DIONASYS

Declarative and Interoperable Overlay Networks, Applications to Systems of Systems

DIONASYS project overview phase 1

chist-era meeting

April 27th 2016

Bern

Introduction

- Declarative and Interoperable Overlay Networks, and Applications to Systems of Systems
- Call 2013 topic Heterogeneous Distributed Computing
- 3 years: January 2015 December 2017

Context

- Proliferation of heterogeneous and isolated systems
 - Cloud systems
 - Wireless and sensor networks
 - Smart environments

- Composition in systems-of-systems leads to advanced services
 - Multi-cloud
 - Cloud-assisted IoT, e.g. environmental surveillance
 - Edge and fog computing

Motivation

- Programming complex, heterogeneous large-scale systems
 - Requires thinking "global"
 - What are the services, the guarantees, the structure
 - But to act "local"
 - Implementing complex interactions at the level of individual nodes
- Problems
 - Maintainability over time
 - Adaptation and evolution of functionalities
 - Interoperability among systems
 - Composition of existing and future systems
 - > Abstraction mismatch

The DIONASYS objectives

Raise the level of abstraction for specifying and operating complex systems and system of systems

- Think global, act global
 - Declare the function and structure of the system ...
- Leverage generative programming for overlay networks with gossip-based self-organization and software-defined networks
 - ... and let DIONASYS generate, augment, evolve, and bridge the corresponding implementation

Overlays as first class entities

- Virtual graph connecting system nodes, implementing services
- Well-principled guarantees, structures, APIs
- System of systems through overlay composition

Generative programming approach

Runtime opportunistic composition

- Integrate new systems, bridge with already existing ones
- Automate reasoning on overlays structures and functionalities

Target contributions

- Conceptual framework
 - Principled systems composition
- Declarative approaches for overlay structures and composition
 - Domain-Specific Languages and compilers
- Self-organization using gossip-based overlay construction
- Adaptation and interoperability
 - Formalization and runtime support
- Integration of advanced networking support

Potential impact

- Principled techniques for systems-of-systems programming
 - Potential for use in IoT and IoT-Cloud environments
- Better understanding of inter-overlay adaptation and interoperation
 - Including functional and non-functional aspects
- Open the way for the composition and interoperation of future and already deployed systems

Realizations

Conceptual contributions

- Tectons: principled opportunistic composition [AOC 2015]
- First version of the holon framework [ARM 2015]
 - Framework for principled systems composition
 - Discussion of challenges and definition of use cases
 - Roadmap for project objectives
- Intent-driven networking [Arxiv, under submission]
 - Framework for applications to declare intent on use of network
 - Optimization and adaptation framework

Holon framework

Overlay based systems

- Declarative programming support for self-organizing overlays
 - Under submission and reviewed for open source release
 - Systematic classification of overlay structures and self-organizing construction complexity (ongoing)
 - Application: study of self-organizing DHT robustness under churn [DAIS16]
- Adaptation of overlays in heterogeneous contexts
 - Application to WSN overlay-based broadcast
 - Use of formalized representation based on timed automata
 - Principles and techniques for automatic and safe protocol switch
 - Work in progress, open sourced

Testbed infrastructure

Integration of a multi-site testbed based on OpenStack and SDN [ATN 2016]

Nodes in Cluj, Neuchâtel and Bordeaux

Allows inter-overlay SDN-driven interoperation

Control using Splay [COMM 2016]

- Custom design 4U rack
- 48 RaspberryPI (~200 cores)
- Includes networking, power management, optimized power supply

Consortium

Consortium

- 4 partners
 - Université de Neuchâtel (CH) coordinator
 - LaBRI, Bordeaux (FR)
 - Lancaster University (UK)
 - Technical university of Cluj-Napoca (RO)
- ~1 M Euros funding from chist-era

Expertise domain Partner	1. UniNE	2. LaBRI	3. Lancaster	4. TUCN
(domain-specific) Languages and compilation	+	+++	++	+
Large-scale networked systems	+++	++	++	+++
Wireless networked systems, sensor networks	++	+	+++	++
Gossip-based and self-organizing systems	+++	+	+	++
Middleware adaptation	+	+++	+++	+
Interoperability, complex systems composition	+	++	+++	++
QoS-oriented routing and composition	+	++	+	+++
Distributed execution frameworks	+++	+	++	+
Distributed systems evaluation	+++	++	++	+

University of Neuchâtel, Switzerland

- Key personnel: Etienne Rivière (coordinator)
- Computer Science dept. @ UniNE

- Large-Scale Distributed Systems
- Experimental support for Dist. Systems
- Overlay networks and Gossip-based protocols

LaBRI - Bordeaux

- Key personnel: Floréal Morandat, Laurent Réveillère
- Associate member: *David Bromberg* (U. Rennes 1)
- Competences
 - Languages and compilation
 - Middleware adaptation
 - Large-scale distributed systems

Lancaster University, UK

- Key personnel: Gordon Blair, Geoff Coulson, Yehia El Khatib
- Competencies:
 - adaptive and reflective middleware,
 - component-based systems,
 - cloud computing,
 - network programming

Technical University of Cluj-Napoca, Romania

Key personnel: Virgil Dobrota

- Competencies
 - SDN (Software Defined Networking), OpenFlow
 - Cross-Layer QoS
 - Active/passive measurements in Internet
 - Networking

THANK YOU!

http://www.dionasys.eu

DIONASYS is supported by CHIST-ERA, the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net

