
Design with Microprocessors

Year III Computer Science

1-st Semester

Lecture 6: Serial data transfer

Serial Interfaces on AVR

Universal Synchronous and Asynchronous serial Receiver and

Transmitter (USART)

- Synchronous and asynchronous data communication

- Different (programmable) baud-rates

- 5-9 bits data packages (with or without parity bit)

- Errors detection

- Interrupt support for transmission control

Serial Peripheral Interface (SPI)

- Synchronous data communication

- Full duplex

- Master or Slave configuration

- Variable transfer rates

Two Wire Serial Interface (TWI)

- Clock & data

- I2C protocol (master/slave, 7 bit addresses)

- Multiple masters arbitration

- Programmable slave address

USAGE: mC  PC or interboard communication, for interfacing devices & sensors etc.

USART

• Full Duplex Operation (Independent Serial Receive and Transmit

Registers)

• Asynchronous or Synchronous Operation

• Master or Slave Clocked Synchronous Operation

• High Resolution Baud Rate Generator

• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

• Odd or Even Parity Generation and Parity Check Supported by Hardware

• Data OverRun Detection

• Framing Error Detection

• Noise Filtering Includes False Start Bit Detection and Digital Low Pass

Filter

• Three Separate Interrupts on TX Complete, TX Data Register Empty and

RX Complete

• Multi-processor Communication Mode

• Double Speed Asynchronous Communication Mode

USART (0 & 1) on ATmega

Receiver

Transmitter

Control & status registers

Baud rate generator

UART

Universal Asynchronous Receiver Transmitter

2 signals:

Rx – serial data reception (input)

Tx – serial data sending (output)

Data format (frames):

Asynchronous – time interval between frames is undefined. The receiver

detects when a frame starts (Start bit) and when ends (End bit(s)).

Time interval between consecutive bits (frequency / baud rate) is fixed and

programmed in advance (Txclk  Rxclk)

Full duplex communication: each side can initiate data sending

UART
Frame format

St - Start bit, low (0)

(n) - Data bits (0 to 8)

P – Parity (odd / even)

Sp - Stop bit, high (1)

IDLE – no data, high (1)

UART frame structure - 30 combinations:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

Frame format is programmed by bits UCSZn2:0,

UPMn1:0 & USBSn in control & status registers

UCSRnB & UCSRnC

• Bit 5:4 – UPMn1:0: Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

• Bit 3 – USBSn: Stop Bit Select

0 1-bit

1 2-bit

UCSZn2 & UCSZn1:0 :

Character Size

UART
Baud rate settings

UBRRnL and UBRRnH – USART Baud Rate Registers

UCSRnA - Bit 1 (U2Xn): Double the USART Transmission Speed

U2Xn 1: Reduces the division factor from 16 la 8

Division factor of

16 or 8 ???

UART
Data reception (for one frame)

1. Data transition from High (idle) ‘1’ to low ‘0’ on Rx is detected

2. Perform a dt delay (2*dt = 1/BAUD)  middle of the time interval for the start bit.

If Rx = ‘0’, initiate frame reception sequence. Otherwise: noise

3. Check the middle of the time interval for the next bits off the frame (data, parity,

stop) and re-assemble the frame.

4. If the value detected for the stop bits position is ‘0’  framing error (eroare de

impachetare).

5. If the parity computed at destination ≠ bit P  parity error (eroare de paritate)

Sampling frequency [fOSC/(UBBR+1)] is 8 or 16 times the baud rate for increasing

the robustness

UART

UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete

RXCn  1, data in receive buffer

RXCn  0, receive buffer empty

RXCn can trigger Receive Complete interrupt (+RXCIEn bit)

• Bit 6 – TXCn: USART Transmit Complete

TXCn  1, if Transmit Shift Register empty & UDR has now new data

TXCn  0, if a „Transmit Complete” interrupt is executed or by writing 1 to UCSRnA(TXCn)

TXCn can trigger a Transmit Complete interrupt (+TXCIEn bit)

• Bit 5 – UDREn: USART Data Register Empty

UDREn  1, transmit buffer empty

UDREn can trigger a “Register Empty” interrupt (+UDRIEn bit).

