
DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

DIONASYS project overview
year 3

chist-era meeting
April 2018

Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Declarative and Interoperable Overlay Networks,
and Applications to Systems of Systems

▌ Call 2013 – topic Heterogeneous Distributed Computing

▌ January 2015 – December 2018
▶ Initially until December 2017
▶ But extended for one year (until December 2018)

▌ Changes in consortium
▶ Replacement of Université de Neuchâtel (CH) by UCLouvain (BE)

■ Coordinator changed institution
▶ Split of LaBRI tasks between LaBRI and University of Rennes

■ Co-PI changed institution

Introduction

Slide 2 DIONASYS chist-era workshop, April 2018, Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Proliferation of heterogeneous and isolated systems
▶ Many forms of Cloud systems deployment

▶ Wireless and sensor networks

▶ Internet of Things

▶ Complex networks

▌ Composition in systems-of-systems leading to advanced services
▶ Geo-distributed Cloud systems

▶ IoT-Cloud and smart environments

▶ Edge and fog computing

Context

Slide 3 DIONASYS chist-era workshop, April 2018, Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Programming complex, heterogeneous large-scale systems
▶ Requires thinking “global”

■ What are the services, the guarantees, the structure

▶ But to act “local”
■ Implementing complex interactions at the level of individual nodes

▌ Problems
Maintainability over time

Adaptation and evolution of functionalities and performance

Interoperability among systems

Composition of existing and future systems

ØAbstraction mismatch

Motivation

Slide 4 DIONASYS chist-era workshop, April 2018, Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Raise the level of abstraction for specifying and operating
complex systems and system of systems, based on overlays

▌ Think global, act global
▶ Declare the function and structure of the system ...
▶ Including functional and non-functional properties

▌ Leverage generative programming for overlay networks with
gossip-based self-organization and software-defined networks
▶ … and let DIONASYS generate, augment, evolve, and bridge the

corresponding implementation

DIONASYS objectives

Slide 5 DIONASYS chist-era workshop, April 2018, Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Conceptual framework
▶ Principled systems of systems composition
▶ Holons framework [2014]

▌ Declarative approaches for overlay structures and composition

▌ Self-organization using gossip-based overlay construction
▶ Libdio library of self-organizing structures [2015]

▌ Adaptation and interoperability

▌ Integration of programmable networking support and overlay
management
▶ Multi-site testbed based on open-stack + OpenFlow

Target and previous contributions

Slide 6 DIONASYS chist-era workshop, April 2018, Paris

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Overlay adaptation for wireless systems and adhoc networks
▶ Emergent overlays
Collaboration UCL/UniNE, LaBRI, & Lancaster
▶ Partition detection and routing adaptation
Collaboration UCL/UniNE, U. Rennes

▌ Overlay composition
▶ Declarative systems-of-systems construction
Collaboration LaBRI, U. Rennes

▌ Network adaptation
▶ Adaptive routing for multi-site edge clouds
Collaboration UCL/UniNE, TUCN
▶ Intent-driven routing
Lancaster

Contributions in year 3

DIONASYS chist-era workshop, April 2018, ParisSlide 8

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Broadcast in mobile ad-hoc networks
▶ Collisions, energy constraints, heterogeneity
▶ Reactive vs. multiple variants of overlay-based approaches
▶ Not one size fits all

■ Depending primarily on density and mobility [ICDCS 17]

▌ Emergent overlays
▶ Observation of deployment conditions
▶ Autonomous shift between protocols
▶ Safety guarantees for dissemination

▌ Under submission

Adaptive overlays for MANET broadcast

DIONASYS chist-era workshop, April 2018, ParisSlide 9

D

E

F

G

A

B

C

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

Emergent overlays

DIONASYS chist-era workshop, April 2018, ParisSlide 10

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Relative Error

C
D

F
ov

er
 b

ro
ad

ca
st

 s
es

si
on

s

algorithm
CDS
HYBRID
HYBRID−SEC
SIMPLEF

Collisions of Recieved Broadcast Messages

Results

DIONASYS chist-era workshop, April 2018, ParisSlide 11

0

1

2

3

4

CDS HYBRID SIMPLEF
Algorithm

M
illi

 J
ou

le
s

(m
J)

