Technical University of Cluj - Napoca
Computer Science Department

Sisteme de viziune in robotica

An2, Master Robotica - engleza

Image Representation

Purpose

Presentation of the camera parameters
Principles of digital images formation

The basic elements of an imaging device

Sensor parameters

DIMENSIUNI STANDARDIZATE ALE SENZORILOR [mm]

Parameters of the imager and image in memory

Sensor parameters

Sensor parameters:

Sx - width of the sensor chip [mm]
Sy - height of the sensor chip [mm]
Ncx - number of sensor elements in camera's x direction;
Ncy - number of sensor elements in camera's y direction;
dx - center to center distance between adjacent sensor elements in X (scan line)
direction;
dx = Sx/Ncx;
dy - center to center distance between adjacent CCD sensor in the Y direction;
dy = Sy/Ncy;

Image parameters (related to the image in memory):

Nfx - number of pixels in x direction as sampled by the computer;
Nfy - number of pixels in frame grabber's y direction
dpx - effective X dimension of pixel in memory, $\mathrm{dpx}=\mathrm{dx}$ * $\mathrm{Ncx} / \mathrm{Nfx}$;
dpy - effective Y dimension of pixel in memory, $d p y=d y^{*}$ Ncy / Nfy; ;
Ncx / Nfx - uncertainty factor for scaling horizontal scanlines;

Image formats

Spatial resolution : $\mathrm{N}_{\mathrm{X}} \times \mathrm{N}_{\mathrm{Y}}$ (Width \times Height)

Color resolution/depth := number of colors encoded in a pixel

$$
n=1,4,8,16,24,32 \ldots \text { Bits } / \text { pixel } \Rightarrow 2^{n} \text { colors }
$$

Color representation

Displays and cameras: RGB

$R G B \Rightarrow$ the color of each pixel is obtained by mixing the base components: (Red, Green şi Blue)
\Rightarrow Aditive color model ($R+G+B \Rightarrow \quad)$

Grayscale / monochrome: $\mathrm{R}=\mathrm{G}=\mathrm{B}$ (diagonal of the cube)

RGB model maped in cube. Each color is encoded on 8 bitse (RGB24). Total number of colors is $2^{8} \times 2^{8} \times 2^{8}=$ $2^{24}=16.777 .216$.

Color representation

Printers / plotters: CM / CM K

CM Y: "substractive" color model
White: absence of all colors)
Black $=\mathrm{C}+\mathrm{M}+$

CM K

Image Acquisition and Formation

Sensor types

CCD (Charged
Coupled Device)

Sensor types

CMOS vs. CCD

TABLE 1

Comparison of CCD and CMOS Image Sensor Features

CCD
 Smallest pixel size

Lowest noise

Lowest dark current
~100\% fill factor for full-frame CCD
Established technology market base
Highest sensitivity

CMOS

Single power supply
Single master clock
Low power consumption
X, Y addressing and subsampling
Smallest system size
Easy integration of circuitry

Electronic shutter without artifacts

Image transfer

Camera $\Rightarrow[$ Frame grabber $] \Rightarrow$ Host computer (Memory)

Diagram 9: Equivalence between analog composite and digital video

Pixel data is represented here as a single line for all bits, see Diagram 10 for an uncompressed view of the pixel data
Diagram 10: 8-bit digital video.

Dedicated:

- Camera Link: 1.2Gbps (base) ... 3.6Gbps (full)
- RS 422 / EIA-644 (LVDS): 655Mbps
- IEEE 1394: 400 Mbps / 800 Mbps (Firewire)

Universal:

- GigaE Vision: 1Gbps, (Gigabit Ethernet protocol), low cost cables (CAT5e or CAT6), 100m distanta
- USB 3.1 "SuperSpeed+": 10Gbps
- USB 3.0 "SuperSpeed":

5Gbps

- USB 2.0: 480 Mbps
- USB 1.1 :12 mbps

Color sensors

Color imagers

http://www.siliconimaging.com/RGB\ Bayer.htm http://www.zeiss.de/c1256b5e0047ff3f/Contents-Frame/c89621c93e2600cac125706800463c66

a) Bayer mask

For color photos, the majority of commercial digital color cameras use pixels covered with special color filters in the three primary colors red, green and blue.

b) Filter wheel

c) 3-CCD camera

Bayer pattern decoding

Image quality (Bayer pattern vs. 3CCD) ???

