
Sisteme de viziune in robotica

An2, Master Robotica

Technical University of Cluj Napoca

Computer Science Department
SVR

Cuprins / contents

Prelucrari pe imagini binare / Binary image processing

1. Determinarea componentelor conexe / etichetare. (Labeling

connected components)

2. Detectia si urmarirea conturului. (Countour tracing)

3. Calculul proprietatilor geometrice ale obiectelor binare (Simple

geometric features of binary objects)

4. Operatii morfologice si aplicatii (Morphological operations and

applications)

Technical University of Cluj Napoca

Computer Science Department
SVR

Binary image (alb-negru / black & white)

Imagine binara (binary image) ?

Images that contain only 2 colors / labels:

“0” – background pixels

“1” – object pixels

Obtained after a segmentation process !

Grayscale image Binary image

Segmentation

Technical University of Cluj Napoca

Computer Science Department
SVR

Etichetarea obiectelor

din imagini binare

Labeling connected components

Technical University of Cluj Napoca

Computer Science Department
SVR

Definitions

1. Vecini (Neighbors)

- 2 pixels are in a neighborhood relation N4 if they have a common

frontier

- 2 pixels are in a neighborhood relation N8 if they have at least a

common corner

2. Cale (Path)

Path (p [i0, j0] p [in,jn]) := { [i0,j0], [i1,j1], …, [in,jn]

| [ik,jk] N4/8 [ik+1,jk+1] k = 0 .. n-1 }

N4 4-path

N8 8-path

Technical University of Cluj Napoca

Computer Science Department
SVR

Definitions

3. Obiect (Foreground)

S := { p[i,j] | p[i,j] = “1” }

4. Conectivitate (Connectivity)

pS qS (connected) if Path (p q) S.

5. Componente conexe (Connected components)

{pi S , i = 1 … n | pk pj, (pk, pj) S, k,j = 1 … n}

6. Fundal (Background) := set of all connected components of C(S) which

have points on the image margins. All other connected components from C(S) are

holes.

7. Frontiera/Margine (Boundary)

Boundary (S): = S’={ p S | q N4/8(p), q C(S) }

C(S) – complement of S

8. Interior

Interior (S) = S - S’

Technical University of Cluj Napoca

Computer Science Department
SVR

Connected component (object)

Maximal set of connected components:

{pi S , i = 1 … n | pk pj, (pk, pj) S, k,j = 1 … n}

A modality to label objects from a binary image is to chose a start point

bij =1 and assign a label to the point and to its neighbors. Further the neighbors of

the neighbors are labeled …..

• When the recursive procedure is finished, a connected component is obtained

and we can continue by choosing another start point (not labeled yet).

• To find this new start point, the image is scanned systematically and a new

labeling procedure is initiated when an object point bij =1 is found.

Etichetarea componentelor conexe /

Objects labeling

Etichetare

(Labeling)

Technical University of Cluj Napoca

Computer Science Department
SVR

Sequential labeling

Iterative algorithm (Haralick 1981)

• No need for extra memory (memory efficient).

• Processing time depends on the image size/complexity.

1. Initialization phase

2. Repeat

propagate labels top-down & left-right

propagate labels bottom-up & right-left

until “no change”

procedure Iterate;

// Initialize each object pixel “1”with a unique label

for L:=1 to NLINES do

for P:=1 to NCOLUMNS do

if I(L,P) =1

then LABEL(L,P):=NEWLABEL()

else LABEL(L,P):=0

end for

end for;

Technical University of Cluj Napoca

Computer Science Department
SVR

Sequential labeling

“procedure Iterate – pag. 2”

“Successive: top-down & bottom-up iterations”

repeat

CHANGE:=false;

// top-down iteration

for L:=1 to NLINES do

for P:=1 to NCOLUMNS do

if LABEL(L,P)<>0 then

begin

M:=MIN(LABELS(NEIGHBORS(L,P)U(L,P)));

if M <> LABEL(L,P)

then CHANGE:=true;

LABEL(L,P):=M

end

end for

end for;

Technical University of Cluj Napoca

Computer Science Department
SVR

Sequential labeling

“procedure Iterate – pag. 3”

// bottom-up iteration

for L:= NLINES to 1 by –1 do

for P:= NCOLUMNS to 1 by –1 do

if LABEL(L,P)<>0 then

begin

M:=MIN(LABELS(NEIGHBORS(L,P)U(L,P)));

if M<> LABEL(L,P)

then CHANGE:=true;

LABEL(L,P):=M

end

end for

end for;

until CHANGE:=false

end Iterate

Technical University of Cluj Napoca

Computer Science Department
SVR

Sequential labeling

1 1 1 1

1 1 1 1

1 1 1 1 1

1 2 3 4

5 6 7 8

9 10 11 12 13

1 1 3 3

1 1 3 3

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

Example (N4)

1. Initial image 2. Initialization

3. Top-down & left-right

label propagation
4. Bottom-up & right-left

label propagation

Technical University of Cluj Napoca

Computer Science Department
SVR

• Based on the classic algorithm that finds connected components in graphs

• Needs 2 iterations but a large table for the equivalences might be needed

1. 1-st step: labels propagation (similar with the previous algorithm)

Classic Algorithm (equivalence classes)

• When 2 different labels can be propagated to the same

pixel, the smallest one is propagated and the found

equivalence is stored in an equivalence table (ex. (1,2)

 EqTable).