Energy consumption

Less collisions means better coverage (less retries)
Energy consumption reduced by using overlay only where necessary

Node mobility, two zones: one dense/static, one sparse/dynamic

Dissemination
of single
message

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Application of principle of opportunistic composition

▶ Holons [ARM 2016], previous contribution of project

▶ Dynamic bridging of heterogeneous systems

▌ Example scenario: MANET deployed in adverse environments

▶ Emergency teams on disaster area

▶ Remote environments with no connectivity

▶ Favor end-to-end routing using ad-hoc routing (cheap in energy)

▶ Switch to external infrastructure under partitions (costly)

■ Example: deployment of a FANET (Flying Adhoc Network – swarm of drones)

▶ Autonomous overlay adaptation

▌ Under review

Partition detection and repair

DIONASYS chist-era workshop, April 2018, ParisSlide 12

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

Partition detection and repair

DIONASYS chist-era workshop, April 2018, ParisSlide 13

Ini$al	
A's	filter	
=	A's	signature	

B

A

C

gossip
exchanges

System S

A's	
converged	
filter	

B

A

C

Start	of	Epoch	e	

End	of	Epoch	e	

mul$ple	
gossiping	rounds	

2

3 1

4

Figure 1: Starting from their individual signature, nodes
progressively aggregate other nodes’ signatures in their local
filter. At the end of an epoch, they converge to a summary
representing the composition of the subnetwork they have been
able to hear from (only the signatures of nodes A, B, and C
are shown for simplicity).

than a partition. First, individual nodes might crash, leading to
small changes in individual summaries. Second, filters might
propagate imperfectly over an epoch due to network failures or
if an epoch is too short with respect to the network diameter.
Such imperfect propagation will lead to variations in the
summaries constructed by a same node over successive epochs
(used for self-detection), and by different nodes over the same
epoch (used for assisted-detection).

Another cause of inaccuracy stems from the compact nature
of node signatures and summaries. Signatures can collide, and
a partition might only cause small changes in a network’s
summaries. Consider, in the worst case, a large network using
small filters. It is highly probable that all the bits of the
summaries will be set to one before and after a large partition.
Using a very large filter solves this problem but is a waste
of precious resources. The size of system summaries, the
length of an epoch, the frequency of gossiping rounds, and the
threshold used to detect partitions must therefore be selected
with care, depending on the size, dynamism, memory and
energy constraints of the system.

In the following, we first detail the self-detection variant of
our algorithm (Section II-B), before moving on to the case of
assisted-detection (Section II-C).

B. Self-detection protocol (MtG/Self-detect)
This first variant, termed MtG/Self-detect, allows a system to

monitor its own evolution over time to detect when it becomes
partitioned. The protocol is described by Algorithms 1 and 2.

B

A

C

gossip
exchanges

initial
A's filter
= A's signature

C's converged
filter

Start of Epoch e+1

End of Epoch e+1

multiple
gossiping

rounds

6

7

B

A

C

≠
e

e+1

partition

partition
detected

5

Figure 2: When a partition occurs, the summaries between
two successive epochs change suddenly, as the signatures of
unreachable nodes are no longer aggregated in the converged
summary. This sudden change can be detected, and a partition
detection event raised.

Table I: Notations and variables

Constants and functions

�epoch Duration of an epoch.
� Threshold used to detect a partition.
f Size of the bit arrays
hdist(s1, s2) Hamming distance between the bit arrays s1 and s2.
PARTITION(i, e) Event representing a partition in system i at epoch e.

Variables maintained by a node pi in a monitored system

sysIDi The ID of the system the node pi belongs to.
clocki pi’s local clock.
epochi pi’s current epoch number.
node sigi The one-bit signature of pi.
filter i The system summary being constructed by pi
sumi[] An array of the system summaries observed by pi at

the end of each past epoch, indexed by epoch numbers
(used for self-detection)

Variables maintained by a node pi in a monitoring system

sumSeti The set of summaries propagated to the monitoring
node. (id, ep, s) 2 sumSeti means that a node from
system id generated a system summary s at the end
of epoch ep, and that pi is aware of this summary.