Application domains

Trends: Image Sensor Technical Migration

Image formation

The "thin lens" camera model [Trucco98]

The properties of the thin lens model:

1. Any ray entering the lens parallel to the optical axis on one side goes through the focus on the other side.
2. Any ray entering the lens from the focus on one side emerges parallel to the optical axis on the other size.
3. The ray going through the lens center, O, named principal ray, goes through point p undeflected.
The fundamental equations of thin lenses: $Z \cdot z=f^{2}$

Image formation

Image focusing

Obtaining a focused image

- pinhole camera (aperture is a pont)
- optical system (lens)

Measures

- Circle-of-confusion (c) - its projection on the image plane < 1 pixel (focused image)
- Depth of field - distance $\left(D_{1}\right)$ around the FOP within the (c) projection on the image <

CAMERA MODEL

The perspective camera model (pinhole)

- The most common geometric model of an imaging camera.
- Each point in the object space is projected by a straight line through the projection center (pinhole/lens center) into the image plane.
The fundamental equations of the perspective camera model are [Trucco98]:
[$X C, Y C, Z C$] are the coordinates of point P in the camera coordinate system

$$
\left\{\begin{array}{l}
x=f \cdot \frac{X_{c}}{Z_{c}} \\
y=f \cdot \frac{Y_{c}}{Z_{c}}
\end{array}\right.
$$

CAMERA MODEL

Physical camera parameters

Intrinsic parameters := internal geometrical and optical characteristics of the camera (those that specify the camera itself).

- Focal length := the distance between the optical center of the lens and the image plane: $f[\mathrm{~mm}]$ or [pixels].
- Effective pixel size (dpx, dpy) [mm];
- Principal point := location of the image center in pixel coordinates: $(\mathrm{u} 0, \mathrm{v} 0)$
- Distortion coefficients of the lens: radial ($\mathrm{k} 1, \mathrm{k} 2$) and tangential ($\mathrm{p} 1, \mathrm{p} 2$).

Extrinsic parameters := the 3-D position and orientation of the camera frame relative to a certain world coordinate system:

- Rotation vector $\mathbf{r}=[\mathrm{Rx}, \mathrm{Ry}, \mathrm{Rz}]^{\mathrm{T}}$ or its equivalent rotation matrix R

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Translation vector $\mathbf{T}=[\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}]^{\mathrm{T}}$;

In multi-camera (stereo) systems, the extrinsic parameters also describe the relationship between the cameras

Camera frame \leftrightarrow image plane transformation

Camera frame \Rightarrow image plane transformation

(projection / normalization) : $\mathrm{P}=\left[\mathrm{X}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Z}_{\mathrm{C}}\right]^{\top}$ [metric units] $\Rightarrow \mathrm{p}=[\mathrm{u}, \mathrm{v}]^{\top}$ [pixels]

1. Transform $P=\left[X_{C}, Y_{C}, Z_{C}\right]^{\top} \Rightarrow p=[x, y,-f]^{\top}$

Fundamental equations of the perspective camera model normalized with cu $1 / Z$:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=f\left[\left[\begin{array}{l}
X_{C} / Z_{C} \\
Y_{C} / Z_{C}
\end{array}\right]=f\left[\begin{array}{l}
x_{N} \\
y_{N}
\end{array}\right] \quad \mathrm{f}-\right.\text { focal distance [metric units] }
$$

2. Transform $\mathbf{p}[\mathrm{x}, \mathrm{y}]^{\top}$ [metric units] \Rightarrow image coordinates $[\mathrm{u}, \mathrm{v}]^{\top}$ [pixels]

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
D_{u} \cdot x \\
D_{v} \cdot y
\end{array}\right]+\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]
$$

Du, Dv - coefficients needed to transform metric units to pixels: $D u=1 / \mathrm{dpx} ; \mathrm{Dv}=1 / \mathrm{dpy}$
$1+2 \Rightarrow$ projection equation: $\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]=A \cdot\left[\begin{array}{c}x_{N} \\ y_{N} \\ 1\end{array}\right]$
A - is the camera matrix:

$$
A=\left[\begin{array}{ccc}
f_{X} & 0 & u_{0} \\
0 & f_{X} & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

f_{x} - is the focal distance expressed in units of horizontal pixels:

$$
f_{x}=f \cdot D_{u}=\frac{f}{d p x}
$$

f_{Y} - is the focal distance expressed in units of vertical pixels:

$$
f_{y}=f \cdot D_{v}=\frac{f}{d p x}
$$

Camera frame \leftrightarrow image plane transformation

Image plane transformation \Rightarrow camera frame

(reconstruction) : $\mathrm{p}=[\mathrm{u}, \mathrm{v}]^{\top}[$ pixels $] \Rightarrow \mathrm{P}=\left[\mathrm{X}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Z}_{\mathrm{C}}\right]^{\top}$ [metric units]

$$
\left[\begin{array}{c}
x_{N} \\
y_{N} \\
1
\end{array}\right]=A^{-1} \cdot\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Notes:

