

Bus grant 2

Bus request 2

Bus g;'ant N

Bus request N

Bus busy

(c) Independent requests method

Figure 11-9 Bus allocation schemes.

466 MUItiprocessor wuttyur e~

The polling scheme uses & set of lines sufficient 10 address each module. In
response to a bus request, the controller generates a sequence of module addresses.
When a requesting module recognizes its address, it activates the busy line and
begins to use the bus. The major advantage of polling is that the priority can be
dynamically changed by altering the polling sequence stored in the controller.

The independent requests scheme resolves priority in a parallel fashion. Each
module has a separate pair of bus request and bus grant lines and each pair has a
priority assigned to it. The controller includes a priority decoder, which selects the
request with the highest priority and returns the corresponding bus grant signal.
Arbitration is fast and is independent of the number of modules in the system.
Compared to the other two methods, the independent requests design is the fastest;
however, it requires more bus request and bus grant lines (2n lines for n modules).

A module’s host 8086 or 8088 lacks the capability of requesting bus access
and recognizing bus grants. Therefore, as noted above, it is necessary for each
module containing a bus master to have extra logic for sending and receiving bus
access signals. The Intel 8289 bus arbiter is specifically designed to provide the
necessary bus access handshaking. Operating in conjunction with the bus controller,
the bus arbiter controls the access of its associated master to the bus by using either
the daisy chain or the independent requests scheme.

Figure 11-10 shows the connections between the bus master and the bus
arbiter, assuming that all memory and VO devices are global and are shared by
the bus masters through the system bus. Other situations in which a bus master
may have access to its private memory Of 1/O devices through a local bus will be
considered shortly.

A shown in the figure, the 8289 inputs and monitors the CPU’s status bits
$2-S0 to determine when to request or release the bus. The 8288 also monitors
the status of the CPU to detect the beginning of 2 bus cycle. After the CPU initiates
a bus cycle, a signal on the ALE line causes the address to be latched into the
§283s. If the bus arbiter is currently in control of the bus, it enables the outputs
of the 8288 bus controller and the 8283 address latches, and the DEN output of
the 8288 enables the data transceivers. Thereafter, the bus cycle proceeds in the
normal way. If the bus arbiter does not presently control the bus, then it raises its
AEN pin, forcing the command outputs of the 8288 and the address outputs of the
§283s into their hi_ah:i_mpedance state. Since the DEN output of the 8288 is also
controlied by the AEN line, the data transceivers are disabled. In addition, a high
on the AEN line prevents the clock generator from sending a ready signal to the
CPU, so that the CPU enters a wait state immediately after the T3 state of the
current cycle.

___Once the beiler is granted the bus access, it activates the BUSY and
AEN pins. The AEN signal causes the address followed by the command signals
(after a delay for setup time) to be placed on the system bus, and enables the data
transceivers by way of the DEN line. After the data transfer is complete, the
addressed location returns an acknowledge signal via the ready line, which causes
the 8284A to activate the READY pin. The CPU then exits the wait state and
completes its current bus cycle.

°h H s
8284A AENT

Clock CLK ﬁ Common

generator CLK Ios bus clock

CRQLOCK ANYRQS

RESET RESB

oo p [T [
READY BCLK =

o u BREQ f—>
RDY1 RES o
} * | arbiter PRN
Ready Reset oo
CBRQ |&—>
B! B
| | o UsY
AEN
CLK RESET MN/MX[AEN
READY L[OCK [— R
gogs 52-50 _-> 5288 -
T Cont
AD15-ADO CLK ol buerI
D1s-ADO BEN controller
BHE r—4{ DT/R_ALE
Ls{ GE STB
8283
> “ Latches Address
3) bus
DT/R
O g2g7
—_:> Transceivers Data
(2) bus

Figure 11-10 Single-processor module.

Th is di
ow on tc}:1 :SggKO;Ji;peuL r(;fv ;k:: (t?;’Uslzségl;ectly connected to the bus arbiter. A
' s the rom relinquishi .
o o : quishing the bus.
; . ;ﬂ i«:rg\ fuzomode) and IOB (I/O bus mode) pins are strapping (?pt?oh:s ljvisﬁ
permit the é) cessor to access local memory and I/O devices. Because th o
g. 11-10 assumes that all resources are shared, both of these; modes ;ret deisggil%in
ed.