Table I provides a summary of the variables and notations
used.

When a node pi starts participating to the system, it does not
take part in the current epoch (its epochi variable is set to ?),
and waits for the next epoch to start at time

⇣j
clocki
�epoch

k
+ 1

⌘
⇥

�epoch before joining the protocol, where �epoch is the duration
of an epoch, and clocki represents pi’s local clock. We assume
that clocks are loosely synchronized between all nodes, with

Ini$al	
A's	filter	
=	A's	signature	

B

A

C

gossip
exchanges

System S

A's	
converged	
filter	

B

A

C

Start	of	Epoch	e	

End	of	Epoch	e	

mul$ple	
gossiping	rounds	

2

3 1

4

Figure 1: Starting from their individual signature, nodes
progressively aggregate other nodes’ signatures in their local
filter. At the end of an epoch, they converge to a summary
representing the composition of the subnetwork they have been
able to hear from (only the signatures of nodes A, B, and C
are shown for simplicity).

than a partition. First, individual nodes might crash, leading to
small changes in individual summaries. Second, filters might
propagate imperfectly over an epoch due to network failures or
if an epoch is too short with respect to the network diameter.
Such imperfect propagation will lead to variations in the
summaries constructed by a same node over successive epochs
(used for self-detection), and by different nodes over the same
epoch (used for assisted-detection).

Another cause of inaccuracy stems from the compact nature
of node signatures and summaries. Signatures can collide, and
a partition might only cause small changes in a network’s
summaries. Consider, in the worst case, a large network using
small filters. It is highly probable that all the bits of the
summaries will be set to one before and after a large partition.
Using a very large filter solves this problem but is a waste
of precious resources. The size of system summaries, the
length of an epoch, the frequency of gossiping rounds, and the
threshold used to detect partitions must therefore be selected
with care, depending on the size, dynamism, memory and
energy constraints of the system.

In the following, we first detail the self-detection variant of
our algorithm (Section II-B), before moving on to the case of
assisted-detection (Section II-C).

B. Self-detection protocol (MtG/Self-detect)
This first variant, termed MtG/Self-detect, allows a system to

monitor its own evolution over time to detect when it becomes
partitioned. The protocol is described by Algorithms 1 and 2.

B

A

C

gossip
exchanges

initial
A's filter
= A's signature

C's converged
filter

Start of Epoch e+1

End of Epoch e+1

multiple
gossiping

rounds

6

7

B

A

C

≠
e

e+1

partition

partition
detected

5

Figure 2: When a partition occurs, the summaries between
two successive epochs change suddenly, as the signatures of
unreachable nodes are no longer aggregated in the converged
summary. This sudden change can be detected, and a partition
detection event raised.

Table I: Notations and variables

Constants and functions

�epoch Duration of an epoch.
� Threshold used to detect a partition.
f Size of the bit arrays
hdist(s1, s2) Hamming distance between the bit arrays s1 and s2.
PARTITION(i, e) Event representing a partition in system i at epoch e.

Variables maintained by a node pi in a monitored system

sysIDi The ID of the system the node pi belongs to.
clocki pi’s local clock.
epochi pi’s current epoch number.
node sigi The one-bit signature of pi.
filter i The system summary being constructed by pi
sumi[] An array of the system summaries observed by pi at

the end of each past epoch, indexed by epoch numbers
(used for self-detection)

Variables maintained by a node pi in a monitoring system

sumSeti The set of summaries propagated to the monitoring
node. (id, ep, s) 2 sumSeti means that a node from
system id generated a system summary s at the end
of epoch ep, and that pi is aware of this summary.

Table I provides a summary of the variables and notations
used.

