MASURAREA PROPRIETĂŢI GEOMETRICE SIMPLE ALE OBIECTELOR DIN IMAGINI BINARE

Simple geometrical properties of binary objects

Simple geometrical properties

Simplification: imagines with a single object

Notations:

$$
b(x, y)=\left\{\begin{array}{ll}
1 & \text { pixel_obj } \\
0 & \text { pixel_bck }
\end{array} \Rightarrow \text { value/label of the pixel at location }(\mathrm{x}, \mathrm{y})\right.
$$

Area

$$
\mathrm{A}=\iint_{I} b(x, y) d x d y
$$

or in the discrete case:

$$
A=\sum_{i=1}^{n} \sum_{j=1}^{m} b(i, j) \text { where: } \mathrm{i}=[1 . . \mathrm{n}] \text { and } \mathrm{j}=[1 . . \mathrm{m}]
$$

Center of mass (CM)

Center of mass:= the point in which the entire mas of the object can be concentrated without changing the first order moment on any axis:

1 -st order moment on axis x :

$$
\bar{x} \cdot \iint_{I} b(x, y) d x d y=\iint_{I} x b(x, y) d x d y \quad \text { or } \quad \bar{i} \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} b(i, j)=\sum_{i=1}^{n} \sum_{j=1}^{m} i b(i, j)
$$

1-st order moment on axis y :

$$
\bar{y} \cdot \iint_{I} b(x, y) d x d y=\iint_{I} y b(x, y) d x d y \text { or } \quad \bar{j} \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} b(i, j)=\sum_{i=1}^{n} \sum_{j=1}^{m} j b(i, j)
$$

where (\bar{x}, \bar{y}) respectively (\bar{i}, \bar{j}) are the coordinates of the center of mass

$$
\bar{i}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{m} i b(i, j)}{A} \quad, \quad \bar{j}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{m} j b(i, j)}{A}
$$

Example: labelling + cetner of mass computation
\% Label the connected pixel components in the text.png image, compute
\% their centroids, and superimpose the centroid locations on the
bw = imread('labeling.bmp') ;
bw = imread('labeling.bmp') ;
bw = ~bw;
bw = ~bw;
L = bwlabel(bw);
L = bwlabel(bw);
s = regionprops(L, ' ');
s = regionprops(L, ' ');
centroids = cat(1, s.Centroid);
centroids = cat(1, s.Centroid);
imshow(bw)
imshow(bw)
hold on
hold on
plot(centroids(:,1), centroids(:,2), 'm*')
plot(centroids(:,1), centroids(:,2), 'm*')
hold off
hold off

ABCDEFGHIJ KLMNOPQRS TUVWZY

Orientation (elongation axis)

(minimum inertia axis / axis with the smallest 2-nd order moment)

2-nd order moment:
$E=\iint_{I} r^{2} b(x, y) d x d y$
Where:
r - is the distance between point (x, y) and the searched axis (minimum inertia axis).
The equation of the axis (polar coordinates):

$$
\begin{equation*}
x \sin \theta-y \cos \theta+\rho=0 \tag{2}
\end{equation*}
$$

Solution: compute the line with the with the smallest 2-nd order moment: $E^{\prime}(\rho, \theta)=0$
For a point (x, y) belonging to the object, its distance r to the line will be:

$$
\begin{equation*}
r^{2}=(x \sin \theta-y \cos \theta+\rho)^{2} \tag{3}
\end{equation*}
$$

Replacing (3) in (1):

$$
\begin{equation*}
E=\iint_{1}(x \sin \theta-y \cos \theta+\rho)^{2} b(x, y) d x d y \tag{4}
\end{equation*}
$$

The derivative of E by ρ equaled with 0 :

