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Image Representation

Purpose

Presentation of the camera parameters

Principles of digital images formation

The basic elements of an imaging device
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Sensor parameters

Standard camera sensor sizes

Parameters of the imager and image in memory
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Sensor parameters

Sensor parameters:

Sx – width of the sensor chip [mm]

Sy – height of the sensor chip [mm]

Ncx – number of sensor elements in camera's x direction;

Ncy – number of sensor elements in camera's y direction;

dx – center to center distance between adjacent sensor elements in X (scan line) 

direction; 

dx = Sx/Ncx;

dy - center to center distance between adjacent CCD sensor in  the Y direction;

dy = Sy/Ncy;

Image parameters (related to the image in memory):

Nfx – number of pixels in x direction as sampled by the computer;

Nfy – number of pixels in frame grabber's y direction

dpx – effective X dimension of pixel in memory, dpx = dx* Ncx / Nfx;

dpy – effective Y dimension of pixel in memory, dpy = dy* Ncy / Nfy; ;

Ncx / Nfx – uncertainty factor for scaling horizontal scanlines;
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Image formats

Bitmap Header

(LPBITMAPINFO)

LUT (Paleta de culori)

RGBQUAD (4 bytes):

R G B

Bitmap data (pixeli)

pixel

Width

Height

lpS

lpSrc

iColors = 2n

n = 1, 4 sau 8

(n – nr. biţi/pixel)

bmiColors
Bitmap Header

(LPBITMAPINFO)

Bitmap data (pixeli)

Width

Height

lpS

lpSrc

pixellinia i

coloana j

3 bytes

Spatial resolution : NX x NY (Width x Height)

Color resolution/depth := number of colors encoded in a pixel

n = 1, 4, 8, 16, 24, 32 …. Bits / pixel  2n colors

Bitmap with LUT (1, 4, 8 bits/pixel) RGB24  bitmap(24 biti/pixel)
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Color representation

Displays and cameras: RGB

RGB  the color of each pixel is obtained by mixing the base

components: (Red, Green şi Blue) 

 Aditive color model (R+G+B  Alb)

Grayscale / monochrome: R = G = B (diagonal of the cube)

RGB model maped in cube. Each 

color is encoded on 8 bitse (RGB24). 

Total number of colors is 28x28x28 = 

224 = 16.777.216.
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Color representation

Printers / plotters: CMY / CMYK

CMY: “substractive” color model 

White: absence of all colors)

Black = C + M + Y

CMY

CMYK
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Image Acquisition and Formation

Sensor types

CCD (Charged 

Coupled Device)

CMOS
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Sensor types

CMOS vs. CCD

TABLE 1

Comparison of CCD and CMOS Image Sensor Features

CCD CMOS

Smallest pixel size Single power supply 

Lowest noise Single master clock 

Lowest dark current Low power consumption 

~100% fill factor for full-frame CCD X, Y addressing and subsampling 

Established technology market base Smallest system size 

Highest sensitivity Easy integration of circuitry 

Electronic shutter without artifacts 
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Image transfer

Camera  [Frame grabber]  Host computer (Memory)

Dedicated:

• Camera Link: 1.2Gbps (base) 

... 3.6Gbps (full)

• RS 422 / EIA-644 (LVDS): 

655Mbps

• IEEE 1394: 400 Mbps / 800 

Mbps (Firewire)

Universal:

• GigaE Vision: 1Gbps, (Gigabit 

Ethernet protocol), low cost  

cables (CAT5e or CAT6), 

100m distanta

• USB 3.1 "SuperSpeed+": 

10Gbps

• USB 3.0 "SuperSpeed": 

5Gbps

• USB 2.0: 480 Mbps

• USB 1.1 :12 mbps
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Color sensors

Color imagers
http://www.siliconimaging.com/RGB%20Bayer.htm

http://www.zeiss.de/c1256b5e0047ff3f/Contents-Frame/c89621c93e2600cac125706800463c66
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Bayer pattern decoding

Image quality (Bayer pattern vs. 3CCD) ???
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Application domains
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Image formation

The “thin lens” camera model [Trucco98]

The properties of the thin lens model:

1. Any ray entering the lens parallel to the optical axis on one side goes through the focus 

on the other side.