• Bit 4 – FEn: Frame Error

FEn  1, framing error

• Bit 3 – DORn: Data OverRun

DORn  1, receive buffer full (2 char) and a new Start bit detected

• Bit 2 – UPEn: USART Parity Error

UPEn  1, parity error at reception (if parity enabled)

UART

Parity computation

• The parity bit is calculated by doing an exclusive-or of all the data bits.

• If odd parity is used, the result of the exclusive or is inverted.

• The relation between the parity bit and data bits is as follows:

UART

UCSRnB – USART Control and Status Register B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable

RXCIEn  1, validate RXCn interrupt request (+ Global Interrupt Flag in SREG)

• Bit 6 – TXCIEn: TX Complete Interrupt Enable

TXCIEn  1, validate TXCn interrupt request (+ Global Interrupt Flag in SREG)

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable

UDRIEn  1, validate UDREn interrupt request (+ Global Interrupt Flag in SREG)

• Bit 4 – RXENn: Receiver Enable

RXENn  1, validate reception

RXENn  0, invalidate reception

• Bit 3 – TXENn: Transmitter Enable

TXENn  1, validate transmission

TXENn  0, invalidate transmission (after flushing of Transmit Shift Register & Transmit

Buffer Register)

• Bit 1 – RXB8n: Receive Data Bit 8

RXB8n 9-th data bit received (frame with 9 data bits)

Read before bits (7:0) from UDRn

• Bit 0 – TXB8n: Transmit Data Bit 8

TXB8n - 9-th data bit transmitted (frame cu with 9 data bits)

Written before bits (7:0) from UDRn

UART

UCSRnC – USART Control and Status Register C

• Bit 7 – Reserved Bit

UCSRnC  0

• Bit 6 – UMSELn: USART Mode Select

UMSELn  0/1 operation mode : asynchronous / synchronous

• Bit 0 – UCPOLn: Clock Polarity

UCPOLn  0 for asynchronous mode

Significance only for the synchronous mode

UDRn – USART I/O Data Register (Transmit Data Buffer Register TXB & Receive

Data Buffer (RXB)

• Same I/O address (UDRn)

• Writing UDRn  writing TXBn  triggers data sending if the shift register is free

• Writing is valid only if UDREn=1(empty) in UCSRnA (otherwise ignored)

• Reading UDRn  reading RXBn

USART & RS232

Signal level adaptation to RS232 standard:

RS232 logic ‘1’ -5… -15 V

RS232 logic ‘0’ +5…+15 V

(For long wire transmission  robustness +

optical isolation)

Pmod RS232

USART on ATmega

Example: ATmega + Pmod RS232 ↔ PC communication through a serial cable

1. USART/PC configuration

Baud: 9600

Frame size: 8 data bits

Stop bits: 2

Parity: none

2. Wait for character receiving

- check RXCn (UCSRnA bit 7): wait until becomes 1

3. Read received character from UDRn

4. Write character to be sent in UDRn

5. Wait character transmission

- check TXCn (UCSRnA bit 6), wait until becomes 1

6. Jump to step 2

fOSC = 16.000.000

UBRRn = 103

USART on ATmega

Example: ATMega (USART1) + Pmod RS232 ↔ PC communication through a

serial cable

ldi r16, 0b00011000 ; activates Rx && Tx

sts UCSR1B,r16

ldi r16, 0b00001110 ; frame size 8 bits, no parity, 2 stop bits

sts UCSR1C,r16

ldi r16, 103 ; lower 8 bits of BAUD

ldi r17, 0 ; upper bits of BAUD are 0

sts UBRR1H, r17

sts UBRR1L, r16

mainloop:

rxloop:

lds r20, UCSR1A

sbrs r20, 7 ; bit 7 (RXCn) in UCSR1A = 1  reception complete

rjmp rxloop

lds r16, UDR1 ; read received data

sts UDR1,r16 ; write data for transmission

txloop:

lds r20, UCSR1A ; wait for transmission finish

sbrs r20,UDRE1 ; bit 5 in UCSR1A = 1  transmission buffer is empty

; or sbrs r20, 6 ; bit 6 (TXCn) in UCSR1A = 1  transmission complete

rjmp txloop

rjmp mainloop

Serial Communication with Arduino

Arduino UNO (rev. 3)

• Serial: 0 (RX) and 1 (TX);

• SPI: 10 (SS), 11 (MOSI), 12

(MISO), 13 (SCK).

