
Design with Microprocessors

Year III Computer Science   

1-std Semester

Lecture 4: Input/output and 
interrupts for Arduino systems



Arduino

Arduino is an open-source electronics platform based on easy-to-use 

hardware and software. It's intended for anyone making interactive projects.

Development IDE: C language programming

Resources / references:

Arduino official site: http://arduino.cc/

Getting started: http://arduino.cc/en/Guide/Windows

Language reference: 

http://arduino.cc/en/Reference/HomePage?from=Reference.Extended

Examples: http://arduino.cc/en/Tutorial/HomePage

Tutorials, examples, components: 

http://www.tehnorama.ro/arduino/

http://www.robofun.ro/

Books:

Michael Margolis, Arduino Cookbook, 2-nd Edition, O’Reilly, 2012.

Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action.

http://arduino.cc/
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Reference/HomePage?from=Reference.Extended
http://arduino.cc/en/Tutorial/HomePage
http://www.tehnorama.ro/arduino/
http://www.robofun.ro/


Development boards

UNO Mega Leonardo Due

Clock freq. 16Mhz 16 Mhz 16 Mhz 84 Mhz

Microcontroller ATmega328 ATmega2560 ATmega32U4 AT91SAM3X8E

No. Digital I/O pins 11 52 11 52

No. Analog I/O pins 6 16 12 12

No. PWM pins 6 14 7 12

No. Serial Ports 1 4 1 1

Flash  size 32Kb 256Kb 32Kb 512Kb

Internal voltage 5V 5V 5V 3.3V

Mouse & KB 

emulation
NO NO YES YES

Main advantage over Cerebot boards: power supply and programming / 

debuging over USB cable (standard USB A-B printer cable)

http://www.robofun.ro/arduino/arduino_uno_v3
http://www.robofun.ro/arduino/arduino_mega2560
http://www.robofun.ro/arduino/arduino-leonardo
http://www.robofun.ro/arduino/arduino-due


Arduino UNO (rev. 3)

Digital I/O pins are connected to the 

mC pins/ports

Analogue pines are inputs for the 10 

bit ADC of the mC.

• 3V3 & 5V pins are outputs !!! 

(supplying a regulated voltage)

• IOREF (out) – ref. voltage for 

shields

• AREF (in) – external ref. voltage 

for the ADC

Some pins have special functions:

• Serial comm: 0 (RX) and 1 (TX) – used for 

board programming via USB  - avoid them 

!!!

• External Interrupts: 2 (INT0) and 3 (INT1)

• PWM (8 bit): 3, 5, 6, 9, 10, 11. 

• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 

(SCK). 

• TWI: A4 or SDA pin and A5 or SCL pin



Arduino UNO (rev. 3)

Pin mapping for the Atmega8, 168, and 328 is identical



Arduino MEGA (rev. 3)

Special function (serial 

comm):

• Serial   : 0 (RX) and 1 (TX); 

Serial 1: 19 (RX) and 18 (TX); 

Serial 2: 17 (RX) and 16 (TX); 

Serial 3: 15 (RX) and 14 (TX)

• SPI: 50 (MISO), 51 (MOSI), 

52 (SCK), 53 (SS)

• TWI: 20 (SDA) and 21 (SCL)

Special function pins:

• External Interrupts: 2 (INT 0), 

3 (INT 1), 18 (INT 5), 19 (INT 

4), 20 (INT 3), and 21 (INT 2)

• PWM: 2 to 13 and 44 to 46

• LED: 13



Arduino MEGA (rev. 3)

Pin mapping for the Atmega2560

http://arduino.cc/en/Hacking/PinMapping2560

http://arduino.cc/en/Hacking/PinMapping2560


The programming environment performs the PIN correspondence / mapping 

The programming logic is PIN-number oriented

Digital I/O 

•can be programed as an input or output, using pinMode()

•can be accessed as an input/output with digitalWrite(), and digitalRead() functions 

•operate at 5 volts / can provide or receive a maximum of 40 mA

•an internal pull-up resistor (disconnected by default) of 20-50 kOhms

•some pins can have specialized functions …. 

