
Int J CARS (2007)
DOI 10.1007/s11548-008-0231-8

ORIGINAL ARTICLE

Service oriented architecture for medical image processing

Mircea-Florin Vaida · Valeriu Todica · Marcel
Cremene

Received: 8 January 2008 / Accepted: 26 May 2008
© CARS 2008

Abstract The aim of this paper is to present a services based1

architecture for medical image processing in assisted diag-2

nosis. Service oriented architecture (SOA) improves the3

reusability and maintainability of distributed systems. In ser-4

vice oriented architectures, the most important element is the5

service, a resource provided to remote clients via a service6

contract. We propose a generic model for a service, based on a7

loosely coupled, message-based communication model. Our8

service model takes into account the possibility to integrate9

legacy applications. Specialized image processing services10

can be dynamically discovered and integrated into client ap-11

plications or other services. Complex systems can be created12

with the help of some SOA concepts like Enterprise Service13

Bus (ESB) . A basic integration example is presented in the14

paper and the possibility to integrate dedicated scenario is15

specified.16

Keywords Service oriented architecture · Medical image17

processing · Web service18

Introduction19

In service oriented systems, operational entities are distrib-20

uted across the network in order to improve availability, per-21

formance and scalability. These entities are called services22

���.The . The service provides access to its functionality. The23

whole system is viewed as a set of interactions among these24

services. SOA promotes the reuse of services. The system25

evolves through the addition of new services. SOA is not26

M.-F. Vaida (B) · V. Todica · M. Cremene
The Faculty of Electronics, Telecommunications and Information
Technologies, Technical University of Cluj-Napoca, 26-28 George
Baritiu Street, 400027 Cluj-Napoca, Romania
e-mail: Mircea.Vaida@com.utcluj.ro