When a node pi starts participating to the system, it does not
take part in the current epoch (its epochi variable is set to ?),
and waits for the next epoch to start at time

⇣j
clocki
�epoch

k
+ 1

⌘
⇥

�epoch before joining the protocol, where �epoch is the duration
of an epoch, and clocki represents pi’s local clock. We assume
that clocks are loosely synchronized between all nodes, with

▌ Detection based on aggregation and comparison of system
signatures over time

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Pleiades framework [DSN 2018]
▶ Complex overlay system defined as composition of elementary shapes
▶ Declaration of structural invariants
▶ Autonomous construction and repair
▶ Combination of self-stabilizing protocols
▶ Domain-specific language for composition specification

Declarative overlay composition

DIONASYS chist-era workshop, April 2018, ParisSlide 14

In our model, a structural invariant is expressed as a combi-
nation of invididual basic shapes (ring, grid, stars) which are
then connected together to describe the constraints the overall
system must obey. The creation and maintenance of basic
shapes, of their connecting points, and of their connection
are maintained through a number of continuous self-stabilizing
protocols. These individual protocols interact with one-another
to deliver the system’s overall survivability.

The protocol making up PLEIADES must resolve a number
of key challenges in a fully decentralized manner: (i) they must
allocate nodes to “system-level” shapes, (ii) construct individ-
ual basic shapes, (iii) bootstrap identification and communi-
cations between these shapes, (iv) and realize and maintain
the dynamic bindings that connect individual shapes according
to the developer’s intent. In the remaining of this paper, we
present these different mechanisms and how they are combined
to form PLEIADES.

III. THE PLEIADES FRAMEWORK

A. System model and overall organization
We assume that the target system executes on N nodes

that communicate through message passing (e.g. using the
TCP/IP stack). The overall organization of a node executing
PLEIADES is shown in Figure 2. Each node possesses a copy
of the system’s overall configuration file (shown on the right
in the figure) which describes (i) which basic shapes should
be instantiated, and (ii) how these shapes should be connected.
For brevity’s sake, we do not discuss how this configuration
file is disseminated to every nodes: this step could rely on a
gossip broadcast [21], or, in a cloud infrastructure, each node
could retrieve the configuration from its original VM image.
Because PLEIADES is self-stabilizing, nodes may receive this
configuration at different points in time without impacting the
system’s eventual convergence.

Starting from this configuration file, PLEIADES constructs
and enforces the corresponding structural invariant (in Fig-
ure 2, two rings connected through two links) thanks to six
self-stabilizing and fully decentralized protocols (shown as
rectangles in the figure). These six protocols falls in three cat-
egories: the three bottom protocols (Global RPS, Same Shape,
and Remote Shapes) are membership protocols (denoted by the
symbol), i.e. helper protocols dedicated to locate and sample
nodes and shapes. The Shape Building protocol (symbol)
in the middle of the figure constructs individual shapes, while
the top two protocols (Port Selection, and Port Connection)
realize the connection between individual shapes (shown with
the symbol).

These six protocols execute in a fully decentralized manner,
without resorting to any centralized entities, a key property
regarding the scalability and resilience of our approach. Each
of these protocols also produces a self-stabilizing overlay. As
such, each node maintains for each protocol a small set or
array of other nodes in the system (called a view) that evolves
in order to respect specific properties. The view maintained
on a given node by each individual protocol is shown close
to each rectangle (e.g. Vlocal for the Same shape protocol,

Global	Random	Peer	Sampling	(RPS)	

Same	Shape	 Remote	Shapes	

Shape	
Building	

Port	Selec:on	

Port	Connec:on	

Vlocal

VRPS

Vremote

Vshape

Config	file	

one	node	

towards_port[]

connected_to[]

views	 protocols	

Key:		 	membership 						shape 									connec6on	

Figure 2: PLEIADES consists of 6 self-stabilizing protocols

that build upon one another to enforce the structural

invariant described in a configuration file distributed to

all nodes in the system.

and towards_port [] for the Port selection protocol). These
protocols build on one another: higher protocols in Figure 2
use the view constructed by lower protocols to construct their
own view.

In order to describe how these protocols collaborate to
deliver PLEIADES, we must start by describing how individual
shapes are described in our framework (in Section III-B),
and how new nodes join individual shapes (Section III-C),
before discussing first the membership and shape construction
protocols (Section III-D), and finally turning to the Port
Selection and Port Connection protocols (Section III-E).