Analogue I/O

•read an analogue value (input): analogRead() 

•generate a PWM signal (output): analogWrite() - PWM

•configure the reference voltage used for analog input - analogReference() 

http://arduino.cc/en/Reference/HomePage

Input / output for Arduino systems

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/HomePage


Example 1:

• Input: BTN connected to a digital pin

• Use of an explicit/external “pull down” resistor (BTN not pressed: input – “0”)

• Output: on-board LED (shared with pin 13)

Input / output for Arduino systems



Example 1:

Input / output for Arduino systems

Alternative code:



Example 2:

• Input from a switch (no external resistor)

• Internal ‘Pull-Up’ logic of each pin is used (enabled) 

Input / output for Arduino systems



Example 3: reading of unstable data (i.e. buttons without internal de-bounce logic 

http://www.robofun.ro/bricks/buton-mare-brick )  

•A mechanical contact can oscillate (bounce) between close and open state several 

times until reaches a stable state

•A mC is fast enough to ‘sense’ these oscillations – perceives them as repeated 

on/off states

•The oscillations can be compensated/filtered out by software

Note: the Digilent Pmod BTN has an intrinsic/hardware de-bounce logic 

implemented – no other software logic should be implemented !!!

Input / output for Arduino systems

http://www.robofun.ro/bricks/buton-mare-brick


Example 3: software de-bounce

•Filtering principle: check the input for several times until a stable level is 

encountered

•Outcome: bouncing period is ignored; input value is validated only when is stable

Input / output for Arduino systems

// Time delay (ms) after which input signal should be stable



Example 4: keyboard

•Pressing one key: contact between the corresponding row and the column

•Default Row status = ‘1’ (pull-up logic enabled) 

•If a key is pressed:

• If corresponding Column = ‘0’  corresponding Row = ‘0’

• Else (Column = ‘1’)  nothing happens (Row = ‘1’ – pull-up logic)

Keyboard scanning principle

• Each column is activated in a sequential order (set to ‘0’). Read the status of 

the rows

• Columns pins - configured as outputs. Row pins - configured as inputs

Input / output for Arduino systems



Example 4: keyboard

Input / output for Arduino systems



Example 4: keyboard

Input / output for Arduino systems



Example 4: keyboard

Input / output for Arduino systems



Used for detecting external events (without polling with digitalRead() )

External Interrupts for Arduino systems

To use an interrupt an ISR (Interrupt Service routine should be attached:

attachInterrupt(interrupt, ISR, mode)

Parameters

interrupt: the number of the interrupt (int)

ISR: the ISR to call when the interrupt occurs; this function must take no parameters and return nothing. 

mode: defines when the interrupt should be triggered. Four contstants are predefined as valid values:

LOW to trigger the interrupt whenever the pin is low,

CHANGE to trigger the interrupt whenever the pin changes value

RISING to trigger when the pin goes from low to high,

FALLING for when the pin goes from high to low. 

To de-attach an interrupt: detachInterrupt(interrupt_no

To deactivate all interrupts use: noInterrupts(). To reactivate all interrupts use”: interrupts().

Interrupts are activated by default! Deactivation should be done only temporary!



Example 5: toggles the status of the on-board LED when a BTN is pressed 

using interrupts

int outputLED =13;

volatile int stateLED = LOW; //current status of the LED

// the setup routine runs once when you press reset:

void setup() {

pinMode(outputLED, OUTPUT);

attachInterrupt(0, isr0, RISING); // init ISR0 (pin 2) and behavior

}

void isr0()

{

stateLED = !stateLED; //on ISR togle the LED status

if (stateLED == 1) 

digitalWrite(outputLED, HIGH);

else

digitalWrite(outputLED, LOW);

}

// the loop routine runs over and over again forever:

void loop() {

}

• All variables that are used in a ISR should be declared as “volatile”.  The compiler will know that 

these variable can be modified at any time and shall not optimize the code by attaching them to 

registers, but instead will store them always into the RAM 

• Only one ISR can run at a time (others are deactivated)

External Interrupts for Arduino systems



Example 6: measuring the pulse width of a digital signal (i.e. signal received 

from an IR remote controller – the pulse width is ‘translated’ as a ‘0’ or a ‘1’)

External Interrupts for Arduino systems

// No. of. analyzed transitions

// No. of microseconds elapsed from program start 

// Position in the transitions string

// Transitions string (contains the duration of the 

transitions) - output

// Check if the max. no. of transitions is reached



External Interrupts for Arduino systems
Example 6: measuring the pulse width of a digital signal (i.e. signal received 

from an IR remote controller – the pulse width is ‘translated’ as a ‘0’ or a ‘1’)

• micros() – returns the number of microseconds elapsed from program start

[millis() - returns the number of microseconds elapsed from program start]

Homework: Write the code for example 5  using the polling technique (no 

interrupts)

References:

Michael Margolis, Arduino Cookbook, 2-nd Edition, O’Reilly, 2012.

Arduino documentation: http://arduino.cc/

// ISR

// If not end of transitions string

// If not first transition

// Advance the index

// Mem. current time (reference for the next transition)

http://arduino.cc/