468 VIUIPIOGESSUT Lutingurauvne [T

Four of the other 8289 pins are for bus request, grant, and release lines. The
8289 provides these pins to support the independent requests (parallel) and the
daisy chain (serial) accessing schemes. Figure 11-11 shows how bus arbiters are
connected to resolve bus priority using the independent requests method. For a
system using this design the BREQ (bus request) line from each arbiter is fed into
a priority resolving controller. The priority encoder generates a binary number
corresponding to the bus request input with the highest priority. This number is
decoded to return a bus grant signal to the selected arbiter through its BPRN (bus
priority in) pin. Because the timing of each module is controlled by an independent
clock, it is necessary to have a separate common clock to synchronize the bus
requests.

The CBRQ (common bus request) and BUSY (busy) pins provide a means
for the current bus master to release the bus. Both pins are bidirectional with open
collector outputs. Their connections are also shown in Fig. 11-11. When a module
needs to frequently access the system bus, it is better for its arbiter to retain the
bus (except when its processor is inactive) until it is forced off by another module.
Otherwise, each bus cycle would incur an overhead due to the request and release
steps. A bus master of higher priority can acquire the bus via its BREQ line and
the priority selection logic. After the current bus master completes its bus cycle,
it releases the bus and deactivates BUSY. The requesting master which accepts
the BPRN signal then activates BUSY and begins to use the bus.

A bus arbiter of lower priority may use the CBRQ line to acquire the bus.
This, of course, would require that the CBRQ pins be connected together as shown
in Fig. 11-11. When the CBRQ is low, the current master will surrender the bus
if it is in a TI state. The priority resolving logic then allocates the bus to the
requesting arbiter which has the next higher priority by putting a signal on the
corresponding BPRN line.

In connection with allowing lower-priority devices to take control of the bus,
the 8289 provides two inputs, ANYRQST (any request) and CRQLCK (common
bus request lock). The ANYRQST pin is a strapping option. When ANYRQST is
tied to +5 V, an assertion of CBRQ forces the bus arbiter to release the bus at
the end of the current bus cycle regardless of the priority of the requesting bus
master. The CRQLCK input allows an 8289 to ignore a CBRQ signal. Therefore,
activating CRQLCK prevents an 8289 from releasing the bus to any other bus
master having a lower priority.

The need for having an external priority controller is eliminated by using the
daisy chain bus allocation scheme illustrated in Fig. 11-12. The BPRO (bus priority
out) of each module is connected to the BPRN (bus priority in) of the next lower
priority bus master in the chain. For any processing module in the chain, a low
input on BPRN indicates that it has the highest priority and may acquire the bus.
If its BPRN pin is high, it will not have received the grant signal and will not be
able to pass on a grant signal to its BPRO. The BPRN signal of the highest-priority
arbiter is grounded; therefore, the BPRN pin of the requesting arbiter with the
highest priority will be low and, for arbiters farther down the chain, it will be high.

Priority
controller

Decoder

Priority encoder

Common
bus clock
10 MHz

+5V +5V

BPRN

AAAA
VWv
VAAAS

— AAAA

CBLK

Control bus

Figure 11-11 8289 connections to a priority controller.

Address bus

Data bus

-rv WGP UUG 00U DUt g U GUUTS whap. 1

Common +5V 45V
bus clock

Module 1 {highest priority)

AAAA
VWYV

AAAA
VWV

8289

CBLK

BPRN -1
BUSY
CBRQ
BPRO

Module 2

8289

CBLK

BPRN
BUSY
CBRQ
BPRO

Module 3 (lowest priority)
8289

CBLK

BPRO Not connected

Figure 11-12 Daisy chain bus allocation
using 8289s.

Since the bus allocation must be resolved in a BCLK clock period, the timing is
normally such that a chain cannot include more than three processing modules.
As more processing modules are tied to the system bus, the bus utilization
will soon become saturated. Bus congestion seriously degrades the performance of
a system and tends to negate the speed advantage of multiprocessing. A rough
analysis illustrating the influence of the number of processors on system perform-
ance can be obtained by considering k identical modules. It is reasonable to say
that the instruction execution rate of each processor is proportional to the rate at
which that processor accesses the bus. Assume that the bus bandwidth is N cycles
per second and that without interference each module in the system uses M bus
cycles per second. The bus utilization by a module is defined as the average fraction

v e MM UUUY CUeTU IV e iy Y 9L 11 -r s

of bus cycles used by the module assuming no interference and is B, = M/N. This
ratio must be less than 1 and will depend on the instructions being executed. For
the 8086, it will typically range from 0.5 to 0.8. Let g be the system instruction
execution rate (i.e., the number of instructions executed by the system per second)
and I, be the instruction execution rate of each module assuming no interference.
Then

1
Is = kI if k<—
s P 1 B,

and

Ip . 1
I = B, if k> B,

A representative graph of g versus the number of processing modules for B, = 1/2
is shown in Fig. 11-13(a). Although I is approximately equal to kI, for an un-
derutilized system, I is actually less than k/, because a module will enter a wait
state if it needs to access the system bus and the bus is being used by another
processor. It is important to note from the figure that once the bus is saturated,
adding more modules will no longer improve the system performance. The bus
becomes the bottleneck of the system and the system is said to be bus bound.