$E_{\rho}^{\prime}=\iint_{I} 2(x \sin \theta-y \cos \theta+\rho) b(x, y) d x d y=2 \sin \theta \iint_{I} x b(x, y) d x d y-2 \cos \theta \| \int_{I} y b(x, y) d x d y+$
$2 \rho \iint_{,} b(x, y) d x d y=2 A(\bar{x} \sin \theta-\bar{y} \cos \theta+\rho)=0$
where: (\bar{x}, \bar{y}) is the center of mass of the object.
\Rightarrow The minimum inertia axis passes through the center of mass (CM) of the object !
Translate the origin of the coordinate system in the CM:

$$
x^{\prime}=x-\bar{x} \text { si } y^{\prime}=y-\bar{y}
$$

\Rightarrow

$$
\begin{equation*}
x \sin \theta-y \cos \theta+\rho=x^{\prime} \sin \theta-y^{\prime} \cos \theta \tag{6}
\end{equation*}
$$

Replacing (6) in (4):
$E=a \cdot \sin ^{2} \theta-b \sin \theta \cos \theta+c \cdot \cos ^{2} \theta$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the 2-nd order centered moments:

$$
\begin{aligned}
& a=\iint_{F^{\prime}}\left(x^{\prime}\right)^{2} b(x, y) d x^{\prime} d y^{\prime} \\
& b=\iint_{V^{\prime}}\left(x^{\prime} y^{\prime}\right) b(x, y) d x^{\prime} d y^{\prime} \\
& c=\iint_{V^{\prime}}\left(y^{\prime}\right)^{2} b(x, y) d x^{\prime} d y^{\prime}
\end{aligned}
$$

Rewriting E as:

$$
\begin{equation*}
E=\frac{1}{2}(a+c)-\frac{1}{2}(a-c) \cos 2 \theta-\frac{1}{2} b \sin 2 \theta \tag{7}
\end{equation*}
$$

The derivative of E by θ equaled with 0 :

$$
\begin{aligned}
& E_{\theta}^{\prime}=(a-c) \sin 2 \theta-b \cos 2 \theta=0 \\
& \tan 2 \theta=\frac{b}{a-c}
\end{aligned}
$$

The case $\mathrm{b}=0$ and $\mathrm{a}=\mathrm{c}$ correspond to the horizontal and vertical lines and should be treated separately

$$
\sin 2 \theta= \pm \frac{b}{\sqrt{b^{2}+(a-c)^{2}}} \quad \text { and } \quad \cos 2 \theta= \pm \frac{a-c}{\sqrt{b^{2}+(a-c)^{2}}}
$$

the positive solution $\Rightarrow \mathrm{E}$-minim | the negative solution $\Rightarrow \mathrm{E}$-maxim

Shapefactor $=\frac{L_{E_{\text {max }}}}{L_{E \text { min }}} \quad(0-$ linie, 1 cerc $)$

```
BW = imread('ob2.bmp');
I = double(BW);
A = regionprops(I, 'area')
P = regionprops(I, 'perimeter')
Euler = regionprops(I, 'EulerNumber')
teta = regionprops(I, 'orientation')
LEmin = regionprops(I, 'MajorAxisLength')
LEmax = regionprops(I, 'MinorAxisLength')
Shape_factor = LEmax.MinorAxisLength / LEmin.MajorAxisLength
Eccentricitaty = regionprops(I, 'Eccentricity')
```

Results:
$A=$ Area: 14451
$\mathrm{P}=$ Perimeter: 588.3991
Eeler = EulerNumber: -1
teta $=$ Orientation: 27.2073
LEmin $=$ MajorAxisLength: 223.2852
LEmax $=$ MinorAxisLength: 96.1508
Shape_factor $=0.4306$
Eccentricitaty $=$ Eccentricity: 0.9025

PROJECTIONS

Projection of an object on a line with direction θ :

$$
\boldsymbol{p}_{\theta}(\boldsymbol{t})=\int_{L} b(t \cdot \cos \theta-s \cdot \sin \theta, t \cdot \sin \theta+s \cdot \cos \theta) d s
$$

