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Cuprins / Contents

Grayscale image processing

1. Proprietati statistice ale imaginilor grayscale si aplicatii. 

Imbunatatirea calitatii imaginilor (Statistical properties of grayscale 

images and applications. Image Enhancement)

2. Filtrarea imaginilor  / filtre spatiale (Image filtering)

3. Modelarea si eliminarea zgomotelor (Noise modeling & removal)

4. Detectia muchiilor / metoda de segmentare bazata pe 

discontinuitati (Edge detection & segmentation)

5. Detectia colturilor (Corner detection)
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Grayscale image processing

Statistical properties of grayscale images and 

applications. Image Enhancement

Proprietati statistice ale imaginilor grayscale. 

Imbunatatirea calitatii imaginilor
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Trasaturi statistice / Statistical features

Statsitical features global features (computed on the whole image or on ROIs)

Histograma intensitatilor (Image histogram)

Gray level: g  [0 … L],  L – max. level (8bits/pixel images: L= 0 .. 255)

h(g)=Ng

Ng – no. of pixels in the image / ROI having the brightness level g
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Trasaturi statistice / Statistical features
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Mean (media intensitatilor)

 Measure of the average brightness of the image / ROI

Trasaturi statistice / Statistical features
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Trasaturi statistice / Statistical features
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Exemple: computing statistical features

%Compute statistical properties: histogram, FDP, 

mean, standard deviation

%read bitmap image from file cameraman.bmp

I=imread('cameraman.bmp','BMP');

ColorDepth=256;

[height,width]=size(I);

M=height*width;

%compute histogrm

[h,x] = imhist(I,ColorDepth);

%display histogram

figure(1); imhist(I,ColorDepth)

%compute FDP

p = h / M;

%display  using stem function

figure(2);stem(x,p);

%display histogram using plot function

figure(3); hold on; grid on; plot(h,'k-');hold off;

%histogram filtering with a median filter

h=medfilt1(h,10);

%display filtered histogram using plot function

figure(4); hold on; grid on; plot(h,'k-');hold off;

%compute brightness mean

medie = mean2(I)

%compute brightness standard deviation

std_dev = std2(I)
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Exemple: computing statistical features

Histogram displayed using plot function

mean =   118.7245

std_dev =    62.3417

Filtered histogram displayed using plot 

function
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Grayscale image segmentation by adaptive 

thresholding

• Automatic computation of the threshold (T)

• Can be applied on images with bi-modal histogram

The algorithm

1. Take an initial value for T: 

T0 =  (object area = background area)

T0 = (gMAX + gMIN)/2

2. Step k: segment the image after Tk-1 by dividing the image 

pixels in 2 groups: 

(Foreground) G1: I[i,j] < Tk-1  G1

(Background) G2: I[i,j] > Tk-1  G2

3. Tk = (G1 + G2)/2

4. Repeat 2-3 until Tk - Tk-1 < e

Efficient implementation  first the image histogram 

is computed then all computations (Gi ) will be done 

on the histogram !!!

Application: grayscale image segmentation
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Exemple: adaptive thresholding

function T=hist_threshold(I);

% Compute binary treshold using the "The global adaptive threshold method"

[height,width]=size(I);

M=height*width;

ColorDepth=256;

[h,x] = imhist(I,ColorDepth);

T=(max(max(double(I)))+min(min(double(I))))/2;

Te=0.5;

dT=256;

i=0;

while dT > Te,

To=round(T);

m1=0; m2=0; 

nr_pix=0;

for z=1:To,

nr_pix=nr_pix+h(z);

m1=m1+z*h(z);

end

m1=m1/nr_pix;

nr_pix=0;

for z=To+1:ColorDepth,

nr_pix=nr_pix+h(z);

m2=m2+z*h(z);

end

m2=m2/nr_pix;

T=(m1+m2)/2;

dT=abs(To-T);

end

T=round(T);

%Usage

I=imread('eight.bmp','BMP');

ColorDepth=256;

T=hist_threshold(I);

