DIONASYS

Declarative and Interoperable Overlay Networks, Applications to Systems of Systems

DIONASYS project overview year 3

chist-era meeting

April 2018

Paris

Introduction

- Declarative and Interoperable Overlay Networks, and Applications to Systems of Systems
- Call 2013 topic Heterogeneous Distributed Computing
- January 2015 December 2018
 - Initially until December 2017
 - But extended for one year (until December 2018)

Changes in consortium

- Replacement of Université de Neuchâtel (CH) by UCLouvain (BE)
 - Coordinator changed institution
- Split of LaBRI tasks between LaBRI and University of Rennes
 - Co-PI changed institution

Context chist-era Proliferation of heterogeneous and isolated systems Many forms of Cloud systems deployment Wireless and sensor networks Internet of Things Complex networks Composition in systems-of-systems leading to advanced services

- Geo-distributed Cloud systems
- IoT-Cloud and smart environments
- Edge and fog computing

Motivation

- Programming complex, heterogeneous large-scale systems
 - Requires thinking "global"
 - What are the services, the guarantees, the structure
 - But to act "local"
 - Implementing complex interactions at the level of individual nodes

Problems

- Maintainability over time
- Adaptation and evolution of functionalities and performance
- Interoperability among systems
- Composition of existing and future systems
- Abstraction mismatch

DIONASYS objectives

- Raise the level of abstraction for specifying and operating complex systems and system of systems, based on overlays
 - Think global, act global
 - Declare the function and structure of the system ...
 - Including functional and non-functional properties
 - Leverage generative programming for overlay networks with gossip-based self-organization and software-defined networks
 - In and let DIONASYS generate, augment, evolve, and bridge the corresponding implementation

Target and previous contributions

- Conceptual framework
 - Principled systems of systems composition
 - Holons framework [2014]
 - Declarative approaches for overlay structures and composition
- Self-organization using gossip-based overlay construction
 Libdio library of self-organizing structures [2015]
- Adaptation and interoperability
- Integration of programmable networking support and overlay management
 - Multi-site testbed based on open-stack + OpenFlow

chist-era

Contributions in year 3

Overlay adaptation for wireless systems and adhoc networks

- Emergent overlays Collaboration UCL/UniNE, LaBRI, & Lancaster
- Partition detection and routing adaptation Collaboration UCL/UniNE, U. Rennes

Overlay composition

Declarative systems-of-systems construction Collaboration LaBRI, U. Rennes

Network adaptation

Adaptive routing for multi-site edge clouds Collaboration UCL/UniNE, TUCN

Intent-driven routing Lancaster

Adaptive overlays for MANET broadcast

Broadcast in mobile ad-hoc networks

- Collisions, energy constraints, heterogeneity
- Reactive vs. multiple variants of overlay-based approaches
- Not one size fits all
 - Depending primarily on density and mobility [ICDCS 17]

Emergent overlays

- Observation of deployment conditions
- Autonomous shift between protocols
- Safety guarantees for dissemination

Under submission

chist-era

DIONASYS Declarative and Interoperable Overlay Net Applications to Systems of Systems

DIONASYS chist-era workshop, April 2018, Paris

Partition detection and repair

- Application of principle of opportunistic composition
 - Holons [ARM 2016], previous contribution of project
 - Dynamic bridging of heterogeneous systems
- Example scenario: MANET deployed in adverse environments
 - Emergency teams on disaster area
 - Remote environments with no connectivity
 - Favor end-to-end routing using ad-hoc routing (cheap in energy)
 - Switch to external infrastructure under partitions (costly)
 - Example: deployment of a FANET (Flying Adhoc Network swarm of drones)
 - Autonomous overlay adaptation

Under review

Partition detection and repair chist-era Detection based on aggregation and comparison of system signatures over time System S Start of Epoch e Start of Epoch e+1 5 partition 2 gossip qossip exchanges exchanges Initial initial A's filter A's filter = A's signature = A's signature multiple 3 multiple gossiping gossiping rounds rounds End of Epoch e+1 ⁶C's converged End of Epoch e C) filter Je+1 В A's converged partition detected filter Slide 13 **DIONASYS chist-era workshop, April 2018, Paris**

Declarative overlay composition

Pleiades framework [DSN 2018]

- Complex overlay system defined as composition of elementary shapes
- Declaration of structural invariants
- Autonomous construction and repair
- Combination of self-stabilizing protocols
- Domain-specific language for composition specification

DIONASYS chist-era workshop, April 2018, Paris

chist-era

DIONASYS chist-era workshop, April 2018, Paris

Declarative and Interoperable Overlay Network Applications to Systems of Systems

Overlay adaptation for geo-replicated storage (c)

Multi-site cloud testbed with NFV support

Geo-replicated ZooKeeper: disaster tolerance and local *reads*

Impact of WAN link due to strong consistency for writes

DIONASYS chist-era workshop, April 2018, Paris

Overlay adaptation for geo-replicated storage

- Edge control of network traffic and application of indirect routing
 - Open vSwitch at the 4 sites, SDN controller
 - Traffic and QoS monitoring to detect Triangle Inequality Violation (TIV)
 - Indirect routing mitigates performance impact on coherence protocol
 - Dynamic changes in overlay layout without application reconfiguration
- Published [LANMAN 2017], current work:
 - Automatic adaptation using SDN controller
 - Adaptation for microservice-based applications deployed in edge clouds

DIONASYS Declarative and Interoperable Overlay Networ Applications to Systems of Systems

Intent-driven networking

- Problem: network layer only sees use of overlay links without indication of non-functional properties
 - QoS, priorities, expected flow lifetimes, ...
- Intent-driven networking: hints from app. layer to optimize networking
 - Application-driven overlay adaptation at the network level
 - Incrementally-deployable design
 - Published [CNSM 2017] and ongoing developments

DIONASYS Declarative and Interoperable Overlay Networ Applications to Systems of Systems

Outputs

20 scientific publications (journals and conferences)

- Distributed systems
- Networking
- Software engineering
- Dependability
- 20 scientific publications (journals and conferences)
 - + 2 under review
 - 5 in collaboration between institutions
 - 7 in collaboration with external institutions
 - 7 single-partner publications
- Organization of two workshops (cross-cloud & ARM) together with major systems conferences (ACM Middleware & EuroSys)

THANK YOU!

http://www.dionasys.eu

DIONASYS is supported by CHIST-ERA, the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net