Vertical projection ($\theta=0$)

$$
\boldsymbol{v}(\boldsymbol{x})=\int_{L} b(x, y) d y
$$

Horizontal projection ($\theta=\pi / 2$)

$$
\boldsymbol{h}(\boldsymbol{y})=\int_{L} b(x, y) d x
$$

Area

$$
\mathbf{A}=\iint_{I} b(x, y) d x d y \quad ; \quad \mathbf{A}=\int v(x) d x=\int h(y) d y
$$

Center of mass (CM)

$$
\begin{aligned}
& \bar{x} \mathbf{A}=\iint_{I} x b(x, y) d x d y=\int x v(x) d x \\
& \bar{y} \mathbf{A}=\iint_{I} y b(x, y) d x d y=\int y h(y) d y
\end{aligned}
$$

Applications of the projections
Problem 1: Segment / label each letter from the text

```
ABTH HGH
AJJA
ABSN ANS
ALOPL
```

Problem 2:
Detect the center of the, X ' shape:

First step in character recognition \Rightarrow detection of each character (lines and columns)

Pattern recognition / geometrical properties of shapes

a. Rectangular region around an " X "-shape
b. Sum of the intensities around columns;
c. Sum of the intensities around rows

Run-Length encoding (compression)

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$																			
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$												
$\mathbf{1}$	$\mathbf{1}$																			
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$												
$\mathbf{1}$	$\mathbf{1}$																			

Ver. 1
Start position and length of " 1 " sequences:
$(1,3)(7,2)(12,4)(17,2)(20,3)$ $(5,13)(19,4)$
$(1,3)(17,6)$
Ver. 2
Length of 0 and 1 sequences: $\quad 0,3,3,2,4,1,2,1,3$

$$
\begin{gathered}
4,13,1,4 \\
3,13,6 \\
k
\end{gathered}
$$

Notations:

- $r_{i k}$ sequence k of line i
- first sequence in each line is a seq. of $0 \Rightarrow$ even seq. correspond to " 1 " $(k=2)$.
- misequences on line i

OPERATII MORFOLOGICE

Morphological operations

Technical University of Cluj Napoca

OPERATII MORFOLOGICE / Morphological operations

Morphology := [moprphos = shape] shape and structure of living organisms
Mathematical morphology \Rightarrow tools for modifying the shape / detection of components / representation and description of regions / of an object

Set theory \Rightarrow Language used in mathematical morphology

Let A a set in Z^{2}. If $a=\left(a_{1}, a_{2}\right)$ is an element in A :
$a \in A$.
Similar, if a is not an element in A :
$a \notin A$.
Set vid zero elements: \varnothing.

Notation: $\{$... $\}$

Elements of the considered sets: pixels $b(x, y)$ of binary images

Operatuions on sets

1. Inclusion

$$
\mathrm{A} \subseteq \mathrm{~B}
$$

2. Union

$$
\mathrm{C}=\mathrm{A} \cup \mathrm{~B}
$$

3. Intersection

$$
\mathrm{D}=\mathrm{A} \cap \mathrm{~B}
$$

4. Disjunctive sets (mutual exclusive)

$$
A \cap B=\emptyset .
$$

5. Complement

$$
\mathrm{A}^{\mathrm{C}}=\{\mathrm{w} \mid \mathrm{w} \notin \mathrm{~A}\}
$$

6. Difference

$$
\mathrm{A}-\mathrm{B}=\{\mathrm{w} \mid \mathrm{w} \in \mathrm{~A}, \mathrm{w} \notin \mathrm{~B}\}=\mathrm{A} \cap \mathrm{~B}^{\mathrm{C}}
$$

7. Reflection (horizontal + vertical flip)

$$
\hat{B}=\{\mathrm{w} \mid \mathrm{w}=-\mathrm{b}, \text { for } \mathrm{b} \in \mathrm{~B}\}
$$

8. Translation (of $\operatorname{set} \boldsymbol{A}$ by $\boldsymbol{z}=\left(z_{1}, z_{2}\right)$)

$$
(\mathrm{A})_{\mathrm{z}}=\{\mathrm{c} \mid c=a+\mathrm{z}, \text { for } \mathrm{a} \in \mathrm{~A}\}
$$

Logical and arithmetical operations applied on sets (binary images)

- Unary: image op scalar_operand
- Binary: image1 op image2
- Applied on pixel level !!!