With one camera we cannot measure depth (Z). We can determine only the projection equation / normalized coordinates:

$$
\left[\begin{array}{l}
x_{N} \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
X_{C} / Z_{C} \\
Y c / Z_{C}
\end{array}\right]
$$

To measure the depth (Z) a stereo system (2 cameras) is needed

CAMERA MODEL Modeling the lens distortions

Radial lens distortion

Causes the actual image point to be displaced radially in the image plane

$$
\begin{aligned}
& {\left[\begin{array}{c}
\partial x^{r} \\
\partial y^{r}
\end{array}\right]=\left[\begin{array}{l}
x \cdot\left(k_{1} \cdot r^{2}+k_{2} \cdot r^{4}+\ldots\right) \\
y \cdot\left(k_{1} \cdot r^{2}+k_{2} \cdot r^{4}+\ldots\right)
\end{array}\right]} \\
& \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} ; \\
& \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \text { radial distortion coefficients }
\end{aligned}
$$

Tangential distortion

Appears if the centers of curvature of the lenses' surfaces are not strictly collinear

$$
\left[\begin{array}{l}
\partial x^{t} \\
\partial y^{t}
\end{array}\right]=\left[\begin{array}{c}
2 p_{1} \cdot x y+p_{2}\left(r^{2}+2 x^{2}\right) \\
p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} \cdot x y
\end{array}\right] \quad \mathrm{p}_{1}, \mathrm{p}_{2}-\text { tangential distortion coefficients }
$$

Transform $\mathbf{p}[\mathrm{x}, \mathrm{y}] \mathrm{T}$ [metric units] \Rightarrow image coordinates $[\mathrm{u}, \mathrm{v}] \mathrm{T}$ [pixels]:

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
D_{u} \cdot\left(x+\partial x^{r}+\partial x^{t}\right) \\
D_{v} \cdot\left(y+\partial y^{r}+\partial y^{t}\right)
\end{array}\right]+\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]
$$

\Rightarrow The projection equations become non-linear
Solution: perform distortion correction on image and afterwards linear projection

Modeling the lens distortions

Radial distortion for a camera with $f=4.5 \mathrm{~mm}$ lens:
$\mathrm{k} 1=-0.22267$
$k 2=0.05694$
$k 3=-0.00009$
$\mathrm{k} 4=0.00036$
$\mathrm{k} 5=0.00000$

Distortion correction

The idea:

Between the distorted $\left(x^{\prime}, y^{\prime}\right)=(x+\partial x, y+\partial y)$ and corrected image (x, y) is a correspondence:

$$
\left[\begin{array}{l}
\partial x \\
\partial y
\end{array}\right]=\left[\begin{array}{l}
\partial x^{r}+\partial x^{t} \\
\partial y^{r}+\partial y^{t}
\end{array}\right]=\left[\begin{array}{l}
x \cdot\left(k_{1} \cdot r^{2}+k_{2} \cdot r^{4}\right)+2 p_{1} \cdot x y+p_{2}\left(r^{2}+2 x^{2}\right) \\
y \cdot\left(k_{1} \cdot r^{2}+k_{2} \cdot r^{4}\right)+p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} \cdot x y
\end{array}\right]
$$

Correction algorithm:

For each pixel at the integer location (u, v) in the destination (corrected) image D:

1. Compute the (x, y) coordinates în the camera reference system:
2. Compute the distorted coordinates in the camera reference

$$
\left\{\begin{array}{l}
x=\frac{u-u_{0}}{f_{X}} \\
y=\frac{v-v_{0}}{f_{y}}
\end{array}\right.
$$ system: $\left(x^{\prime}, y^{\prime}\right)=(x+\partial x, y+\partial y)$

3. For the distorted coordinate (x^{\prime}, y^{\prime}) compute their image coordinates (u^{\prime}, v^{\prime}):

$$
\left\{\begin{array}{l}
u^{\prime}=u_{0}+x^{\prime} \cdot f_{x} \\
v^{\prime}=v_{0}+y^{\prime} \cdot f_{y}
\end{array}\right.
$$

4. Assign to pixel location (u, v) from the destination image \mathbf{D} the interpolated value from the source image \mathbf{S} at location (u^{\prime}, v^{\prime}):

