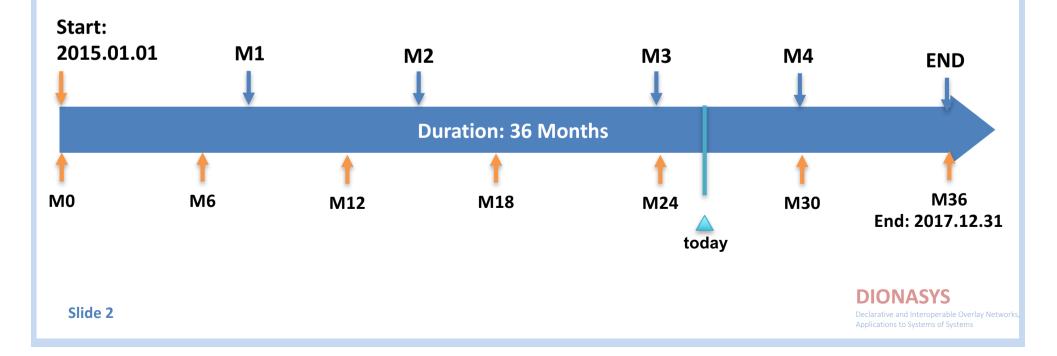
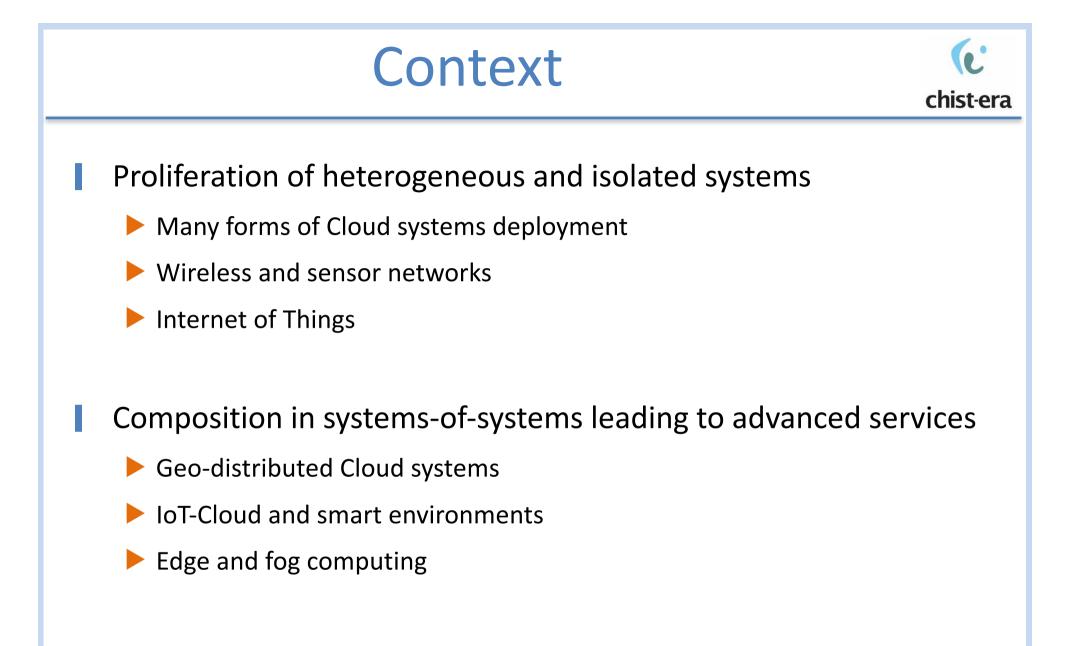
DIONASYS

Declarative and Interoperable Overlay Networks, Applications to Systems of Systems

DIONASYS project overview year 2

chist-era meeting


May 21st 2017


Brussels

Introduction

- Declarative and Interoperable Overlay Networks, and Applications to Systems of Systems
- Call 2013 topic Heterogeneous Distributed Computing
- 3 years: January 2015 December 2017

DECLARATION DECLAR

Motivation

- Programming complex, heterogeneous large-scale systems
 - Requires thinking "global"
 - What are the services, the guarantees, the structure
 - But to act "local"
 - Implementing complex interactions at the level of individual nodes

Problems

- ⁽²⁾ Maintainability over time
- ^S Adaptation and evolution of functionalities and performance
- ⁽²⁾ Interoperability among systems
- Composition of existing and future systems
- Abstraction mismatch