2. Any ray entering the lens from the focus on one side emerges parallel to the optical axis 

on the other size.

3. The ray going through the lens center, O, named principal ray, goes through point p un-

deflected.

The fundamental equations of thin lenses:  Z.z = f2
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Image formation

 

Image focusing

Obtaining a focused image

• pinhole camera (aperture is a pont)

• optical system (lens)

Measures

• Circle-of-confusion (c) – its projection on the image plane < 1 pixel (focused image)

• Depth of field – distance (D1) around the FOP within the (c) projection on the image < 

1 pixel
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CAMERA MODEL
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The perspective camera model (pinhole)

• The most common geometric model of an imaging camera.

• Each point in the object space is projected by a straight line through the projection center 

(pinhole/lens center) into the image plane. 

The fundamental equations of the perspective camera model are [Trucco98]:

[ XC, YC, ZC ] are the coordinates of point P in the camera coordinate system 
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CAMERA MODEL

Physical camera parameters

Intrinsic parameters := internal geometrical and optical characteristics of the camera (those that 

specify the camera itself). 

• Focal length := the distance between the optical center of the lens and the image plane: f [mm] or 

[pixels].

 Effective pixel size (dpx, dpy) [mm];

• Principal point := location of the image center in pixel coordinates:  (u0,v0)

• Distortion coefficients of the lens: radial (k1, k2) and tangential (p1, p2).

Extrinsic parameters := the 3-D position and orientation of the camera frame relative to a certain 

world coordinate system:

• Rotation vector r = [ Rx, Ry, Rz ]T or 

its equivalent rotation matrix R

• Translation vector T = [ Tx, Ty, Tz ]T ;

In multi-camera (stereo) systems, the extrinsic parameters 

also describe the relationship between the cameras 
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Camera frame  image plane 

transformation

Camera frame  image plane transformation

(projection / normalization) : P = [XC, YC, ZC]T [metric units]  p = [u, v]T [pixels]

1. Transform P = [XC, YC, ZC]T  p = [x, y, -f]T

Fundamental equations of the perspective camera model normalized with cu 1/Z:

/

/

C C N

C C N

X Z xx
f f

Y Z yy

    
     

     

2. Transform p [x, y]T [metric units]  image coordinates [u, v]T [pixels]
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f – focal distance [metric units]
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A – is the camera matrix:

fX – is the focal distance expressed in units of horizontal pixels: 

fY – is the focal distance expressed in units of vertical pixels: 

dpx

f
Dff

uX


dpx

f
Dff

vY

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Notes: 

With one camera we cannot measure depth (Z). We can determine only the projection 

equation / normalized coordinates:

To measure the depth (Z) a stereo system (2 cameras) is needed

Camera frame  image plane 

transformation

Image plane transformation camera frame 

(reconstruction) : p = [u, v]T [pixels]  P = [XC, YC, ZC]T [metric units] 
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CAMERA MODEL

Modeling the lens distortions 

Radial lens distortion

Causes the actual image point to be displaced radially in the image plane

r2 = x2 + y2;

k1, k2, … - radial distortion coefficients
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Tangential distortion

Appears if  the centers of curvature of the lenses’ surfaces are not strictly collinear 
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p1, p2 – tangential distortion coefficients 

Transform p [x, y]T [metric units]  image coordinates [u, v]T [pixels]:
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Solution: perform distortion correction on image and 

afterwards linear projection
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Modeling the lens distortions

Radial distortion for a camera

with f = 4.5mm lens:

k1= -0.22267

k2=  0.05694

k3= -0.00009

k4= 0.00036

k5=  0.00000
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Distortion correction
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Between the distorted (x’, y’) = (x+x,y+y) and 

corrected image (x, y) is a correspondence:
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Correction algorithm:

For each pixel at the integer location (u,v) in the destination 

(corrected) image D:

1. Compute the (x, y) coordinates în the camera reference system: 

2. Compute the distorted coordinates in the camera reference 

system: (x’, y’) = (x+x,y+y)

3. For the distorted coordinate (x’, y’) compute their image 

coordinates (u’, v’): 

4. Assign to pixel location (u, v) from the destination image D the 

interpolated value from the source image S at location (u’, v’):
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Distortion correction

Bilinear interpolation:

u0 = int(u’);

v0 = int(v’);

u1=u0+1;

v1=v0+1;

I0 = S(u0,v0))*(u1 – u’)

+ S(u0,v1))*(u’ - u0);

I1 = S(u0,v1))*(u1 – u’)

+ S(u1,v1))*(u’ - u0);

D(u,v)= I0 *(v1 – v’) + I1*(v’ - v0);
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Lenses distortion correction

Left - 2D detection error: Undistort vs. Distort
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Camera frame  world reference 

frame transformation

Direct mapping (world  camera)

XXW = [ XW , YW , ZW ]T (world coordinate system - WRF)  XXC = [XC , YC , ZC]T

(camera coordinate system – CRF)

where:  

TWC = [ Tx, Ty, Tz ]T – world to camera translation vector;

RWC – world to camera rotation matrix:

WCWWCC
TXXRXX 
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Camera frame  world reference 

frame transformation

Inverse mapping (camera  world)

XXC = [XC , YC , ZC]T (camera coordinate system – CRF)  XXW = [ XW , YW , ZW ]T

(world coordinate system - WRF)

)(
1

WCCWCW
TXXRXX 



Rotation matrix is orthogonal [Trucco1998]: 

1
1


 RRRRRR

TTT

)()(
CWCCWWCC

T

WCW
TXXRTXXRXX 

where:

TCW = [TX TY TZ]T – camera to world translation vector

RCW – camera to world translation vector

WCCW
TT 

T

WCCW
RR 
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Rotation Matrix
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World-to-camera

Camera-to-world

– normal vector of OXC axis in the WRF

– normal vector of OYC axis in the WRF

– normal vector of OZC axis in the WRF
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Rotation Matrix  Rotation Vector

Rotation vector

rWC = [RX RY RZ]T (RX - pitch, RY - yaw, RZ - tilt / roll )

rWC  RWC transform:

)cos()cos(11 ZY RRr 

)sin()cos()cos()sin()sin(12 ZXZYX RRRRRr 

)sin()sin()cos()sin()cos(13 ZXZYX RRRRRr 
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RWC  rWC transform:
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3D (world)  2D (image) mapping

using the Projection Matrix 

Projection matrix

 
WCWC

TRAP |

The projection equation of a 3D world point [ XW , YW , ZW ]:

Obtaining the 2D image coordinates
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2D (image)  3D (world) mapping

(monocular vision)

Can be done only in a simplified 

scenario: 
• OW (WRF origin) is the ground 

projection of the OC (CRF origin)

• OWZW and OCZC coplanar

• height si pitch (a) are fixed and 

known (ex: fixed surveillance 

camera fith fixed folcal length f)

Input data

Intrinsic camera parameters:

fX , fY = focal distances [pixels]

p0(u0, v0) = principal point [pixels]

Extrinsic camera parameters:

a = camera pitch 

height = relative to the ground

p1(u1,v1) = image projection of  P1(X,0,Z) 

p2(u2,v2) = image projection of P2(X,Y,Z) 

Output data

3D coordinates of P1 and P2 in WRF
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2D (image)  3D (world) mapping

(monocular vision)
1. Side-view projection on YWOWZW plane 

(XW = 0) (fig. de mai jos). P1 is projected in 

P10, p1 in p10, P2 in P20 etc.