T_norm = T/ ColorDepth

Ibw=im2bw(I, T_norm);

Ibw=~Ibw;

figure; imshow(Ibw);
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Image enhancement / Imbunatatirea calitatii 

imaginilor

Histogram slide / deplasarea histogramei

Slide(I[i,j]) = I[i,j] + offset offset > 0  “brighter” image

offset < 0  “darker” image
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Image enhancement / Imbunatatirea calitatii 

imaginilor

shrink

Histogram stretch/shrink (latire/ingustare a histogramei)

Strecth/Shrink(I[i,j]) =FinalMIN + (FinalMAX - FinalMIN)*(I[i,j]- gMIN)/ (gMAX - gMIN)

stretch

shrink

stretch
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Image enhancement / Imbunatatirea calitatii 

imaginilor


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Grayscale levels remapping using a transformation function

goutput = T (ginput)
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Image enhancement / Imbunatatirea calitatii 

imaginilor
Ex. - gamma correction:

< 1: codificare/compresie gamma

> 1: decodificare/decompresie gamma
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Information – information associated to the gray-level g:

 information is high for a gray level with smaller probability

Entropy – average information from the image:

 No. bits necessary to encode the gray-levels from the image

H (big) – grayscale values are widely spread 

Hmax = log2L [bits] (uniform PDF)

Energy – how are the gray-levels distributed:

E (mica) – large number of gray-levels

Emax = 1 (1 gray-level)

Trasaturi statistice / Statistical features

][)(log2 bitsgpIg 

][)(log)(
0

2 bitsgpgpH
L

g






 
2

0

)(



L

g

gpE



Technical University of Cluj Napoca

Computer Science Department
SVR

Procesari pe histograma / Histogram 

processing

Histogram equalization/ Egalizarea histogramei

Normalized gray-levels: 

g  [0 ... L]   r  [0 ... 1] 

Transformation functions:

s = T(r)

(a). Bijective and monotonically increasing   r = T-1(s)

(b). 0 <= T(r) <= 1
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Procesari pe histograma / Histogram 

processing
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ps(s):

• uniform PDF

• independent by pr(r)

Histogram equalization algorithm

Procesari pe histograma / Histogram 

processing

10,1
)(

1
)()()(  s

rp
rp

ds

dr
rpsp

r

rrs

Histogram equalization/ Egalizarea histogramei

(1) + (3) 

Lk
n

n
rprTs

LkrLk
n

n
rp

k

j

j
k

j

jrkk

k
k

kr

...0,)()(

/,...0,)(

00








 remapping the input image gray-levels: rk -> sk
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Procesari pe histograma / Histogram 

processing
Histogram equalization/ Egalizarea histogramei: rezultate

I = imread('tire.tif');

J = histeq(I);

imshow(I)

figure, imshow(J)

figure; imhist(I,256)

figure; imhist(J,256)
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Grayscale image processing

Image filtering (space domain filters)

Filtrarea imaginilor (filtre spatiale)
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Convolution

This operator is the basis of the linear image filtering operation applied in the 

spatial image domain (by directly manipulating image pixels) 

It implies the usage of a convolution kernel H (usually squared shape, by size

w*w, with width/height = w=2k+1) which is applied on the image using a shift & 

multiply scheme:
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Convolutie - exemple

Example: filter for vertical edges detection (computes the horizontal derivative of 

the image)

X Y = filter2(H,X)
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Filtre de tip trece-jos / low-pass filters

Used for smoothing the gray-levels / noise reduction. The outcome is an 

averaging operation of the current pixel by his neighbor’s values  “blur” effect 

on the image

These filters have only positive elements. From that reason the result of the 

convolution is normalized by dividing it with the sum of the filters' coefficients:
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Filtre de tip trece-jos / low-pass

a. Original image c. Result obtained by 

applying a 5x5 mean filter.

b. Result obtained by 

applying a 3x3 mean filter. 
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Filtre de tip trece-sus / high-pass