The DIONASYS objectives

- Raise the level of abstraction for specifying and operating complex systems and system of systems
- Think global, *act* global
 - Declare the function and structure of the system ...
- Leverage generative programming for overlay networks with gossip-based self-organization and software-defined networks
 - In and let DIONASYS generate, augment, evolve, and bridge the corresponding implementation

chist-era

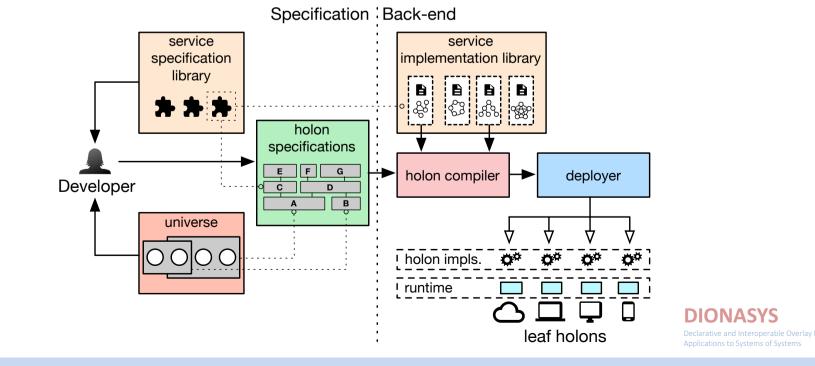
Target contributions

- Conceptual framework
 - Principled systems of systems composition
- Declarative approaches for overlay structures and composition
 Domain-Specific Languages and compilers
- Self-organization using gossip-based overlay construction
- Adaptation and interoperability
- Integration of programmable networking support and overlay management

Potential for impact

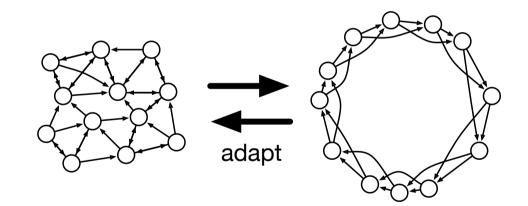
- Principled techniques for systems-of-systems programming
 - Potential for use in IoT and IoT-Cloud environments
- Better understanding of inter-overlay adaptation and interoperation
 - Including functional and non-functional aspects
- Open the way for the composition and interoperation of future and already deployed systems

Realizations (years 1 and 2)

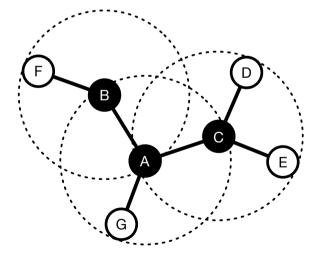


DIONASYS Declarative and Interoperable Overlay Networks, Applications to Systems of Systems

Conceptual contributions


- Holon framework [ARM 2015]
 - Principled systems composition and roadmap for project objectives
 - Y2: definition of ontologies for automated systems-of-systems composition
- Intent-driven networking
 - Framework for applications to declare intent on use of network
 - Optimization and adaptation framework

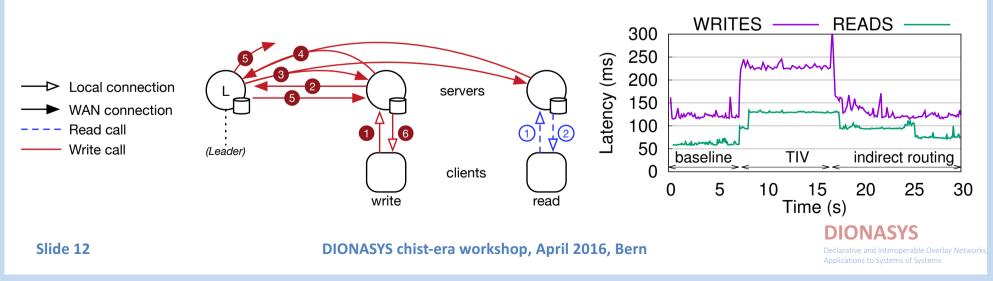
Self-organizing and composed overlays


- Declarative programming support for self-organizing overlays
 - libdio library (open source) [DAIS16]
 - Implements self-organizing construction based on gossip principles
 - Live adaptation of overlay structure
 - 1st demonstration (tomorrow morning)

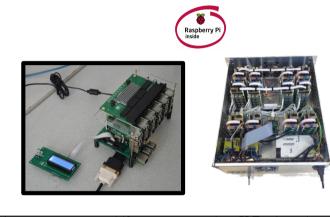
- Opportunistic composition & automatic *bridging* of overlays
 - Application: autonomous repair of routing overlay in emergency situations