• TWI (I2C): A4 or SDA pin and A5

or SCL pin

Arduino MEGA (rev. 3)

• Serial : 0 (RX) and 1 (TX);

Serial 1: 19 (RX) and 18

(TX); Serial 2: 17 (RX) and

16 (TX); Serial 3: 15 (RX)

and 14 (TX)

• SPI: 50 (MISO), 51 (MOSI),

52 (SCK), 53 (SS)

• TWI: 20 (SDA) and 21 (SCL)

Serial communication with Arduino
All Arduino boards have at least one native serial port (also known as a UART

or USART): Serial

 mC  PC communication via the on-board USB port (USB-to-serial adapter –

ATmega 16U2) – used also for the board programming !!

• inter-board communication using pins 0 (RX) and 1 (TX) - not recommanded

Also is not recommended to use these pins (0 and 1) for digital I/O !!!

The Arduino MEGA has three additional serial ports: Serial1 on pins 19 (RX)

and 18 (TX), Serial2 on pins 17 (RX) and 16 (TX), Serial3 on pins 15 (RX)

and 14 (TX).

• to communicate with your personal computer through these ports, you will

need an additional USB-to-serial adaptor (they are not connected to the

Mega's USB-to-serial adaptor).

• to communicate with an external TTL serial device, connect the TX pin to your

device's RX pin, the RX to your device's TX pin, and the ground of your Mega

to your device's ground. (Don't connect these pins directly to an RS232 serial

port which operate at +/- 12V  damage your Arduino board; unless you use

a RS232 adapter as the Pmod RS232)

Serial communication with Arduino
The built-in Arduino Serial library (http://arduino.cc/en/Reference/Serial) [1] -

used for communication between the Arduino board and a computer or other

TTL serial devices

Serial library methods (selection):

• Serial.begin(speed) – sets the baud rate (speed) and the default serial

frame format (8 data bits, no parity, one stop bit)

• Serial.begin(speed, config) - sets the baud rate (speed) + customizable

frame format (config)

config – ex: SERIAL_8N1 (the default), SERIAL_7E2, SERIAL_5O1 …

• Serial.print(val) - prints data to the serial port as human-readable ASCII

text

• Serial.print(val, format) – format specifies the base to use (BIN, OCT ,

DEC, HEX. For floating point numbers - the number of decimal places to

use.

• Serial.println - Prints data followed (ASCII 13, or '\r') + (ASCII 10, or '\n')

Examples:

Serial.print(78) gives "78" Serial.print(78, BIN) gives "1001110"

Serial.print(1.23456) gives "1.23“ Serial.println(1.23456, 4) gives "1.2346"

Serial.print("Hello.") gives "Hello"

http://arduino.cc/en/Reference/Serial

Serial communication with Arduino
Arduino example:
void setup() {

Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() {}

Arduino Mega example:
// Arduino Mega using all four of its Serial ports

// (Serial, Serial1, Serial2, Serial3),

// with different baud rates:

void setup(){

Serial.begin(9600);

Serial1.begin(38400);

Serial2.begin(19200);

Serial3.begin(4800);

Serial.println("Hello Computer");

Serial1.println("Hello Serial 1");

Serial2.println("Hello Serial 2");

Serial3.println("Hello Serial 3");

}

void loop() {}

Serial communication with Arduino
Serial library methods (selection):

• int IncomingByte Serial.read() - reads incoming serial data

• Int NoOfBytesSent Serial.write(data) – writes binary data to the serial port.

Data is sent as a byte (val) or a series of bytes specified as a string (str) or as

an array (buf, len)

To send the characters representing the digits of a number use the print()

function instead write().

• Serial.flush() - waits for the transmission of outgoing serial data to complete

• Int NoOfBytes Serial.available() - Get the number of bytes (characters)

available for reading from the serial port. This is data that's already arrived

and stored in the serial receive buffer (which holds up to 64 bytes)

• serialEvent() – user defined function called when data is available. Use

Serial.read() to capture this data.