Distortion correction

Bilinear interpolation:

$$
\begin{aligned}
& u_{0}=\operatorname{int}\left(u^{\prime}\right) ; \\
& v_{0}=\operatorname{int}\left(v^{\prime}\right) ; \\
& u_{1}=u_{0}+1 ; \\
& v_{1}=v_{0}+1 ; \\
& \left.I_{0}=S\left(u_{0}, v_{0}\right)\right) *\left(u_{1}-u^{\prime}\right) \\
& \left.\quad \quad+S\left(u_{0}, v_{1}\right)\right) *\left(u^{\prime}-u_{0}\right) ; \\
& \left.I_{1}=S\left(u 0, v_{1}\right)\right) *\left(u_{1}-u^{\prime}\right) \\
& \left.\quad \quad+S\left(u_{1}, v_{l}\right)\right) *\left(u^{\prime}-u_{0}\right) ; \\
& D(u, v)=I_{0} *\left(v_{1}-v^{\prime}\right)+I_{1} *\left(v^{\prime}-v_{0}\right) ;
\end{aligned}
$$

Lenses distortion correction

8.5 mm lens, CCD camera

Difference image
Left - 2D detection error: Undistort vs. Distort

$-\operatorname{ErX}$
$-\operatorname{ErY}$

Camera frame \leftrightarrow world reference frame transformation

Direct mapping (world \Rightarrow camera)

$\mathbf{X} \mathbf{X}_{w}=\left[X_{W}, Y_{W}, Z_{W}\right]^{\top}$ (world coordinate system - WRF) $\Rightarrow \mathbf{X} \mathbf{X}_{C}=\left[X_{C}, Y_{C}, Z_{C}\right]^{\top}$ (camera coordinate system - CRF)

where:
$\mathbf{T}_{\mathrm{wc}}=[\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}]^{\top}-$ world to camera translation vector;
\mathbf{R}_{WC} - world to camera rotation matrix:

Camera frame \leftrightarrow world reference frame transformation

Inverse mapping (camera \Rightarrow world)

$\mathbf{X X}_{C}=\left[X_{C}, Y_{C}, Z_{C}\right]^{\top}$ (camera coordinate system - CRF) $\Rightarrow \mathbf{X} \mathbf{X}_{w}=\left[X_{w}, Y_{w}, Z_{w}\right]^{\top}$ (world coordinate system - WRF)

$$
\mathbf{X} \mathbf{X}_{w}=\mathbf{R}_{w c}{ }^{-1} \cdot\left(\mathbf{X} \mathbf{X}_{c}-\mathbf{T}_{w c}\right)
$$

Rotation matrix is orthogonal [Trucco1998]:

$$
\mathbf{R} \cdot \mathbf{R}^{T}=\mathbf{R}^{T} \cdot \mathbf{R}=1 \Rightarrow \mathbf{R}^{T}=\mathbf{R}^{-1}
$$

$\mathbf{X} \mathbf{X}_{W}=\mathbf{R}_{w C}{ }^{T} \cdot\left(\mathbf{X} \mathbf{X}_{c}-\mathbf{T}_{W C}\right)=\mathbf{R}_{C W} \cdot\left(\mathbf{X} \mathbf{X}_{c}+\mathbf{T}_{C W}\right)$
where:

$$
\begin{array}{ll}
\mathbf{T}_{\mathrm{CW}}=\left[\mathrm{T}_{\mathrm{X}} \mathrm{~T}_{\mathrm{Y}} \mathrm{~T}_{\mathrm{Z}}\right]^{\top}-\text { camera to world translation vector } & T_{\mathrm{CW}}=-T_{\mathrm{WC}} \\
\mathbf{R}_{\mathrm{CW}} \text { - camera to world translation vector } & R_{\mathrm{CW}}=R_{\mathrm{WC}}{ }^{T}
\end{array}
$$

Rotation Matrix

World-to-camera

$$
\mathbf{R}_{W C}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{n}^{X W} & \mathbf{n}^{Y W} & \mathbf{n}^{Z W}
\end{array}\right]=\left[\begin{array}{ccc}
n_{X}^{X W} & n_{X}^{Y W} & n_{X}^{Z W} \\
n_{Y}^{X W} & n_{Y}^{Y W} & n_{Y}^{Y W} \\
n_{Z}^{X W} & n_{Z}^{Y W} & n_{Z}^{Y W}
\end{array}\right]
$$