tied to a specific technology. It can be implemented using 27

a large variety of technologies, programming languages and 28

communication protocols. Interactions between services and 29

clients in SOA are based on a very dynamic model [1] . A 30

service can be discovered at runtime, can be replaced if has 31

become unavailable or can be used to create a new service (32

and a new functionality) . With these characteristics, SOA 33

offers a powerful support for adaptability. The adaptability 34

can take many forms, depending on the terminal capabil- 35

ities, the network connection, etc. Microsoft has proposed 36

a SOA based platform for healthcare [2] . Healthcare is an 37

extremely fluid industry. Each change requires an adapta- 38

tion of systems. Point-to-point integration becomes costly 39

and complex to maintain for healthcare providers and con- 40

sumers. The benefit of SOA to the healthcare industry is that 41

it enables systems to communicate using a common frame- 42

work, integration of new elements becomes less complex and 43

the system can be adapted more rapidly. 44

SOA background 45

The term Service Oriented Architecture, SOA for short, con- 46

tains some important notions. We have the following defini- 47

tions for these notions [3] : � 48

• An Architecture is a formal description of a system, 49

defining its purpose, functions, externally visible prop- 50

erties, and interfaces. It also includes the description of 51

the system’s internal components and their relationships, 52

along with the principles governing its design, operation, 53

and evolution. 54

• A service is a software component that can be accessed 55

via a network to provide functionality to a service re- 56

quester. 57

123

2 Int J CARS (2007)

• The term service-oriented architecture refers to a style58

of building reliable distributed systems that deliver func-59

tionality as services, with the additional emphasis on60

loose coupling between interacting services.61

Service62

The service is the core element in SOA. A service is defined63

as “a mechanism to enable access to one or more capabilities,64

where the access is provided using a prescribed interface65

and is exercised consistent with constraints and policies as66

specified by the service description” [4] . A service can have67

the following characteristics: �68

• A service provides a contract defined by one or more in-69

terfaces (just like a software component) . This allows70

the change of the service implementation without recon-71

structing the client as long as the contract is not changed.72

Implementation details (programming languages, oper-73

ating systems,��etc etc.) of the service are not the concern74

of the service requestor.75

• A service can be used as stand-alone piece of function-76

ality or it may be integrated in a higher-level service (77

composition) . This promotes reusability. Legacy appli-78

cations can be transformed in services by using some79

wrapper techniques.80

• Services communicate with their clients by exchanging81

messages. Typically, the��������
request/ response request/response82

message pattern is used. From the client point of view,83

a synchronous or asynchronous communication mech-84

anism can be implemented. In SOA model is not fixed85

a specific communication protocol. Many protocols can86

be used: HTTP, RMI, DCOM, CORBA, etc.87

• Services can participate in a workflow (the term is ser-88

vice choreography in SOA terminology) . A workflow89

is “the movement of information and/or tasks through a90

work process” [5] and it’s based on a workflow engine.91

• Services need to be discovered at design time and run92

time by clients. This mechanism is provided by a service93

directory (service registry) . A service provider can94

publish (register) his service.95

Services communicate with other services and clients using96

standard, dependency-reducing, decoupled message-based97

methods such as XML document exchanges. This charac-98

teristic is called loose coupling �. This term implies that99

the interacting software components minimize their knowl-100

edge of each other: more information is achieved at the time101

is needed. For instance, after discovering a service, a client102

can retrieve its capabilities, its policies, its location, etc. The103

characteristics of loose coupling are [6] : �104

Fig. 1 SOA interaction cycle

• Flexibility : A service can be located on any server and 105

relocated as necessary (with the condition to update its 106

registry information) and clients will be able to find it. 107

• Scalability : Services can be added and removed depend- 108

ing on the needs. 109

• Replaceability : With the condition that the original in- 110

terfaces are preserved, a new implementation of a service 111

can be introduced, and outdated implementations can be 112

retired, without affecting the service clients. 113

• Fault tolerance : If a server, a software component, or a 114

network segment fails, or the service becomes unavail- 115