Image regions / pixel with local intensity variations are highlighted (i.e. edge 

pixels). The outcome is a high pass filtering (image sharpening)

The filters / kernels can have positive an negative elements. Edge detection 

kernels must have a null sum:
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c. The result obtained by 

filtering the original image with 

the high-pass filter 

a. The result of applying the Laplace 

edge detection filter on the original 

image

b. The result of applying the 

Laplace edge detection filter 

on the blurred image
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Filtre de tip trece-sus / high-pass

High-pass filters will have both positive and negative coefficients. You must 

ensure that the final result is an integer between 0 and 255! There are three 

possibilities to ensure that the resulting image fits the destination range. 

1. The first one is to compute:
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In the formula above   represents the sum of positive filter coefficients and   the 

sum of negative filter coefficients magnitudes. This result of applying the high-

pass filter always lies in the interval   where L is the maximum image gray level 

(255). The result of this transform will place scale the result to [-L/2, L/2] and 

then move the 0 level to L/2.
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Filtre de tip trece-sus / high-pass

2. Another approach is to perform all operations using signed integers determine 

the minimum and maximum and then linearly transform the resulting values 

according to:

( min)

max min

L S
D
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3. The third approach is to compute the magnitude of the result and 

saturate everything that exceeds the maximum level L.
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Grayscale image processing

Noise modeling & removal

Modelarea si eliminarea zgomotelor 
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Definitia zgomotului / Noise definition

Noise := Any process (n) that affects image (f) and is not part of the scene (s):

f(i,j) = s(i,j) + n(i,j) (additive noise model)

Causes:

1. Discrete nature of the radiation

2. Detector sensitivity (variable sensitivity of the sensorial elements CCD/CMOS 

 fixed pattern noise (dark current noise (DCN) & photon response non-

uniformity (PhRNU))

3. Electrical noise

4. Data transmission errors

5. Air turbulences

6. Spatial resolution of the sensor 

7. Quantization resolution of the color /gray levels

Types of noise (FDP p(g) shape):

- Salt&pepper (sare si piper)

- Uniform

- Gaussian

- Other distributions: Rayleigh, Erlang/Gamma, Exponential etc.
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Surse de zgomot

DAC Memorie

Sursă de lumină

Obiect

s(i,j)

Lentilă
Senzor

Amplificator

Convertor A/D

Sistem 

de calcul

f(i,j)

Semnal 

electric

Semnal 

electric 

amplificat

Semnal 

digital

5 1

2 6

3
7

4

s(i,j) – semnalul iniţial, lumina reflectată de pe obiect

f(i,j) – semnalul (imaginea digitală) memorat în sistemul de calcul

n(i,j) – zgomot, procese care se interpun între s şi f (1…7)

n(i,j)

1 – Natura discretă a radiaţiei

2 – Sensibilitatea variabilă a 

elementelor (pixelilor) senzorului

3 – Zgomotul electric

4 – Erori de transmisie a datelor

5 – Turbulenţe atmosferice

6 – Rezoluţia senzorului (erori de 

cuantizare spaţială)

7 – Rezoluţia convertorului A/D (erori de 

cuantizare a semnalului analogic)
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Salt &Pepper noise (sare si piper)

Causes

• Malfunctioning of sensor’s cells 

• Malfunctioning of memory cells

• Synchronization errors in the signal digitization process

• Bits loss on the communication channel

Model

In the salt&pepper noise model only two possible 

values are possible, a and b, and the probability of 

obtaining each of them is less than 0.1 (otherwise, 

the noise would vastly dominate the image). For an 8 

bit/pixel image, the typical intensity value for pepper 

noise is close to 0 and for salt noise is close to 255.

&

(" ")

(" ")
salt pepper

A for g a pepper
PDF

B for g b salt
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Salt &Pepper noise (sare si piper)
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Salt &Pepper noise (sare si piper)

Eliminating the Salt&Pepper noise  Median filter (non-linear filter)

Ordered filters are based on a specific image statistic, called ordered statistic. 