$\mathbf{n}^{x W}=\left[\begin{array}{lll}n_{x}^{x W} & n_{y}^{x W} & n_{z}^{x W}\end{array}\right]^{T} \quad$ - normal vector of $\mathbf{O X} \mathbf{X}_{W}$ axis in the CRF
$\mathbf{n}^{r W}=\left[\begin{array}{lll}n_{x}^{r w} & n_{y}^{r w} & n_{z}^{r w}\end{array}\right]^{T} \quad$ - normal vector of $\mathbf{O} \mathbf{Y}_{W}$ axis in the CRF
$\mathbf{n}^{Z W}=\left[\begin{array}{lll}n_{X}^{Z W} & n_{y}^{Z W} & n_{Z}^{Z W}\end{array}\right]^{T} \quad$ - normal vector of $\mathbf{O} \mathbf{Z}_{W}$ axis in the CRF

Camera-to-world

$$
\mathbf{R}_{C W}=\mathbf{R}_{W C}{ }^{T}=\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{n}^{X C} & \mathbf{n}^{Y C} & \mathbf{n}^{Z C}
\end{array}\right]=\left[\begin{array}{ccc}
n_{X}^{X C} & n_{X}^{Y C} & n_{X}^{Z C} \\
n_{Y}^{X C} & n_{Y}^{Y C} & n_{Y}^{Y C} \\
n_{Z}^{X C} & n_{Z}^{Y C} & n_{Z}^{Y C}
\end{array}\right]
$$

$\mathbf{n}^{x C}=\left[\begin{array}{lll}n_{x}^{x C} & n_{y}^{x C} & n_{z}^{x c}\end{array}\right]^{T} \quad$ - normal vector of $\mathbf{O X} \mathbf{X}_{C}$ axis in the WRF
$\mathbf{n}^{r c}=\left[\begin{array}{lll}n_{x}^{r c} & n_{y}^{r c} & n_{z}^{r c}\end{array}\right]^{\gamma T} \quad$ - normal vector of $\mathbf{O Y}_{C}$ axis in the WRF
$\mathbf{n}^{Z C}=\left[\begin{array}{lll}n_{x}^{z C} & n_{y}^{z C} & n_{z}^{Z C}\end{array}\right]^{T} \quad$ - normal vector of $\mathbf{O Z} \mathbf{Z}_{C}$ axis in the WRF

Rotation Matrix \leftrightarrow Rotation Vector

Rotation vector

$$
\begin{array}{lc}
\mathbf{r}_{\mathrm{WC}}=\left[\mathrm{R}_{\mathrm{X}} \mathrm{R}_{Y} \mathrm{R}_{\mathrm{Z}}\right]^{\top} \quad\left(R_{X}-\text { pitch, } R_{Y}-\text { yaw, } R_{Z}-\text { tilt } / \text { roll }\right) \\
\boldsymbol{r}_{W C} \Rightarrow \boldsymbol{R}_{W C} \text { transform: } & \boldsymbol{R}_{W C} \Rightarrow \boldsymbol{r}_{W C} \text { transform: } \\
r_{11}=\cos \left(R_{Y}\right) \cos \left(R_{Z}\right) & R_{Y}=\arcsin \left(r_{31}\right) \\
r_{12}=\sin \left(R_{X}\right) \sin \left(R_{Y}\right) \cos \left(R_{Z}\right)-\cos \left(R_{X}\right) \sin \left(R_{Z}\right) & \text { If } \cos \left(R_{Y}\right) \neq 0: \\
r_{13}=\cos \left(R_{X}\right) \sin \left(R_{Y}\right) \cos \left(R_{Z}\right)+\sin \left(R_{X}\right) \sin \left(R_{Z}\right) & R_{X}=\operatorname{atan}\left(-\frac{\mathrm{r}_{32}}{\cos \left(\mathrm{R}_{\mathrm{Y}}\right)}, \frac{\mathrm{r}_{33}}{\cos \left(\mathrm{R}_{\mathrm{Y}}\right)}\right) \\
r_{21}=\cos \left(R_{Y}\right) \sin \left(R_{Z}\right) & R_{Z}=-\operatorname{atan} 2\left(-\frac{\mathrm{r}_{21}}{\cos \left(\mathrm{R}_{\mathrm{Y}}\right)}, \frac{\mathrm{r}_{11}}{\cos \left(\mathrm{R}_{\mathrm{Y}}\right)}\right) \\
r_{22}=\sin \left(R_{X}\right) \sin \left(R_{Y}\right) \sin \left(R_{Z}\right)+\cos \left(R_{X}\right) \cos \left(R_{Z}\right) & \text { If } \cos \left(R_{Y}\right)=0: \\
r_{23}=\cos \left(R_{X}\right) \sin \left(R_{Y}\right) \sin \left(R_{Z}\right)-\sin \left(R_{X}\right) \cos \left(R_{Z}\right) & R_{X}=\operatorname{atan} 2\left(\mathrm{r}_{12}, \mathrm{r}_{22}\right) \\
r_{31}=-\sin \left(R_{Y}\right) & R_{Z}=0 \\
r_{32}=\sin \left(R_{X}\right) \cos \left(R_{Y}\right) & \\
r_{33}=\cos \left(R_{X}\right) \cos \left(R_{Y}\right) &
\end{array}
$$