able for any other reason, clients can query the registry 116

for alternate services that offer the required functionality, 117

and continue to work in the same way. 118

SOA Interaction cycle 119

In ���figure Fig. 1 is depicted the basic case of using a service 120

with three components: a service provider, a service requester 121

and a service directory (service registry) . Some simple, bi- 122

directional interactions (synchronous request/response pat- 123

tern) are represented as an interaction cycle [7] . A real-world 124

implementation can be more complex. A SOA architecture 125

has three important elements: 126

• Service directory : It acts as an intermediary between 127

providers and requesters. Usually, services are grouped 128

by categories. 129

• Service provider : The��������
Service Provider service provider 130

defines a service description and publishes it to the ser- 131

vice directory. 132

• Service requester : The service requester can use the 133

search capabilities offered by the service directory to 134

find service descriptions and their respective providers. 135

The service provider has to publish the service description 136

in order to allow the requester to find it. Where it is published 137

depends on the architecture. In the discovery the service re- 138

quester retrieves a service description directly or queries the 139

service registry for the type of service required. In this step 140

the service requester invokes or initiates an interaction with 141

the service at runtime using the binding details in the service 142

description to locate, contact and invoke the service. 143

Enterprise service bus 144

The Enterprise Service Bus (ESB) is sometimes described as 145

a distributed infrastructure [8] and it’s a logical architectural 146

123

Int J CARS (2007) 3

Fig. 2 Web services
architecture

component that provides an integration infrastructure consis-147

tent with the principles of SOA. Two different issues are being148

addressed: the centralization of control , and the distribution149

of infrastructure [9] . ESB and centralize control of configu-150

ration, such as the routing of service interactions, the naming151

of services, and so forth. ESB might deploy in a simple cen-152

tralized infrastructure, or in a more sophisticated, distributed153

manner. ESB does not implement a service-oriented archi-154

tecture (SOA) but provides the features with which one may155

be implemented. ESB is not mandatory in SOA but is usu-156

ally used in large (enterprise) systems with many services.157

The ESB might be implemented as a distributed, heteroge-158

neous infrastructure. Minimum ESB capabilities considered159

in IMB view [8,9] : �160

• Communications : routing and addressing capabilities161

providing location transparency, administrations capa-162

bilities to control service addressing and at least one163

form of messaging (request/response, publish/subscribe,164

��etc etc.) , support for at least one communication proto-165

col (preferable a widely available protocols such HTTP166

) .167

• Integration : support for multiple means of integration168

to service providers, such as Java 2 Connectors, Web ser-169

vices, asynchronous messaging, adaptors, and so forth.170

• Service interactions : An open and implemen171

tation-independent service messaging that should isolate172

application code from the specifics of routing services173

and transport protocols, and allow service implementa-174

tions to be substituted.175

Web ����Services services (WS) standard176

A web service is a special case of service, processing XML177

data and using communication protocols like simple object178

access protocol (SOAP
��������������
(Simple Object Access Protocol)179

and HTTP [10] . Web services provide a well-defined inter-180

face that is described by an XML-based document called181

the Web Service Description Language (WSDL) docu-182

ment (WSDL contract) . This document contains the op-183

erations (methods) that the service supports, including data184

type information, and binding information for locating and185

communicating with the Web service�����operations. operations186

[11] . In���figure Fig. 2 is depicted the web services architec-187

ture. The universal description, discovery and integration (188

UDDI

���������������������

(Universal Description, Discovery and Integration)189

plays the role of a service directory.190

Fig. 3 SOAP request

Fig. 4 SOAP response

Fig. 5 Programming model

The communication protocol used with Web services is 191

SOAP. SOAP is a protocol for exchanging XML-based mes- 192

sages over computer networks, normally using HTTP/HTTPS. 193

A SOAP message is an ordinary XML document containing 194

the following elements [12] : � 195

• A required Envelope element identifying the SOAP mes- 196

sage. 197

• An optional Header element containing generic infor- 198

mation. 199

• A required Body element containing the��������
request /response request/resp200