• Every entry in the EqTable is an ordered pair containing

the equivalent labels

• After this step the equivalence classes are found

• For every equivalence class a unique label is assigned

(smallest or oldest value)

2. 2-nd step: the image is scanned and the corresponding label of the

equivalence class is assigned to each pixel

Technical University of Cluj Napoca

Computer Science Department
SVR

Classic Algorithm

1 1 1

1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1

Example (N4)

1 2 2

3 3 2

3 2

3 2

4 4 3 2

4 3 5 2

4 3 3 3 2

3 3 2

1. Initial image 2. Label image after top-down propagation

EQTABLE:

(4, 3), (3, 5), (3, 2) …

EQCLASSES:

1: {4, 3, 5, 2}

2: (6,8,9, …}

….

n: {….}

EQLABEL:

1: 2 1:1

2: 6 sau 2:2

… …

n: x n:n

Technical University of Cluj Napoca

Computer Science Department
SVR

Classic Algorithm

procedure Classical

“Initialize global equivalence table” and labels matrix

EQTABLE:=CREATE(); LABEL:=CREATE();

“Top-down pass 1”

for L:= 1 to NLINES do

“Initialize all labels on line L to zero”

for P:= 1 to NCOLUMNS do

LABEL(L,P):=0

end for

“Process the line”

for P:=1 to NCOLUMNS do

if I(L,P):= 1 then

begin

A:= NEIGHBORS((L,P));

if ISEMPTY(A)

then M:=NEWLABEL()

else M:= MIN(LABELS(A));

LABEL(L,P):=M;

for X in LABELS(A) and X<>M

ADD(X, M, EQTABLE)

end for;

end

end for

end for;

Technical University of Cluj Napoca

Computer Science Department
SVR

Classic Algorithm

“Find equivalence classes”

EQCLASSES:=Resolve(EQTABLE);

for E in EQCLASSES

EQLABEL(E):= min(LABELS(E))

end for;

“Top-down pass 2”

for L:= 1 to NLINES do

for P:= 1 to NCOLUMNS do

if I(L,P) = 1

then LABEL(L,P):=EQLABEL(CLASS(LABEL(L,P)))

end for

end for

end Classical

• Resolve() - algorithm that finds the connected components of the graph

defined by the equivalences set (EQTABLE) defined at step 1.

• Problem: for big images with many objects the table is large (large memory

usage)

Technical University of Cluj Napoca

Computer Science Department
SVR

Example

%read the grayscale image

I=imread('eight.bmp','BMP');

ColorDepth=256;

figure; imshow(I);

%Cimpute the threshold(see C2)

T=hist_threshold(I);

T_norm = T/ ColorDepth

%normalize the threshold: 0 ... 1

Ibw=im2bw(I, T_norm);

%Image negative:

%Background pixels: 0 (black)

%Object pixels: 1 (white)

Ibw=~Ibw;

figure; imshow(Ibw);

%Objects labeling

%Ilabel: matrix containing the labels

%0 - background, 1 - obiect1 label, 2 - obiect 2 label,

[Ilabel,num] = bwlabel(Ibw,8);

% Display the labels matrix in colors

Irgb= label2rgb(Ilabel, 'hsv', 'black', 'shuffle');

figure; imshow(Irgb);

[L,NUM] = bwlabel(BW,N) - returns a matrix L, of the

same size as BW, containing labels for the connected

components in BW. N can have a value of either 4 or 8.

4 specifies N4 and 8 specifies N8.

Technical University of Cluj Napoca

Computer Science Department
SVR

Example

To select object from a binary image we can use the function bwselect, by

specifying the coordinates of a pixel inside the object:

BW1 = imread('text.png');

c = [43 185 212];

r = [38 68 181];

BW2 = bwselect(BW1,c,r,4);

imshow(BW1), figure, imshow(BW2)

Technical University of Cluj Napoca

Computer Science Department
SVR

Contour Tracing (detectie contur)

Contour:

Contour(R) = { p R | q N4/8(p), q C(R) }

- chain-code / direction codes: c

(numerical operations applied on c are mod 4 or 8)

Technical University of Cluj Napoca

Computer Science Department
SVR

Contour Tracing (detectie contur)

Contour tracing algorithm:

1. Scan the image(top-down + left-right) until it finds a start pixel P0. Define a

variable dir which stores the last movement direction along the contour (from

the previous to the current point):

- dir = 0 for N4

- dir = 7 for N8

2. Search the next contour point in a neighborhood of 3x3

around the current pixel, by sequentially incrementing (dir++),

In counterclockwise direction starting with direction:

- (dir + 3) mod 4 (N4)

- (dir + 7) mod 8 if dir is even (N8)

- (dir + 6) mod 8 if dir is odd (N8)

First pixel of “1” is the current contour pixel: Pn. In the same time it updateds dir.

3. If the current contour element Pn is identical with P1 and if element Pn-1 is

identical with P0, STOP. Otherwise repeat step 2.

4. The detected contour is: P0 … Pn-2.

Technical University of Cluj Napoca

Computer Science Department
SVR

Example – contour representation

Var.1 – list of points:

L = { P0(x0,y0), P1(x1,y1), …. , Pn-2(xn-2,yn-2) }

Var .2 – chain codes:

P0(x0,y0) + {c0, c1, … , cn-2},

Var. 3 – chain codes derivative (invariant to rotation)

P0(x0,y0) + {cd0, cd1, … , cdn-2},

where: cdi =(ci-ci-1) mod 8, cd0= c0 mod 8

ci {0,1, … ,7} – direction codes

Technical University of Cluj Napoca

Computer Science Department
SVR

Example

I = imread('coins.png');

figure; imshow(I)

%thresholding / image segmentation

BW = im2bw(I);

%select a start point

dim = size(BW)

col = round(dim(2)/2)-90;

row = min(find(BW(:,col)))

boundary = bwtraceboundary(BW,[row, col],'N');

%displat the BW image and the contour

figure; imshow(BW)

hold on;

plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);