Logical operations: AND, OR, and NOT (COMPLEMENT) + combinations

A

$\operatorname{not}(A)=A^{C}$

B

A xor B

A and B

$\operatorname{not}(\mathrm{A})$ and $\mathrm{B}=\mathrm{B}-\mathrm{A}$

A or B

DILATION AND EROSION

The primitives of the morphological operations !
$A, B \subset Z^{2}$

DILATION

Dilation of \boldsymbol{A} by \boldsymbol{B}

$$
A \oplus B=\left\{z \mid(\hat{B})_{z} \cap A \neq \emptyset\right\} \quad \text { or } \quad A \oplus B=\left\{z \mid\left[(\hat{B})_{z} \cap A\right] \subseteq A\right\}
$$

\mathbf{B} - structuring element

Practical algorithm (dilation)

Apply the structuring element by systematically scanning the source image:

1. If the origin of the structuring element B is applied over a background pixel (' 0 ') \Rightarrow do nothing
2. If the origin of the structuring element is applied over a foreground/object pixel (' 1 ') \Rightarrow perform a logic 'OR' between the pixels of the structuring element and the overlapped image pixels.

Applications: holes filling ..

```
SE = strel('square',3)
BW = imread('ob1.bmp');
figure; imshow(BW);
BW1 = imdilate(BW,SE);
figure; imshow(BW1);
BW2 = imdilate(BW1,SE);
figure; imshow(BW2);
```


Erosion

Erosion of A by B

$$
A \Theta B=\left\{z \mid(\hat{B})_{z \subseteq A}\right\}
$$

Practical algorithm (erosion)

Apply the structuring by systematically scanning the source image:

1. If the origin of the structuring element B is applied over a background pixel (' 0 ') \Rightarrow do nothing
2. 2. If the origin of the structuring element is applied over a foreground/object pixel (' 1 ') AND any of the of the ' 1 ' pixels of the structuring element B overlaps a background pixel (' 0 ') in the source image A (extends outside $A) \Rightarrow$ change the pixel in the destination image into background pixel ('0').

Application: Eliminate small objects (noise) ...

```
SE = strel('square',3)
BW = imread('ob11.bmp');
figure; imshow(BW);
BW1 = imerode(BW,SE);
figure; imshow(BW1);
BW2 = imerode(BW1,SE);
figure; imshow(BW2);
```


OPENING and CLOSING

Opening

$$
A^{\circ} B=(A \Theta B) \oplus B
$$

Applications: contour smoothing, eliminate small objects (noise), ...

```
SE = strel('square',3)
BW = imread('obl1.bmp');
figure; imshow(BW);
BW1 = imerode(BW,SE);
figure; imshow(BW1);
BW2 = imdilate(BW1,SE);
figure; imshow(BW2);
```


CLOSING

$$
A \bullet B=(A \oplus B) \ominus B
$$

Applications: contour smoothing, holes filling, ...

```
SE = strel('square',3)
BW = imread('ob1.bmp');
figure; imshow(BW);
BW1 = imdilate(BW,SE);
figure; imshow(BW1);
BW2 = imerode(BW1,SE);
figure; imshow(BW2);
```


Opening:

Closing

b. Structural element; $x=$ origin.
c. Image after closing; dilation followed by erosion; original in dashes.
niversity of Cluj Napoca - Science Department