• serialEvent1(), serialEvent2(), serialEvent3() - Arduino Mega only

http://arduino.cc/en/Serial/Print

Serial communication with Arduino
mC  PC communication : receiving Serial Data in Arduino - receive

data on Arduino from a computer or another serial device and react to

commands or data sent from your computer [2]

Example 1 - receives a digit (single characters 0 … 9) and blinks the

LED on pin 13 at a rate proportional to the received digit value

const int ledPin = 13; // LED pin

int blinkRate=0; // blink rate

void setup()

{

Serial.begin(9600); // Initialize serial port to send and receive at 9600 baud

pinMode(ledPin, OUTPUT); // set this pin as output

}

void loop() {

if (Serial.available()) // Check to see if at least one character is available

{

char ch = Serial.read();

If(isDigit(ch)) // is this an ascii digit between 0 and 9?

{

blinkRate = (ch - '0'); // ASCII value converted to numeric value

blinkRate = blinkRate * 100; // actual rate is 100ms times received digit

}

}

blink();

}

Serial communication with Arduino
Example 1 – cont.

// blink the LED with the on and off times determined by blinkRate

void blink()

{

digitalWrite(ledPin,HIGH);

delay(blinkRate); // delay depends on blinkrate value

digitalWrite(ledPin,LOW);

delay(blinkRate);

}

To use the example (PC side):

• use the Arduino environment's built-in serial monitor

(click the serial monitor button in the toolbar or

<CTRL+SHIFT+M>)

• select the same baud rate used in the call to

serial.begin())

• type a digit in the text box at the top of the Serial

Monitor window

• clicking the Send button will send the character typed

into the text box; if you type a digit, you should see the

blink rate change

Serial communication with Arduino
Example 1 – modified using serialEvent()

void loop()

{

blink();

}

void serialEvent()

{

while(Serial.available())

{

char ch = Serial.read();

// Serial.write(ch);

if(isDigit(ch)) // is this an ascii digit between 0 and 9?

{

blinkRate = (ch - '0'); // ASCII value converted to numeric value

blinkRate = blinkRate * 100; // actual rate is 100mS times received digit

}

}

}

Homework: optimize the blink function code (without using delay).

Serial communication with Arduino

SoftwareSerial library (http://arduino.cc/en/Reference/softwareSerial)

• Developed to allow serial communication on other digital pins of the Arduino,

using software to replicate the functionality (hence the name

"SoftwareSerial") – useful especially on UNO boards

• It is possible to have multiple software serial ports with speeds up to 115200

bps. A parameter enables inverted signaling for devices which require that

protocol.

Limitations

• If using multiple software serial ports, only one can receive data at a time.

• Not all pins on the Mega and Mega 2560 support change interrupts, so only

the following can be used for RX: 10, 11, 12, 13, 14, 15, 50, 51, 52, 53, A8

(62), A9 (63), A10 (64), A11 (65), A12 (66), A13 (67), A14 (68), A15 (69).

• If your project requires simultaneous data flows ….

Example 2: Software serial multiple serial test

Receives from the hardware serial, sends to software serial.

Receives from software serial, sends to hardware serial.

The circuit:

* RX is digital pin 10 (connect to TX of other device)

* TX is digital pin 11 (connect to RX of other device)

http://arduino.cc/en/Reference/softwareSerial

Serial communication with Arduino

Example 2 – Software serial multiple serial test

#include <SoftwareSerial.h>

SoftwareSerial mySerial(10, 11); // RX, TX

void setup()

{

// Open serial communications and wait for port to open:

Serial.begin(4800); // uses the native / built-in serial (USART hardware device)

while (!Serial) {

; // wait for serial port to connect. Needed for Leonardo only

}

Serial.println("Goodnight moon!"); // send data through the built-in serial (USART hardware device)

// set the data rate for the SoftwareSerial port

mySerial.begin(4800);

mySerial.println("Hello, world?");

}

void loop() // run over and over

{ // exchanges data between the hardware and the software serials

if (mySerial.available())

Serial.write(mySerial.read());

if (Serial.available())

mySerial.write(Serial.read());

}

SPI with Arduino
SPI library (http://arduino.cc/en/Reference/SPI) [3]

• SPI.setBitOrder(order) – bit order = LSBFIRST or MSBFIRST

• SPI.setDataMode(mode) – mode = SPI_MODE0 or SPI_MODE1 or

SPI_MODE2 or SPI_MODE3 (set clock phase and polarity)

• SPI.setClockDivider() – SPI clock divider = SPI_CLOCK_DIV(2 .. 128)

• SPI.begin() - initialize the SPI bus by setting SCK, MOSI, and SS to

outputs, pulling SCK and MOSI low, and SS high.

