
Part 5: MULTIPROCESSOR SYSTEMS

REF: Microcomputer Systems: The 8086/8088 Family, Liu & Gibson, 1986

Multiprocessor Systems refer to the use of multiple processors that execute instructions
simultaneously and communicate using mailboxes and semaphores

Maximum mode of 8086 is designed to implement 3 basic multiprocessor configurations:

1. coprocessor (8087)
2. closely coupled (8089)
3. loosely coupled (Multibus)

Coprocessors and closely coupled configurations are similar in that both the CPU and the external
processor share:

- Memory
- I/O system
- Bus & bus control logic
- Clock generator

Closely Coupled Configuration:

C o p r o c e s s o r
o r

I n d e p e n d e n t
P o c e s s o r

8 0 8 6

B u s
C o n t r o l

L o g i c

M e m o r y I / O

S y s t e m B u s

C L O C K

- Can have 8086, 8087 & 8089 running in prallel
- How do we synchronize operations?

Part 5: Multiprocessor systems 2
Example: 8086/8087

Activate the
!TEST pin

8086/8088

ESC

Execute
8086

instructions

WAIT

C o p ro c e s s o r (ie : 8 0 8 7)

Monitor the
8086 or 8088

Wake up the
coprocessor

Deactivate the
host's !TEST pin
and execute the

specified operation

Wake up the
8086 or 8088

Coprocessor cannot take control of the bus, it does everything through the CPU
- 8089 shares CPU=s clock and bus control logic
- communication with host CPU is by way of shared memory
- host sets up a message (command) in memory
- independent processor interrupts host on completion

NOTE: Closely Coupled processor may take control of the bus independently Two 8086’s cannot be
closely coupled

Part 5: Multiprocessor systems 3

Set up
message

Wait for
request

Fetch the
message

Perform
requested

task

Notify
 CPU of

 completion

8086/8088

Wake up
independent processor
with OUT instruction

Execute
8086

instructions

Wait for ready
or interrupt

request

Independent Processor (8089)

Part 5: Multiprocessor systems 4

Loosely Coupled Configuration: (cont)
- has shared system bus, system memory, and system I/O
- each processor has its own clock as well as its own memory (in addition to access to
 the system resources, such as the system clock)
- clocks are of similar frequency, but asynchro-nous towards each other

- Used for medium to large multiprocessor systems
- Each module is capable of being the bus master
- Any module could be a processor capable of being a bus master, a coprocessor configuration or a

closely coupled configuration.
- No direct connections between the modules. Each share the system bus and communicate through

shared resources.
- Processor in their saeparate modules can simulateneously access their private subsystems through

their local busses, and perorm their local data references and instruction fetches independandtly.
This results in improved degree of concurrent processing.

- Ecellent for real time applications, as separate modules can be assigned specialized tasks.

ADVANTAGES:

- high system throughput can be achieved by having more than one CPU.
- The system can be expanded in modular form. Each bus master module is an independant unit and

normally resides on a separate PC board. One can be added or removed without affecting the
others in the system.

- A failure in one module normally does not affect the breakdown of the entire system and the faulty
module can be easily detected and replaced

- each bus master has its own local bus to access dedicated memory or IO devices so a greater de-
gree of parallel processing can be achieved.

PROBLEMS:

- Bus Arbitration (contention): Make sure that only 1 processor can access the bus at any given time
- must synchronize local and system clocks for synchronous transfer
- requires control chips to tie into the system bus

Processor Bus Access:

- Needs some kind of priority allocation
- Output a Bus Request >BRQ= to request the bus >> BRQ line goes to some controller
- Input a Bus Grant >BGR= to gain access to bus >> BGR line from some controller
- Output a Bus Busy >BBSY= signal to hold the bus

Clocking:
- take both clocks and derive a common clock (ie: local clock & system clock)

or
- take leading edge of one of the clocks >> can alternate or change for each individual
 operation (clock will jitter)

Part 5: Multiprocessor systems 5

BUS ALLOCATION SCHEMES:

Daisy Chaining:

- Need a bus controller to monitor bus busy and bus request signals

- Sends a bus grant to a Master >> each Master either keeps the service or passes it on

- Controller synchronizes the clocks

- Master releases the Bus Busy signal when finished

Bus Access
Logic

Master 1

Bus Access
Logic

Master 2

Bus Access
Logic

Master N
...

Bus
Controller

BRQ

BBSY

BGR

Part 5: Multiprocessor systems 6

Polling:

- Controller sends address of device to grant bus access
- Can use priority resolution here:

memory= highest priority
- Highest priority is granted first, if it does not respond, then a lower priority is granted, and so on
until someone accepts
(ie: one request line, 3-bit grant line)

Bus Access
Logic

Master 1 Master 2

Bus Access
Logic

Master N
...

Bus
Controller

Rotating
Encoder
0 to N

BBSY

BRQ

Bus Access
Logic

Independent:

- Each master has a request and grant line

- Now just a question of priority

- Could have fixed priority, rotating priority, etc.
usually fixed because memory is desired to be the highest priority

- Synchronization of the clocks must be performed once a Master is recognized

- Master will receive a common clock from one side and pass it to the controller which will derive a
clock for transfer

- Can accurately predict calculations (since memory is always the highest priority)

.

Part 5: Multiprocessor systems 7

B u s A c c e s s
L o g i c

M a s t e r 1 M a s t e r 2

B u s A c c e s s
L o g i c

M a s t e r N

B u s
C o n t r o l l e r

B u s A c c e s s
L o g i c

B u s B u s y

B u s
G r a n t 1

B R Q 1

B R Q 2

B u s
G r a n t 2 B u s

G r a n t n

B R Q n