They are called non-linear, because they cannot be applied as a linear operator 

(such as a convolution kernel). These filters operate on small windows, and 

replace the value of the central pixel (similarly to convolution). The ordered statistic 

is a technique which arranges all the pixels in sequential order, based on their 

gray-level value. The position of an element in this ordered set can be 

characterized by its rank. Given a NxN window W, the pixel values can be sorted in 

ascending order:
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Salt &Pepper noise (sare si piper)

The median filter: selects the middle value from the ordered statistic and 

replaces the destination pixel with it. In the example above, the selected 

value would be 104. The median filter allows the elimination of salt&pepper 

noise.
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Gaussian noise

• Gaussian noise is useful for modeling natural processes which 

introduce noise (e.g. noise caused by the discrete nature of radiation 

and the conversion of the optical signal into an electrical one –

detector/shot noise, the electrical noise during acquisition – sensor 

electrical signal amplification, etc.).

• For modelling these types of noises a poisson distribution should be 

used but it is to complicated to handle it mathematically  can be 

approximated by a  Gaussian distribution

Model
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where:

g = gray level;

 = media zgomotului;

 = deviatia standard a zgomotului;
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Gaussian noise
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Design a variable size Gaussian kernel
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The filter size w of such a filter is usually 6 (for example, for a Gaussian noise

with =0.8  w = 4.8  5).

FDP for gaussian noise with  0 mean:

0    1    2    3    4

0

1

2

3

4

x

y x0

y0

G(x,y) = G(x)G(y)

w  6



Technical University of Cluj Napoca

Computer Science Department
SVR

Design a variable size Gaussian kernel

Matlab example:

 = 0.8  w = 5
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Filtering the Gaussian noise
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Detecting the presence of noise in the image
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Signal to Noise Ratio – SNR (Raportul semnal zgomot )

Additive noise model:

f(i,j) = s(i,j) + n(i,j)

n – zero mean (<n(i,j)> = 0) and signal independent (<s(i,j)n(i,j)> = 0)



 Noise alters only the standard  deviation 

and not the mean of the image:222

nsf   (1)
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SNR – Exemples:
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Computing SNR 

Single image case

1. Compute f on the whole image

2. Select a ROI with uniform intensity S =0 (ex: sky, water, wall etc.) 

and compute f = n

f = n

1
2
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Computing SNR 

2 images case (successive images of a static scene):

f(i,j) = s(i,j) + n(i,j)

g(i,j) = s(i,j) + m(i,j)

• n and m have the same FDP: same mean (0)  and standard 

deviation

• n and m are uncorrelated (independent) with the signal:(<s(i,j)n(i,j)> 

= 0, <s(i,j)m(i,j)> = 0)

• f and g are uncorrelated (<f(i,j)g(i,j)> = 0)

r

r
SNR




1

Normalized correlation between  

f and g
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Grayscale image processing

Features detection: edges & corners

Detectia de trasaturi: Detectia punctelor de 

muchie. Detectia de colturi.
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Motivation

Purpose of edge detection?

- It seems that human visual system uses edges as primitives in the 

perception/recognition process (complex information (color and 

texture) are inferred afterwards) 

- It is possible to recognize shapes/objects only based on contours (i.e. 

caricatures, bw comics / cartoons).

 Edge detection is an important step in the automated image analysis 

process 

 Edge detection  segmentation process

Segmentation := from low level information (pixels / row data)  high 

level information is extracted:

- edge points  contours  shape features  analysis

- edge points  features for sparse stereo reconstruction
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Definition 

Muchie / edge := the frontier that separates 2 regions of different  

brightness  (usual the brightness has an abrupt variation at the edge)

How can we detect an edge ?
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Edge points intensity profile
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Image gradient (1-st order derivative)

Gradient of a 2D function (image gradient)

For a digital image: x = y = 1


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Approximations of gradient

Operatorul Roberts

Operatorul Prewitt

Operatorul Sobel
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Gradient features