• SPI.end() - disables the SPI bus (leaving pin modes unchanged)

• ReturnByte SPI.transfer(val) - transfer one byte over the SPI bus, both

sending and receiving.

Note about Slave Select (SS) pin on AVR based boards

• SPI library supports only master mode  SS pin should be set always as

OUTPUT (otherwise the SPI interface could be put automatically into slave

mode by hardware, rendering the library inoperative).

• It possible to use any pin as the Slave Select (SS) for the devices. For

example, the Arduino Ethernet shield uses pin 4 to control the SPI

connection to the on-board SD card, and pin 10 to control the connection to

the Ethernet controller.

http://arduino.cc/en/Reference/SPI

SPI with Arduino
Example 3 (SPI) - Controlling a Digital Potentiometer Using SPI [4]

http://arduino.cc/en/Tutorial/SPIDigitalPot

http://www.youtube.com/watch?v=1nO2SSExEnQ

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

AD5206's datasheet: http://datasheet.octopart.com/AD5206BRU10-Analog-

Devices-datasheet-8405.pdf

AD5206 is a 6 channel digital potentiometer (six variable

resistors (potentiometers) built in for individual electronic

control).

• 3 pins on the chip for each variable resistors (they can

be interfaced as for a mechanical potentiometer): Ax, Bx

and Wx (Wiper).

• pin A = high, pin B = low and pin W = variable voltage

output connected to an LED (AD5206 provides a

maximum resistance of 10K ohms, delivered in 255

steps (255 being the max, 0 being the least).

• To control R you send on the SPI 2 bytes: one with the

channel number (0 - 5) and one with the resistance

value for the channel (0 - 255)

http://arduino.cc/en/Tutorial/SPIDigitalPot
http://www.youtube.com/watch?v=1nO2SSExEnQ
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://datasheet.octopart.com/AD5206BRU10-Analog-Devices-datasheet-8405.pdf

SPI with Arduino
Example 3 (SPI) - Controlling a Digital Potentiometer Using SPI [4]

SPI connections

* CS - to digital pin 10 (SS pin)

* SDI - to digital pin 11 (MOSI pin)

* CLK - to digital pin 13 (SCK pin)

SPI with Arduino
Example 3 (SPI) - Controlling a Digital Potentiometer Using SPI

#include <SPI.h>

// set pin 10 as the slave select for the digital pot:

const int slaveSelectPin = 10;

void setup() {

// set the slaveSelectPin as an output:

pinMode (slaveSelectPin, OUTPUT);

SPI.begin(); // initialize SPI:

}

void loop() {

// go through the six channels of the digital pot:

for (int channel = 0; channel < 6; channel++) {

// change the resistance on this channel from min to max:

for (int level = 0; level < 255; level++) {

digitalPotWrite(channel, level);

delay(10);

}

delay(100); // wait a second at the top:

// change the resistance on this channel from max to min:

for (int level = 0; level < 255; level++) {

digitalPotWrite(channel, 255 - level);

delay(10);

}

}

}

void digitalPotWrite(int address, int value) {

// take the SS pin low to select the chip:

digitalWrite(slaveSelectPin,LOW);

// send in the address and value via SPI:

SPI.transfer(address);

SPI.transfer(value);

// take the SS pin high to de-select the chip:

digitalWrite(slaveSelectPin,HIGH);

}

Homework: modify the above

example in order to dim-in and

dim-out al the 6 LEDs

simultaneously / synchronously

ASCII codes

Extended ASCII codes

References

[1] Arduino Serial reference guide: http://arduino.cc/en/Reference/Serial

[2] Michael Margolis, Arduino Cookbook, 2-nd Edition, O’Reilly, 2012.

[3] Arduino SPI reference guide: http://arduino.cc/en/Reference/SPI

[4] Arduino Tutorials: http://arduino.cc/en/Tutorial/SPIDigitalPot

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Tutorial/SPIDigitalPot