3D (world) \Rightarrow 2D (image) mapping using the Projection Matrix

Projection matrix

$$
\mathbf{P}=\mathbf{A} \cdot\left[\mathbf{R}_{w c} \mid \mathbf{T}_{w C}\right]
$$

The projection equation of a 3D world point [X_{w}, Y_{w}, Z_{w}]:

$$
s \cdot\left[\begin{array}{c}
u \\
v \\
v \\
1
\end{array}\right]=\left[\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s}
\end{array}\right]=\mathbf{P} \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
\mathrm{s}=\mathrm{z}_{\mathrm{S}}-\mathrm{scaling} \text { factor }
$$

Obtaining the 2D image coordinates

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
x_{S} / z_{S} \\
y_{S} / z_{S}
\end{array}\right]
$$

2D (image) \Rightarrow 3D (world) mapping (monocular vision)

Can be done only in a simplified scenario:

- O_{w} (WRF origin) is the ground projection of the O_{C} (CRF origin)
- $\mathrm{O}_{\mathrm{w}} \mathrm{Z}_{\mathrm{w}}$ and $\mathrm{O}_{\mathrm{c}} \mathrm{Z}_{\mathrm{c}}$ coplanar
- height si pitch (α) are fixed and known (ex: fixed surveillance camera fith fixed folcal length f)

Input data

Intrinsic camera parameters: $\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{Y}}=$ focal distances [pixels]

$\mathrm{p}_{0}\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)=$ principal point [pixels]
Extrinsic camera parameters:
$\alpha=$ camera pitch
height $=$ relative to the ground
$p_{1}\left(u_{1}, v_{1}\right)=$ image projection of $P_{1}(X, 0, Z)$
$p_{2}\left(u_{2}, v_{2}\right)=$ image projection of $P_{2}(X, Y, Z)$
Output data
3D coordinates of P_{1} and P_{2} in WRF

$2 D$ (image) \Rightarrow 3D (world) mapping (monocular vision)

1. Side-view projection on $\mathrm{Y}_{\mathrm{w}} \mathrm{O}_{\mathrm{w}} \mathrm{Z}_{\mathrm{w}}$ plane $\left(X_{W}=0\right)$ (fig. de mai jos). P_{1} is projected in P_{10}, p_{1} in p_{10}, P_{2} in P_{20} etc.

The angle between the $\left[\mathrm{O}_{\mathrm{C}} \mathrm{P}_{10}\right]$ segment with the optical axis of the camera is obtained from triangle $\Delta O_{C} p_{10} p_{0}$:

$$
\gamma=\tan ^{-1}\left(\frac{v_{1}-v_{0}}{f_{Y}}\right)
$$

The depth Z of P_{1} (respective P_{10}) in WRF is deduced from triangle $\Delta \mathrm{O}_{\mathrm{C}} \mathrm{O}_{\mathrm{w}} \mathrm{P}_{10}$:

$$
Z=\left[O_{W} P_{10}\right]=\frac{\text { height }}{\tan (\alpha+\gamma)}
$$

From triangle $\Delta \mathrm{O}_{\mathrm{C}} \mathrm{p}_{20} \mathrm{p}_{0}$ is deduced deduced:

$$
\theta=\tan ^{-1}\left(\frac{v_{2}-v_{0}}{f_{Y}}\right)
$$

Proiectia laterala (pe planul $\mathrm{Y}_{\mathrm{w}} \mathrm{O}_{\mathrm{w}} \mathrm{Z}_{\mathrm{w}}$) a scenei

$$
Y Y=\left[O_{C} O_{W}\right]-\left[O_{C} Y_{2}\right]=\text { height }-Z \cdot \tan (\alpha+\theta)
$$

$2 D$ (image) $\Rightarrow 3 D$ (world) mapping (monocular vision)

2. The lateral offset X of P_{1} relative to $O_{w} Z_{w}$ axis is deduced from the top view / bird-eye view projections of the scene on the horizontal $\mathrm{X}_{\mathrm{w}} \mathrm{O}_{\mathrm{w}} \mathrm{Z}_{\mathrm{w}}$ plane:

From the similarity of triangles $\Delta \mathrm{O}_{\mathrm{w}} \mathrm{p}_{10} \mathrm{p}_{1}$ and $\Delta \mathrm{O}_{\mathrm{w}} \mathrm{P}_{10} \mathrm{P}_{1}$:

$$
X=\left[P_{1} P_{10}\right]=\left[p_{1} p_{10}\right] \cdot \frac{\left[O_{W} P_{10}\right]}{\left[O_{W} Z_{1}\right]}=\frac{\left(u_{1}-u_{0}\right)}{\left[O_{W} Z_{1}\right]} \cdot Z
$$

[$\left.O_{w} Z_{1}\right]$ (where Z_{1} is the projection of p_{10}) is deduced from the side-view projection:

$$
\left[O_{W} Z_{1}\right]=\left[Y_{1} p_{10}\right]=\left[O_{C} p_{10}\right] \cdot \cos (\alpha+\gamma)=\frac{f_{Y}}{\cos (\gamma)} \cdot \cos (\alpha+\gamma)
$$

From the above 2 eq.

$$
X=\frac{\left(u_{1}-u_{0}\right)}{f_{Y}} \cdot \frac{Z}{\cos (\alpha+\gamma)} \cdot \cos (\gamma)
$$

Note: $\mathrm{fx}=\mathrm{fy}=\mathrm{f}$ [pixeli] !

Proiectia de sus / top-view (pe planul $\mathrm{X}_{\mathrm{w}} \mathrm{O}_{\mathrm{w}} \mathrm{Z}_{\mathrm{w}}$)

STEREOVISION

Goal

The fundamental equations of the pinhole camera model are [Trucco98]:

$$
\left\{\begin{array}{l}
x=f \cdot \frac{X_{C}}{Z_{C}} \\
y=f \cdot \frac{Y_{C}}{Z_{C}}
\end{array}\right.
$$

$\mathrm{P}\left(\mathrm{X}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Z}_{\mathrm{C}}\right)$ 3D point in the camera coordinate system
$\mathrm{p}(\mathrm{x}, \mathrm{y},-\mathrm{f})$ its projection on the image plane

Knowing the image coordinates (x, y) we cannot infer the depth (Z), only the projection equations
Measure depth $(Z) \Rightarrow$ at least two cameras (stereo-system)

Stereo camera configurations

- Canonic (parallel axes) - theoretical model (impossible to obtain in practice) \Rightarrow image rectification
- Coplanar axes (but unparallel)
- General configuration

STEREOVISION

Basics of epipolar geometry

- Epipole (baseline intersection with the image plane) \Rightarrow one epipole / each image (is the intersection of all epipolar lines of the image)
- Epipolar plane \Rightarrow one plane for each 3D point
- Epipolar line \Rightarrow one line for each 3D point

Epipolar geometry constraint

- For every image point $\left(x_{L}, y_{L}\right)$ there is a unique epipolar line $\left(e_{R}\right)$ in the right image which will contaun the corresponding right projection point $\left(y_{R}, y_{R}\right)$ and vice-versa

Computing (e) [Trucco] :

$$
a * x+b * y+c=0
$$

$$
\left|\begin{array}{l}
a_{R} \\
b_{R} \\
c_{R}
\end{array}\right|=\mathbf{F} * \mathbf{P}_{L} \quad ; \quad\left|\begin{array}{l}
a_{L} \\
b_{L} \\
c_{L}
\end{array}\right|=\mathbf{F}^{T} * \mathbf{P}_{R}
$$

where:
F - fundamental matrix

$$
\mathbf{P}_{L}=\left|\begin{array}{c}
x_{L} \\
y_{L} \\
1
\end{array}\right| ; \quad \mathbf{P}_{R}=\left|\begin{array}{c}
x_{R} \\
y_{R} \\
1
\end{array}\right|
$$