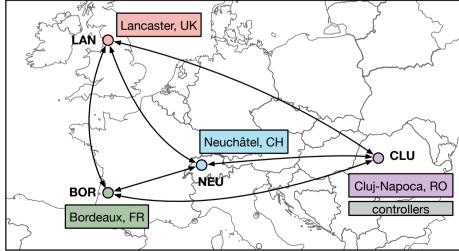
Adaptive overlays for MANET broadcast

- Broadcast in mobile ad-hoc networks
 - Collisions, energy constraints, heterogeneity
 - Reactive vs. multiple variants of overlay-based approaches
 - Not one size fits all
 - Depending primarily on density and mobility [ICDCS 17]
 - Emergent and adaptive overlays
 - Observation of deployment conditions
 - Autonomous shift between protocols
 - Safety guarantees for dissemination
 - Declarative definitions based on time automata


chist-era

Overlay adaptation for geo-replicated storage


- NoSQL storage (ZooKeeper) deployed over multi-site cloud
 - Geo-replication: disaster tolerance and local reads
 - Coherence protocol requires several WAN interactions for ordering writes
- Edge control of network traffic and application of *indirect routing*
 - Open vSwitch at 4 sites, SDN controller
 - Traffic injection and monitoring to detect Triangle Inequality Violation (TIV)
 - Indirect routing mitigates performance impact on coherence protocol


2nd demonstration (tomorrow morning)

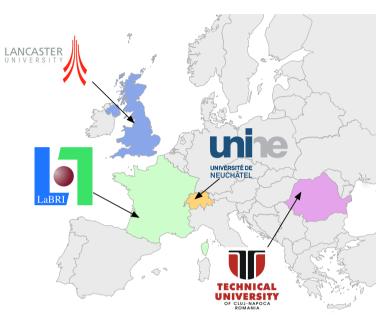
Testbed infrastructure

- 4-site testbed with SDN support [ATN 2016]
 - Inter-overlay SDN-driven interoperation
 - Control using Splay [COMM 2016]
 - Heterogeneous compute nodes
 - Regular servers
 - PiRack cluster
 - 4U rack, 48 RaspberryPI (~200 cores)
 - Grape mini-cluster
 - 6 RPI (+1)
 - Representative of edge Cloud devices [IEEE IC 17]
 - See our 1st demonstration

DIONASYS Declarative and Interoperable Overlay Networks Applications to Systems of Systems

chist-era

Consortium


DIONASYS Declarative and Interoperable Overlay Networks, Applications to Systems of Systems

Consortium

4 partners

- Université de Neuchâtel (CH) coordinator
- LaBRI, Bordeaux (FR)
- Lancaster University (UK)
- Technical university of Cluj-Napoca (RO)
- ~1 M Euros funding from chist-era

Expertise domain Partner	1. UniNE	2. LaBRI	3. Lancaster	4. TUCN
(domain-specific) Languages and compilation	+	+++	++	+
Large-scale networked systems	+ + +	++	+ +	+++
Wireless networked systems, sensor networks	+ +	+	+ + +	++
Gossip-based and self-organizing systems	+++	+	+	++
Middleware adaptation	+	+++	+++	+
Interoperability, complex systems composition	+	+ +	+++	++
QoS-oriented routing and composition	+	++	+	+++
Distributed execution frameworks	+++	+	+ +	+
Distributed systems evaluation	+ + +	++	+ +	+

DIONASYS Declarative and Interoperable Overlay Netwo Applications to Systems of Systems

University of Neuchâtel, Switzerland

- Etienne Rivière (coordinator), Raziel Carvajal Gomez
- Computer Science dept. @ UniNE
- Key competencies
 - Large-Scale Distributed Systems
 - Experimental support for Dist. Systems
 - **Overlay networks and Gossip-based protocols**

LaBRI - Bordeaux

- Inti Gonzalez-Herrera, Floréal Morandat, Laurent Réveillère (PI)
- Associate member: *David Bromberg* (U. Rennes 1)

Competences

- Languages and compilation
- Middleware adaptation
- Large-scale distributed systems

Lancaster University, UK

Gordon Blair (PI), Yehia El Khatib, Vicent Sanz Marzo

Competencies:

- adaptive and reflective middleware,
- component-based systems,
- cloud computing,
- network programming

DIONASYS Declarative and Interoperable Overlay Networks Applications to Systems

Technical University of Cluj-Napoca, Romania

Virgil Dobrota (PI), Iustin Ivanciu, Eduard Luchian, Adrian Taut

Competencies

- SDN (Software Defined Networking), OpenFlow
- Cross-Layer QoS
- Active/passive measurements in Internet
- Networking

DICINASIS Declarative and Interoperable Overlay Networks Applications to Systems of Systems

6:

chist-era

THANK YOU!

http://www.dionasys.eu

DIONASYS is supported by CHIST-ERA, the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net