B. Describing individual shapes

A shape s is a subset Ns ✓ N of nodes organized in a
particular elementary topology. Each shape follows a particular
template, a reusable description of a shape’s properties, that
may be instantiated several times in a configuration file. (In
Figure 2 for instance, the two rings of the configuration file
would be two instances of the same template.) The structure
enforced by a shape template tplate is captured by four pieces
of information, that are used by the Shape Building protocol
to realize the shape’s elementary topology:

• the definition of a position space Etplate;
• a projection function ftplate : Ns 7! Etplate that assigns a

position in Etplate to each node selected to be part of an
instance of tplate;

• a ranking function3 dtplate : Etplate ⇥ Etplate 7! R;
• a number of neighbors (or shape fanout) per node, ktplate.

This information is sufficient for the shape building protocol
(discussed in the next section) to connect each node in Ns to
its ktplate closest neighbors according to the ranking function
dtplate().

3As mentioned in [18], self-organizing overlays employ ranking functions
that cannot always be defined as global distance functions.

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Pleiades framework [DSN 2018]
▶ Emerging shapes

▶ Self-repair after network partition

Declarative overlay composition

DIONASYS chist-era workshop, April 2018, ParisSlide 15

0

21

1

14

32

20

6

12

7

56

2

59

11

48

51

313

10

47

4

18

33

5

16

8

9

30

61

15

17

19

85

80

54

65

22

53

23

58

66

24

25

26
71

79

27

28

89

60

29

31

34

83

77

90

35

78

39

74

70

36

49

63

41
69

37

38

46

42

40

67

94

43
44

45

95

50

93

5264

55

57

62

68

72 88

97

82

73

81

75

96

8676

84

87

92

91

98

99

(a) Random initial state

0

89
17

31

85

80

29

19

5

6

1
10

21

15

2

41

20

11

50 44

33

26
32

3

4

12

23

24

18

7

25

13

9

8

16

14

22

30

77
27

28

34
36

63

56

66

3545

59
60

55

65

37
39

38

49

40

67

42

88

64

82

94

54

43 61

51

46

52

58

47

53

48

62

57

68

87

90

71

75

69

97

95

74

98

93

70

79

91

78

83

72

92

73

81

86

76

84

99

96

(b) After 2 rounds, the general shape emerges.

0
17

28

29

19

85

110 21
5

15

2

41

20

22

50
44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35
45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61
57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

(c) After 6 rounds, the system has converged.

Figure 6: A system of 100 nodes converges in 6 rounds towards three connected rings (colored in blue, red, and black).

Figure 7: The PLEIADES configuration used in Figure 6

Figure 8: Progress of the different protocols of PLEIADES

over time (in rounds) for a ring of rings with 25600 nodes

and 10 rings. Except for Port Connection, all protocols

experience a rapid phase change.

Shape Building protocol (which depends on SSP), and the Port
Selection protocol (which depends on Shape Building and on
SSP).

The Port Connection protocol shows a less regular progres-
sion. The drop around round 5 is due to a few nodes that
briefly believe they are ports (because Port Selection has not
converged yet), and erroneously connect to remote shapes.
Note however how ports get successfully connected even
though the routing information provided by the Port Selection
protocol is not fully converged yet: after 10 rounds, both the
individual rings (Shape Building) and their connections (Port
Connection) are in place to about 90%.

2) Scalability: PLEIADES scales well when the number of
nodes and shapes in the system augments. We measured the

convergence time in rounds of the system for a large variety
of configurations, according to the following convergence
criteria:

• Same Shape Protocol (SSP): at least 90% of the nodes
have found 10 neighbours in the same shape;

• Remote Shapes Protocol (RSP): at least 90% of the nodes
have found a node in each shape;

• Shape Building Protocol: at least 90% of the nodes have
found their 2 closest neighbours in the ring;

• Port Selection Protocol: at least 90% of the ports are
assigned to the correct node (and only this one);

• Port Connection Protocol: at least 90% of the ports found
their related port in the remote shape.