Magnitude

Directiion
















fx

fy

G

G
arctgdir

Imaginea |G|


Thresholding 

with T
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Examples

Gx Gy

Canny
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Canny edge detection method

Features of the Canny edge detector

• Maximizes the signal to noise ratio for a correct

• Good localization of the edge 

• Minimization of the positive responses to a single edge (non-edges 

elimination)

Algorithm

1. Gaussian filtering

2. Edge magnitude & direction computation

3. Non-maxima suppression (edge thinning)

4. Hysteresis thresholding (edge linking)
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1. Gaussian filtering
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2. Edge magnitude & direction

Magnitude

Directiion
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3. Non-maxima suppression

 Edge thinning along the gradient direction (1 pixel thick)

Quantify the gradient directions:

P is a local maxima if:

GGandGG  26

Where: G, G2, G6 are the gradient magnitudes in P, I2, I6.

If P is a local maxima is retained.

Otherwise is eliminated.
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4. Hysteresis thresholding

 Edge linking (contour defragmentation )

1. Two thresholds are used: qL (low) and qH and the following thresholding 

scheme is applied: 

• Every edge point with magnitude bellow qL is labeled as  non-edge

• Every edge point with magnitude above qH is labeled as strong edge

• Every edge point with magnitude between qL and qH is labeled as weak edge

2. Apply an algorithm similar with the labelling one that marks weak edge points 

as strong if they are connected to strong edge points and eliminates weak edge 

points if they are not connected to strong edge points.

a. Result after step 1: strong (blue) edges and weak (green) edges. b. Result after step  2 
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4. Hysteresis thresholding 

An efficient implementation of this step uses a queue to perform a breadth first 

search through WEAK_EDGE points connected to STRONG_EDGE points and 

mark them as STRONG_EDGE points. The algorithm would look like this:

1. Scan the image, top left to bottom right, pick the first STRONG_EDGE 

point encountered and push its coordinates in the queue.

2. While (queue is not empty)

a. Extracts the first point from the queue

b. Find all the WEAK_EDGE neighbors of the current point 

c. Label in the image all these neighbors as STRONG_EDGE points

d. Push the image coordinates of these neighbors into the queue

e. Continue to the next STRONG_EDGE point

3. Go to step 1 considering the next STRONG_EDGE point.

4. Eliminate the remaining WEAK_EDGE points from the image by turning 

them to NON_EDGE (0)
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Results 

Magnitude 

image |G|



Thresholding 

with T



Hysteresis 

thresholding 



Non-maxima 

suppression
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2-nd order derivative
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Laplacian of  Gaussian (LoG/ Mar-Hilderth)
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Laplacian of  Gaussian (LoG)

Application: stereo-correlations 

(compensates for intensity variations 

between the left and right images / 

cameras).
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Corner detection

Corner :=  a point where are intensity variations in at least 2 

different directions
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Corner detection – Harris method

The intensity variation in a point (x,y) for a window w shifted with 

displacement (u,v):

Corners  points where E(u,v) has a local maxima

Taylor series aproximation:

w can be window of Gaussian weights !
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Corner detection – Harris method
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M

Autocorrelation matrix (covariance of the derivatives) 

contains all the differential operators that describe the geometry of 

the intensity surface in (x,y) 

The eigenvalues of M: λ1 , λ2 

response function R(x,y) (measure of 

the “cornerness” in P(x,y))
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Corner detection – Harris method

Harris algorithm:

1. For each pixel P(x, y) compute the autocorrelation matrix M.

2. Compute the “map” (matrix) of the response function R(x, y) (in every 

pixel P(x, y)).

3. Filter out points by thresholding (ex: if. R < T  R=0).

4. Apply “non-maximum suppression”  retain only local maxima 

(others are eliminated: R=0).

5. Al remaining points (R > 0) will be the reported corners.

6. Optional you can also limit the maxim no. of reported corners.

[2] A. Koschan, M. Abidi, Digital Color Image Processing, Wiley & Sons, 

2008. - cap 6, pag 143 -144