The utilization of each module, which is defined as the ratio of the instruction
execution rate (in the presence of other modules) to /., is somewhat degraded
when bus congestion becomes serious, i.e., kM approaches N. This utilization is

Figure 11-13(b) illustrates the influence of the number of modules on the perform-
ance of each module for the case Bp = 1/2.

The most effective solution to the bus congestion problem is for each proc-
essing module to include a local memory dedicated to its CPU. Each module would
use its local memory to store its program and as a working area, and the shared
memory would be primarily used for intermodule communications. This would
allow several CPUs to fetch instructions or reference operands simultaneously,
thus reducing the traffic on the system bus and increasing the degree of concurrent
processing.

As illustrated in Fig. 11-14, if a processing module has a local bus, then it
must include two sets of bus control logic, one for accessing the system bus and
the other for the local bus. Each set would need to contain a bus controller, address
latches, and data transceivers. Since the local bus is dedicated to only one CPU,
it does not require a bus arbiter and its address latches are always enabled (assuming
there is no local DMA controller). During a bus cycle, the address is decoded to
determine if it is in the local space or shared space. If the address is in the local
space, the local bus controller is enabled and a bus cycle proceeds immediately.
Meanwhile, the output of the decoder disables the system bus controller (and causes
the bus arbiter to release the system bus if the arbiter has control of it). If the

- N

\

Is
2L, |- / Bp=1
/ _
/
7/
%
V,
I |
| L Il Il It
1 2 3 4 5 No. of modules
{a) System performance
Um
1
B, =1
P2
| | | | |
1 2 3 4 5 No. of modules

(b) Module performance

Figure 11-13 Multiprocessing system performance criteria.

address is in the address space of the system bus, the address decoder activates
the SYSB/RESB pin on the 8289 and a system bus access is attempted. In this
event, the local bus controller is disabled, preventing it from sending out a bus
command, and the system bus interface is enabled. The bus arbiter then requests
the use of the system bus and initiates a bus cycle when it becomes the arbiter
having the highest priority.

As shown in Fig. 11-14, the RESB and TOB lines are tied to +5 V. With
local resources, each processing module would normally access the system bus only
occasionally. Therefore, it is desirable to enable ANYRQST so that the 8289 may
release the bus to lower-priority processing modules as soon as the current bus
cycle is complete.

Figure 11-15 gives another configuration that reduces the traffic on the system
bus, but results in a simpler design than the one shown in Fig. 11-14. This config-

<

Address
decoder

Local
bus

e—

Status
m— [
RESB
B
8086 arbll:'tser "R | sV
Address/data 108
SYsB/
AEN RESB
CEN AEN = AEN CEN
g8 108 L 8288 10B[1
Bus L Bus
controller controller
DT/R DT/R
ALE DEN DEN ALE
STB — — sT8
sz OF[1 g R
Latches Latches
(3) (3)
OE fj t OE
DT/R DT/R
8286 < > 8287 <:>
Transceivers Transceivers
(2) (2)
A —_—
Local bus System bus System
interface interface bus

Figure 11-14 Configuration with both a local bus and a system bus.

uration locates all the I/O on a local bus and all of the memory on the system bus.
The separation of the I/O and memory address spaces permits special facilities of
the 8289 to direct the address and control signals flow and eliminates the need for
the address decoder and local 8288 bus controller. By strapping the RESB pin on
the 8289 low the SYSB/RESB is ignored, and by strapping the IOB pin low on the
8289 and high on the 8288 these devices are put into their I/O bus mode. In this
mode the system bus is requested and surrendered according to the S2 line, which
indicates whether an I/O (low) or memory (high) transfer is to be conducted. The
AEN output of the 8289 is still used to control the address/data and memory

Status
K) 8289 <::>
RESB
8086 _
Address/data 108
AEN
AEN
CEN
—'> 108 1 +5Y
IoRC 8288 I—~ MRDC
> MWBC
fowc POEN
DT/R
DEN ALE
T8 | - STB
8283
8282 : >
<: (2) < > (2)
oE OF
OT/R DT/R
8286 > 8287 <:>
2 2
[—

Local [/O
bus

—

System
memory
bus

Figure 11-15 Separate local I/O bus configuration.

command lines but has no effect on the I/O control lines IORC, IOWC, AIOWC,
and INTA (whose outputs are always enabled). With 10B on the 8288 strapped
high the MCE/PDEN pin becomes the peripheral data enable pin, which serves to
enable the I/O bus data transceivers. When an 1/O transfer is being made PDEN
is active and DEN is inactive. For a memory transfer DEN is active and PDEN is
inactive. This configuration is particularly useful when implemented in conjunction

CUULUIUVO0TDADEU IVIUTUPIULEDDINY DY SIS 410

with an 8089 I/O processor. It is also possible to connect I/O interfaces to the
system bus, but their port addresses must be addressed as memory (i.e., memory-
mapped I/O devices).