In Figure 10, a configuration with 20 rings linked together
sequentially is deployed for different number of nodes. All
protocols converge in a few rounds, even for large number
of nodes. Most importantly, they converge as fast or faster
than the Shape Building protocol. Hence, the target complex
topology is achieved sensibly at the same time as the local
basic shapes.

It is interesting to note that the OtherComp overlay con-
verges in constant time as the number of nodes augments.
This is due to the fact that the ratio nodes/shapes is constant,
so whatever the total number of nodes in the system, it is
as likely to get a node in a given shape. The abnormally high
point for the SameComp overlay at 200 nodes is due to the fact
that there is exactly 10 nodes per shape; so the convergence
criteria used means that a node must have found all other
nodes in the shape. But in practice, finding 6 or 7 of them
is enough and does not hinder the convergence of the other
protocols, as depicted on the graph. For larger numbers of
node per shape, the convergence time is roughly constant, for
the same reason as OtherComp. The other two protocols scale
logarithmically with the number of nodes, similar to the Shape
Building protocol.

In Figure 11, various configurations are deployed on a
system of 26500 nodes. Convergence time increases slowly
with the number of shapes involved in the system, and even
a complex system with 20 shapes converges in less than 15

Figure 12: Bandwidth overhead of

PLEIADES over the shape building

protocol, per node, per round (20

shapes, 25,600 nodes). Both peak once

all views have stabilized, and remain

below 1kB (2kB in total).

Figure 13: Evolution of the bandwidth

overhead of PLEIADES (ratio) vs. the

number of basic shapes (25,600 nodes,

stable state). PLEIADES’s overhead re-

mains very small even for 50 basic

shapes (< 2kB in absolute value).

Figure 14: PLEIADES’s convergence

time after half of the nodes have

crashed, and after re-injecting new

nodes (4 connected rings, note the log

x axis). PLEIADES’s stabilization speed

is logarithmic in the system’s size.

0

33

1

31

2

3

4

36

73

69

6

10

60

11

7 74

41

8

25

9

24

26
44

57

61

12 80 13 50 18

14

15

52

20

17

21

23

27

28

29

34

32

37

35

38

43

42

45

46

48 4749
51

55

54

56

89

90

19

22

66

65

67

68

99

70

71

72

75

76

78

77

79

86

85

88

87

92

91

93

94

97

98

5

16

30

39

40

53

58

59

62

63

64

81

82 83

84

95

96

(a) Half the nodes crash (represented
with a dashed line). The topology is
completely broken.

0

32

3

27

4

1

28

5

24

11

41

9

59

12

78

19

80

57
61

15

16

17
18

25

77

47

69

83

34

66

36

63

39

40
93

46

91

95

48

51
62

99

97
84

88

89

2

6

78

10

13
14

20

21

22

23

26
29

30

31

33

35

37

38

4243

44

4549

50

52

53

54

55

56

58

60

64

65

67

68 70

71

72

73

74

75

7679

81

82

85

86

87

90

92

94

9698

(b) After 3 rounds it’s back in shape.

0

32

3

27

4

128
5

24

11

2

41

9
59

12

6 7

8

57

61

78

19

80

10

43

15

16

13

47

25

14

17

1820

21

22

23

55
87

77

69

83

26

29

30 31

33

34

66

36

63

39

35

40

37

38

93

46

91

95

48

42 44

45

51

49
81

50

86

53

52

54

56

58
62

60
64

65

67

68

99

97

70

7273

71

74

75

76

84

79

82

88 89

85
90

92

94
96

98

(c) After reinjecting the crashed
nodes, the shape is messy.

0

32

35

65

3

1

33

2

31

5

6

71
4

41

9

7

8

59

11

58

61

12

26

43

24

28

10

78
80

14

15

13
47

81

16

17

18

19

20

21

22

23

55

25

87

76

60

75
77

27

29

64 30

34

67

36

66

37
3839

40

42

93

44

92

94

45

46

48

51

49

52

50

86

53

54

56

57

62

63

68

99

69

98

70

72

73

74
79

82

83

84

85

88

89

90

91

95

96

97

(d) But after just 3 rouds it’s back
at the original target, even faster than
during the initial bootstrap phase.