The angle between the [OCP10] segment 

with the optical axis of the camera is 

obtained from triangle OCp10p0 :
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The depth Z of P1 (respective P10) in WRF is 

deduced from triangle OCOWP10 :
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2D (image)  3D (world) mapping

(monocular vision)
2. The lateral offset X of P1 relative to OWZW axis is deduced from the top view / bird-eye 

view projections of the scene on the horizontal XWOWZW plane:

From the similarity of triangles OWp10p1 and OWP10P1: 
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[OWZ1] (where Z1 is the projection of p10) is deduced from 

the side-view projection:
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From the above 2 eq.
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Note: fx=fy=f [pixeli] !
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Goal
The fundamental equations of the pinhole camera model are [Trucco98]:

















C

C

C

C

Z

Y
fy

Z

X
fx

P(XC,YC,ZC)  3D point in the camera coordinate system

p(x,y,-f) its projection on the image plane

Knowing the image coordinates (x,y) we cannot infer the depth (Z), only the 

projection equations

Measure depth (Z)  at least two cameras (stereo-system)

Stereo camera configurations

• Canonic (parallel axes) – theoretical model (impossible to obtain in  practice) 

 image rectification

• Coplanar axes (but unparallel)

• General configuration



Technical University of Cluj Napoca

Computer Science Department
IMAGE PROCESSING

STEREOVISION

Basics of epipolar geometry
• Epipole (baseline intersection with the image plane)  one epipole / each 

image (is the intersection of all epipolar lines of the image)

• Epipolar plane  one plane for each 3D point

• Epipolar line  one line for each 3D point

Epipolar geometry constraint
• For every image point (xL, yL) there is a unique epipolar line (eR) in the right image  which 

will contaun the corresponding right projection point (yR,yR) and vice-versa

Computing (e) [Trucco] :
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F – fundamental matrix
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Computing the fundamental (F) and essential (E) matrices
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where:

E – essential matrix

RLR – relative left-to-right rotation matrix

TLR – relative left-to-right rotation matrix
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The canonical model
Assumptions

• Image planes are coplanar 

optical axes are parallel

• Horizontal image axes are 

collinear

• Epipolar lines – horizontal

• v0L = v0R  yL = yR
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Depth estimation (canonical) Depth estimation (coplanar)

Coplanar but non-parallel optical 

axes:  angle
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The stereo-correlation problem

For an given left image point pL a right image point pR must be find so that the pair (pL, pR) 

represents the projections of the same 3D point P on the two image planes. 

a. Features selection

- low level features: pixels. 

- high level features: edge segments / corners

b. Features matching

- use of epipolar geometry constraints (epipolar lines) for search space reduction

- for a left image point, a right correspondent point must be chosen out of a set of candidates. 

- the correlation function is the measure used for discrimination.  

c. Increasing the resolution of the correlation

- compute the disparity with sub-pixel accuracy  far range & high accuracy stereo-vision
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Features selection

Low level features -

each image pixel is 

reconstructed (dense 

stereo)

High level features –

only edge pixels are 

reconstructed (edge 

based stereo)
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Features matching

Grayscale left image correlation 

window

The correlation window slides along 

the epipolar line in the right image 

window

LoG left image correlation window

Edge feature in left image
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The correlation function

Any distance measure function SAD, SSD, normalized correlation

Global minima of the correlation function Detection of the sub-pixel position of global 

minima of the correlation function using a 

parabolic interpolator (2 points)
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Camera calibration

Most of the methods are using a planar calibration object or a 3D setup 

in  which control points can be detected in the image.

3D scenario with X-shaped targets used 

for extrinsic parameters calibration
Planar pattern used for intrinsic 

parameters calibration
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Camera calibration

Parameters estimation: minimization process of the total error between 

the 2D image coordinates of the control points (detected from the 

images: mi) and the image projections      of the 3D coordinates of the 

control points estimated using the camera model (intrinsic + extrinsic 

parameters):

||||
__

ii mm 

im

__

Camera Calibration Toolbox for Matlab (J.Y. Bouguet)

- Best calibration toolbox for intrinsic parameters

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#links

Omni-directional camera calibration

http://www-

sop.inria.fr/icare/personnel/Christopher.Mei/ChristopherMeiPhDStudentToolbox.html

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#links
http://www-sop.inria.fr/icare/personnel/Christopher.Mei/ChristopherMeiPhDStudentToolbox.html