The local bus mode and the I/O bus mode may be combined by strapping
the RESB and IOB pins of the 8289 to high and low, respectively. The resulting
configuration allows part of the memory to be placed on the local bus along with
the I/O devices.

It has been pointed out that local memory reduces the use of the system bus
in a multiprocessor system. However, a processing module may still need to initially
load the control program from the shared system memory to its local memory, and
move results from the local memory to the system memory if the results are needed
by other modules. A dual-port memory can be used to further reduce the traffic
on the system bus by handling the interprocessor communications. This is a hard-
ware concept that is similar to the software concept of using a common area to
provide the communication between a calling program and a subprogram. Such a
memory has two ports, to allow references from both the local bus and the system
bus. As shown in Fig. 11-16, the processor of the master module in which the dual-
port memory resides accesses the memory through the local bus. But other proc-

¢

System bus

- a
{ Master |
| module |
| |
| i Shared Shared Bus Bus
I { memory 1/0 master master
| |
! |
| I
I Local bus I
e J

Figure 11-16 Dual-port memory.

essing modules may also access the same memory, although they can communicate
with it only through the system bus. This configuration is particularly useful in
inputting or outputting large blocks of data through a processing module which is
dedicated to I/O processing. In this design, locking the system bus does not prevent
the master module from accessing the dual-port memory, and vice versa. In order
to use the scheme for avoiding the critical section problems described in Sec.
11-1, the semaphore should be placed in the shared system memory; otherwise, the
implementation becomes more complicated.

In summary, processing modules of different configurations may be combined

8289
Bus
arbiter

: 8288

System bus

8086 8283s
and and
clock 82875
Module 1
Local 8288 8289
memory
8087
a 8288
]
8
—
8086
and
clock
Local 82825 8283s
o] K and and < .
devices 82865 82875
v Module 2
1/0 /} 8289
devices
@ 8089
3 and
= clock
8
10 3 8288 j
mapped
memory <
82825 8283s :::
and < and
82865 8287s

476

<

Module 3

<

Figure 11-17 Complex multiprocessing system.

System
memory

System
1/0 devices

to form a complex, loosely coupled multiprocessor system. Each module in such
a system may be:

1. A single 8086 or 8088 or an independent processor such as an 8089.

2. A cluster of processors consisting of an 8086 or 8088 and a coprocessor (such
as an 8087) and/or independent processors.

3. A cluster of independent processors (such as two 8089s).

In addition, each module may include a local bus or a dedicated I/O bus. Figure
11-17 illustrates one of the many possible multiprocessing designs—designs that
may include several complex processing modules.

11-2-4 Microcomputer Networks

The previous multiprocessor configurations have a common characteristic and that
is that all processors share the same system bus. Thus, the interprocessor com-
munications are through shared memory and processors must be physically located
close to each other.

By using serial links, many microcomputer systems can communicate with
each other and share some of the same hardware and software resources. Large
systems of this type are called computer networks. Normally, synchronous serial
transfer is employed to send messages between the systems. Commands and data
are transmitted as message packets. Each packet normally includes several fields
containing such things as synchronization characters, the sender’s address, the
receiver’s address, the text, error detection characters, and termination characters.
The controlling information and its arrangement is referred to as the system’s
communication protocol. Each microcomputer (or multiprocessor element) in the
network is relatively independent of the others, and the microcomputers could be
miles, or even thousands of miles, apart. A failure in one microcomputer element
of the network could be easily isolated without affecting the remainder of the
system.

;1-3 THE 8087 NUMERIC DATA PROCESSOR

The 8087 numeric data processor (NDP) is specially designed to perform arithmetic
operations efficiently. It can operate on data of the integer, decimal, and real types,
with lengths ranging from 2 to 10 bytes. The instruction set not only includes various
forms of addition, subtraction, multiplication, and division, but also provides many
useful functions, such as taking the square root, exponentiation, taking the tangent,
and so on. As an example of its computing power, the 8087 can multiply two 64-
bit real numbers in about 27 us and calculate a square root in about 36 us. If
performed by the 8086 through emulation, the same operations would require
approximately 2 ms and 20 ms, respectively. The 8087 provides a simple and

~