Figure 15: Resilience and self-repair after dramatic crash or large node injection.

consider how it reacts when heavily stressed. We used two
scenarios: first, a dramatic crash where about half the nodes
shut down (paragraph IV-D1); second, an on-the-fly reconfig-
uration of the target topology, changing the number of basic
shapes in the system (paragraph IV-D2).

1) Dramatic crash: PLEIADES is extremely resilient, even
in presence of catastrophic failures. To analyze this, a con-
figuration with 4 shapes is deployed over different number of
nodes, and stressed with various dramatic events, as illustrated
in Figure 15.

At first, we let the system converge as in the previous ex-
periments. Then, we make each node crash with a probability
p = 0.5, resulting in half the nodes crashing simultaneously
on average and a totally broken topology (15a), and we let
the system converge towards the new resulting target topology
(15b). Finally, we simultaneously inject as many nodes as
crashed earlier (15c) and we let the system converge back to
the original target topology (15d). We consider two modes of
reparation, either restoring crashed nodes to their last known
state with a back-up, or providing new blank nodes initialized
with random neighbors.

At each step, we measure the convergence time in rounds.

For this experiment, we consider the system as a whole
is converged when all the criteria in subsection IV-C2 are
satisfied. Figure 14 shows the results: as shown previously,
the initial convergence is quite fast and grows logarithmically
with the number of nodes in the system: around 10 rounds
even for very large systems of 20,000+ nodes.

But more importantly, both the self-repair after the crashes
and the return to the original target are even faster than the
initial convergence, even with such a dramatic rate of failure
as we chose: they converge 2 to 5 rounds faster Indeed, the
nodes that are still on-line don’t start with the same blank state
as for the initial convergence, and this additional information
more than compensate the stress caused by the crashes or re-
injection, and enables the system to converge extremely fast.

2) Dynamic Reconfiguration: We argued that PLEIADES
would help composing complex systems-of-systems and pro-
mote re-using previous works. But that means PLEIADES will
need to be deployed to real systems that do not start in a
random state.

We tried to dynamically reconfigure a system that was
already deployed and converged to a stable state. For that, we
need to define a reconfiguration policy that maps the relation

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Multi-site cloud testbed with NFV support

▌ Geo-replicated ZooKeeper: disaster tolerance and local reads
▶ Impact of WAN link due to strong consistency for writes

Overlay adaptation for geo-replicated storage

DIONASYS chist-era workshop, April 2018, ParisSlide 16

Lancaster, UK

Bordeaux, FR

Cluj-Napoca, RO

Neuchâtel, CH

controllers
BOR

LAN

NEU

CLU

LLocal connection
WAN connection
Read call
Write call

1

2
3

4

5

6 1 2

clients

write read

(Leader)

servers

5

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Edge control of network traffic and application of indirect routing
▶ Open vSwitch at the 4 sites, SDN controller
▶ Traffic and QoS monitoring to detect Triangle Inequality Violation (TIV)
▶ Indirect routing mitigates performance impact on coherence protocol
▶ Dynamic changes in overlay layout without application reconfiguration

▌ Published [LANMAN 2017], current work:
▶ Automatic adaptation using SDN controller
▶ Adaptation for microservice-based applications deployed in edge clouds

Overlay adaptation for geo-replicated storage

DIONASYS chist-era workshop, April 2018, ParisSlide 17

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

baseline TIV indirect routing

L
a

te
n

cy
 (

m
s)

Time (s)

WRITES READS

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ Problem: network layer only sees use of overlay links without indication
of non-functional properties
▶ QoS, priorities, expected flow lifetimes, …

▌ Intent-driven networking: hints from app. layer to optimize networking
▶ Application-driven overlay adaptation at the network level
▶ Incrementally-deployable design
▶ Published [CNSM 2017] and ongoing developments