Properties of the morphological operators

1. $A \oplus B=B \oplus A$
2. $(A \Theta B)^{C}=A^{C} \oplus B$
3. $A \circ B \subseteq A$
4. $C \subseteq D \Rightarrow C \circ B \subseteq D \circ B$
5. $(A \circ B) \circ B=A \circ B$ (IDEMPOTENCY)
6. $A \subseteq A \bullet B$
7. $C \subseteq D \Rightarrow C \bullet B \subseteq D \bullet B$
8. $(A \bullet B) \bullet B=A \bullet B$ (IDEMPOTENCY)

Applications of the basic morphological operators

Contour extraction

$\beta^{i}(A)=A-(A \Theta B)$ (interior contour)

B

$\beta^{e}(A)=\left(A_{\oplus} B\right)-A$ (exterior contour)

Region filling

Let p a point in the interior of the contour of A

1. $X_{0}=p,\left(p={ }^{\prime} 1^{\prime}\right)$
2. $X_{k}=\left(X_{k-1} \oplus B\right) \cap A^{C} \quad k=1,2,3$,
3. If $X_{k}=X_{k-1} \Rightarrow$ stop. Otherwise repeat 2.

Final filled object: $\mathrm{A} \cup X_{k}$
Algorithm tracing:

A

\mathbf{A}^{C}

B

\mathbf{X}_{0}

\mathbf{X}_{1}

\mathbf{X}_{2}

\mathbf{X}_{6}

\mathbf{X}_{7}

$\mathbf{X}_{7} \cup A$

Typical situation for usage:

Labeling (not efficient for large images / objects)
$\mathbf{A}=\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \ldots . \mathbf{Y}_{\mathrm{n}}\right\}, \mathbf{Y}_{\mathrm{i}}$ - connected components, $Y_{i} \subseteq A$

1. $p \in Y . X_{0}=p$
2. $X_{k}=\left(X_{k-1} \oplus B\right) \cap A \quad k=1,2,3, \ldots$
3. Dc. $X_{k}=X_{k-1} \Rightarrow \operatorname{stop}\left(Y_{i}=X_{k}\right)$. Otherwise repeat 2.

\mathbf{Y}, \mathbf{p}

X_{1}

\mathbf{X}_{2}

$X_{3}=\mathbf{Y}$

HIT-AND-MISS transform
Used to select pixels with specific geometrical properties: corners, isolated points, contour points, template matching, thinning, thickening etc.

The hit \& miss transform of a set A by structuring elements (J, K) :

$$
A \otimes(J, K)=(A \Theta J) \cap\left(A^{C} \Theta K\right) .
$$

0	0	0
	1	
1	1	1

J

K

A

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\mathbf{A} \otimes(\mathbf{J}, \mathbf{K})$

Ex.2: Corners detection (NE)

J

A

\mathbf{A}^{C}

Application (Matlab)

BW2 = bwhitmiss (BW1,SE1,SE2)

SKELETON EXTRACTION

The Skeleton of set A:
$S(A)=\bigcup_{k=0}^{K} S_{k}(A)$
$S_{k}(A)=(A \Theta k B)-(A \Theta k B) \circ B$
$A \Theta k B=(\ldots(A \Theta B) \Theta B) \ldots) \Theta B$
$K=\max \{k \mid(A \Theta k B) \neq \Phi$

Reconstruction of $\operatorname{set} \mathrm{A}$ (K - should be known):

$$
A=\bigcup_{k=0}^{K}\left(S_{k}(A) \oplus k B\right)
$$

Example:

```
BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1,'skel',Inf);
imshow(BW1)
figure, imshow(BW2)
```


References:

[1] Robert M. Haralick, Linda G. Shapiro, Computer and Robot Vision, Addison-Wesley
Publishing Company, 1993
[2] Rafael C. Gonzalez, Digital Image Processing, Prentice-Hall, 2002