Technical University of Cluj Napoca Computer Science Department

STEREOVISION

Computing the fundamental (F) and essential (E) matrices

$$
\mathbf{F}=\left(\mathbf{A}_{R}^{-1}\right)^{T} * \mathbf{E} * \mathbf{A}_{L}^{-1}
$$

where:

$$
\begin{aligned}
& \mathbf{E}=\mathbf{R}_{L R} * \mathbf{S} \\
& \mathbf{R}_{L R}=\mathbf{R}_{C W-R}^{T} * \mathbf{R}_{C W-L} \\
& \mathbf{T}_{L R}=\mathbf{T}_{C W-R}-\mathbf{T}_{C W-L}=\left[\begin{array}{lll}
T_{X} & T_{Y} & T_{Z}
\end{array}\right]^{T}
\end{aligned}
$$

$$
\mathbf{S}=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right]
$$

$$
\mathbf{E} \text { - essential matrix }
$$

$$
\mathbf{R}_{L R}-\text { relative left-to-right rotation matrix }
$$

$$
\mathbf{T}_{L R}-\text { relative left-to-right rotation matrix }
$$

STEREOVISION

The canonical model

Assumptions

- Image planes are coplanar \Rightarrow optical axes are parallel
- Horizontal image axes are collinear
- Epipolar lines - horizontal
- $\mathrm{v}_{\mathrm{OL}}=\mathrm{v}_{\mathrm{OR}} \Rightarrow \mathrm{y}_{\mathrm{L}}=\mathrm{y}_{\mathrm{R}}$

Depth estimation (canonical)

$$
\begin{aligned}
& x_{l}^{\prime}=f_{X} \cdot \frac{X_{1}}{Z_{1}} \\
& x_{r}^{\prime}=f_{X} \cdot \frac{X_{2}}{Z_{2}} \\
& d=x_{l}^{\prime}-x_{r}^{\prime}=f_{X} \cdot\left(\frac{X_{1}}{Z_{1}}-\frac{X_{2}}{Z_{2}}\right)=f_{X} \cdot \frac{X_{1}-X_{2}}{Z}=f_{X} \frac{b}{Z} \\
& Z=\frac{f_{X} \cdot b}{d}
\end{aligned}
$$

Depth estimation (coplanar)

Coplanar but non-parallel optical axes: θ angle

$$
Z=\frac{f_{X} \cdot b}{d+f_{X} \cdot \tan (\theta)}
$$

STEREOVISION

The stereo-correlation problem

For an given left image point p_{L} a right image point p_{R} must be find so that the pair (p_{L}, p_{R}) represents the projections of the same 3D point P on the two image planes.
a. Features selection

- low level features: pixels.
- high level features: edge segments / corners
b. Features matching
- use of epipolar geometry constraints (epipolar lines) for search space reduction
- for a left image point, a right correspondent point must be chosen out of a set of candidates.
- the correlation function is the measure used for discrimination.
c. Increasing the resolution of the correlation
- compute the disparity with sub-pixel accuracy \Rightarrow far range \& high accuracy stereo-vision

STEREOVISION

Features selection

Low level features each image pixel is reconstructed (dense stereo)

High level features only edge pixels are reconstructed (edge based stereo)

STEREOVISION

Features matching

Edge feature in left image

Grayscale left image correlation window

The correlation window slides along the epipolar line in the right image

STEREOVISION

The correlation function

Any distance measure function SAD, SSD, normalized correlation

$$
S A D\left(x_{R}, y_{R}\right)=\sum_{i=-\frac{w}{2} j=-\frac{w}{2}}^{\frac{w}{2}} \sum_{L}^{\frac{w}{2}}\left|I_{L}\left(x_{L}+i, y_{L}+j\right)-I_{R}\left(x_{R}+i, y_{R}+j\right)\right|
$$

Global minima of the correlation function

Detection of the sub-pixel position of global minima of the correlation function using a parabolic interpolator (2 points)

Camera calibration

Most of the methods are using a planar calibration object or a 3D setup in which control points can be detected in the image.

Planar pattern used for intrinsic parameters calibration

3D scenario with X-shaped targets used for extrinsic parameters calibration

Camera calibration

Parameters estimation: minimization process of the total error between the 2D image coordinates of the control points (detected from the images: m_{i}) and the image projections m_{i} of the 3D coordinates of the control points estimated using the camera model (intrinsic + extrinsic parameters):

$$
\left\|m_{i}-\bar{m}_{i}\right\| \quad \sum_{i=1}^{n} \sum_{j=1}^{m} \| \mathbf{m}_{i j}-\stackrel{\mathbf{m}}{\left(\mathbf{A}, k_{1}, k_{2}, \mathbf{R}_{i}, \mathbf{t}_{i}, \mathrm{M}_{j}\right) \|^{2}}
$$

Camera Calibration Toolbox for Matlab (J.Y. Bouguet)

- Best calibration toolbox for intrinsic parameters
http://www.vision.caltech.edu/bougueti/calib doc/index.htm|\#links

Omni-directional camera calibration
http://www-
sop.inria.fr/icare/personnel/Christopher.Mei/ChristopherMeiPhDStudentToolbox.html