Intent-driven networking

DIONASYS chist-era workshop, April 2018, ParisSlide 18

DIONASYS
Declarative and Interoperable Overlay Networks,

Applications to Systems of Systems

Programming dynamic, adaptive and interoperable Systems of Systems

www.dionasys.eu
Paris, April 2018

Coordinator
Pr. Etienne Rivière

etienne.riviere@uclouvain.be
Large-Scale and Cloud

Computing group, UCLouvain

Focus on overlay-based systems
• Challenges: maintainability, interoperability, adaptability
• Across heterogeneous systems stack:

mobile/infrastructure, applications/ networks

Overlay programming, composition and adaptation

Partners

Efficient Broadcast in Mobile Ad-Hoc Networks

1. Simon Bouget, Yérom-David Bromberg, Adrien Luxey, François Taiani, Pleiades: Distributed Structural Invariants at Scale, 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg,25-28 June 2018

2. Stefan Contiu , Rafael Pires, Sébastien Vaucher, Marcelo Pasin, Pascal Felber, Laurent Réveillère, IBBE-SGX: Cryptographic Group Access Control over Inquisitive Cloud Storages, 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, Luxembourg, 25-28 June 2018

3. Assylbek Jumagaliyev, Jon Whittle, Yehia Elkhatib, Using DSML for Handling Multi-tenant Evolution in Cloud Applications, 9th IEEE International Conference on Cloud Computing Technology &
Science (CloudCom), Hong Kong, China, December 11 - 14 2017

4. Yehia Elkhatib, Geoff Coulson, Gareth Tyson, Charting an Intent Driven Network, International Conferenceon Network and Service Management (CNSM), Tokyo, Japan, November26 - 30 2017.

5. Cristina-Maria Gheorghe, Calin-Marian Iurian, Eduard-Florentin Luchian, Iustin-Alexandru Ivanciu and Virgil Dobrota, Applications of the Cisco APIC-EM software-defined networking controller
for a virtualized testbed, 16th IEEE RoEduNet Conference: Networking in Education and Research, Targu-Mures, Romania, September21-23, 2017

6. Raziel Carvajal Gómez, Eduard Luchian, Iustin-Alexandru Ivanciu, Adrian Taut, Virgil Dobrotaand Etienne Rivière, On the Impact of Indirect WAN Routing on Geo-Replicated Storage, 23rd
IEEE International Symposium on Local and Metropolitan Area Networks LANMAN 2017, Osaka, Japan, 12-14 June 2017

7. Raziel Carvajal Gomez, Inti Gonzalez-Herrera, Yérom-David Bromberg, Laurent Réveillère and Etienne Rivière, Density and Mobility-driven Evaluation of Broadcast Algorithms for MANETs,
37th IEEE International Conferenceon Distributed Computing Systems ICDCS 2017, Atlanta, GA, USA, 5-8 June 2017

• Framework for assembly-based design of overlays

• Self-organized construction and repair

• Library of shapes and connectors

Holons as first-class entities Software-defined networking Declarative self-organizationAdaptation and composition

Live Network Adaptation for Multi-Site Storage

PLEIADES: Complex Overlay CreationIntent Driven Network: Communication using High-Level Terms

Intent parsing overhead in logarithmic scale on a
Linux box (Ubuntu 16.04), and a Raspberry Pi 2

• Express high-level intent to
network layer

• Better network adaptation
for applications

• Incrementally-deployable
design

Triangular
Inequality
Violations

(TIV)

• Transparent trigger of indirect
routing in presence of TIVs

• Network control & optimization at the
edge of European-wide testbed

• Improvement in performance and
stability of Apache Zookeeper

Selected recent publications

Intent
compilation

DIONASYS
Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems

▌ 20 scientific publications (journals and conferences)
▶ Distributed systems
▶ Networking
▶ Software engineering
▶ Dependability

▌ 20 scientific publications (journals and conferences)
▶ + 2 under review
▶ 5 in collaboration between institutions
▶ 7 in collaboration with external institutions
▶ 7 single-partner publications

▌ Organization of two workshops (cross-cloud & ARM) together
with major systems conferences (ACM Middleware & EuroSys)

Outputs

DIONASYS chist-era workshop, April 2018, ParisSlide 19

DIONASYS is supported by CHIST-ERA, the European Coordinated Research on Long-term
Challenges in Information and Communication Sciences & Technologies ERA-Net

THANK YOU!
http://www.dionasys.eu