data. 201

• An optional Fault element that provides information about 202

errors occurred while processing the request. 203

In ���figure Fig. 3 is represented a SOAP request message 204

for adding two numbers. 205

The service response is shown in���figure Fig. 4 . Note that 206

the HTTP header is not represented in this example and only 207

the required SOAP elements are used. 208

Model for SOA-based image processing systems 209

In this section we propose a model for implementing SOA- 210

based system oriented to medical image processing. The 211

model is generic enough to be used in other areas. The model 212

contains a programming model, a service model and a mes- 213

saging model. 214

Programming model 215

The programming model, depicted in���figure Fig. 5 , is com- 216

posed by four layers: the service layer, the component layer, 217

the object layer and the technology layer. 218

Typically, a service is created using one or more compo- 219

nents and a component is created using one or more objects. 220

The service layer contains business services. A service is cre- 221

ated with the help of the component oriented programming 222

(COP) . The component layer relies on software compo- 223

nent technologies like: Component Object Model (COM 224

������������
(component object model) , ���EJB (Enterprise Java Beans 225

123

4 Int J CARS (2007)

Fig. 6 Service model

(EJB) , ����CCM (CORBA Component Model (CCM) ,226

����OSGi (Open Services Gateway Initiative (OSGi) or .NET227

������Component Component228

Model. The software components can be of two types: func-229

tional components (business components) and�non-functional230

components (like data access components, communication231

components or any other components) . A component is232

implemented using object oriented techniques (the object233

layer) . This layer is based on object oriented technologies234

(programming languages) like: C++, java, C#. Our model235

addresses the problem of integrating legacy applications (236

existent applications that are not service-based) . In order237

to integrate these applications, a wrapper pattern (adapter238

pattern) can be used. The wrapper can be applied in every239

layer. For instance, if the legacy application is object ori-240

ented but is not based on components, the wrapper should241

be applied in the component layer. If the legacy application242

is implemented in C, the wrapper should be applied in the243

object layer. This respect the proposed model: functionality244

is encapsulated in components, and components are created245

using objects.246

Service model247

The service model is depicted in���figure Fig. 6 . It’s composed248

from����3 layers: 3 layers: the interface layer, the business layer249

and the resource layer.250

The Service Interface Layer contains the service contract251

(service interface) and it’s detailed in the next section. The252

Business Layer contains a business faç ade and business253

components (sometimes called functional components) .254

A business component performs (implements) operations255

described in the service contract. The business faç ade (faç256

ade pattern) is optional and it may be used in a complex257

architecture, with many business components. The resource258

layer contains different components (non-functionalcompo-259

nents) with the roll of interacting with external resources. In260

the figure are represented three of the most common types of261

resource access: a data access component for accessing data-262

base systems, a service gateway for accessing other services263

(in SOA a service can be a consumer for another service)264

and a wrapper (adapter) component for accessing legacy265

systems. The resource layer is not mandatory if the service266

does not use external resources. Accessing a legacy applica-267

tion was treated in�����section 3.1 “Programming Model” from a268

programming point of view. The service model is extensible,269

new facilities like security, transactions or QoS capabilities270

can be introduced.271

Fig. 7 Messaging model

Messaging model 272

Usually, a service communicates with its clients by sending 273

and receiving well-defined messages. A proposed messag- 274

ing model is presented in ���figure Fig. 7 . A service interface 275

is similar with an interface in object oriented programming. 276

The service interface has the role to describe the service oper- 277

ations and the types of messages needed by those operations. 278

279

A message type contains one or many data types that can 280

be translated in build-in or custom data types from a program- 281

ming language. In many cases, marshalling techniques may 282

be used to provide compatibility between server data types 283

and client data types. Typically, this is the case when the client 284

and the server are implemented using different technologies. 285

For instance, an image processing service interface can de- 286

scribe a user defined data type (a class in object oriented 287

programming) containing the image name, the image type, 288

the image data (as a specific format) , etc. If the service is im- 289

plemented as a web service, the data types are encapsulated (290

serialized) in XML documents and send over network using 291

SOAP. Messaging exchange patterns (MEP) can be used for 292

accessing a service. The most common access pattern used is 293

the request/response (also known as request/reply) pattern. 294

In this case, the service consumer sends a request to the ser- 295

vice and receives a response. This access pattern is used in the 296

web services applications. The client can use a synchronous 297

or asynchronous communication mechanism. The asynchro- 298

nous mechanism is preferred when communication costs are 299

high or the network is unpredictable. Another pattern that 300

can be used is publish/subscribe. This pattern is based on 301

the message queue paradigm. For instance, an image capture 302

service allows to other services or clients to subscribe to it. 303

When a new image is captured all subscribers receives the 304

new image. The publish/subscribe pattern is typically used 305

with an asynchronous communication mechanism. 306

Experimental results 307

In this ����section section, we present two service implementa- 308

tion using web services standard and OSGi (Open services 309

Gateway Initiative) . OSGi [13] is a java-based service plat- 310

form that implements a dynamic component model (from 311

our point of view, OSGi is a component model) . 312

123

Int J CARS (2007) 5

Fig. 8 Web service component
diagram

Fig. 9 Web service class
diagram

Fig. 10 OSGi service
component diagram

Web service example313

The presented example is a basic service implementation ac-314

cording to our model. The service receives an image and315

returns a greyscale copy of that image. In a real context a316

more complex scenario may be integrated. In this case we317

consider distributed components located in dedicated library318

or freeware libraries and local components specific to the real319

application. The service interface is named GrayscaleFilter320

����(figure (Fig. 8) and has a single operation, transformIm-321

age () . The business layer (functional layer) contains 2322

components: GrayscaleComponent implementing the filter323

and BitmapUtilsComponent used to convert an image to byte324

array and vice versa.325

Non-functional aspects of the service like handling incom-326

ing connections are treated by the web service used to run327

our service. Also, on the client side, some tools (like Visual328

Studio .NET) greatly simplify the work with web services by329

generating the necessary code to access the service. The class330

diagram is represented in���figure Fig. 9 . Every component is331

implemented by a single class.332

Note that in this simple example the business faç ade from333

our service model is not used and the resource layer is missing334

since no external resources are needed.335

OSGi service example336

In order to show that SOA is not based only on web ser-337

vices, the second example is an implementation of an image338

processing service using OSGi. We are using the Knopfler-339

fish framework [14] as support for developing our service.340

In OSGi a deployment unit is called bundle . The frame-341

work manages the bundle life-cycle. A bundle functionality342

is contained typically in a jar file (java archive file) . After343

the bundle is created it needs to be registered in the frame-344

work and other bundle can use the published service. Our345

OSGi service is more complex than the web service because346

it needs communication facilities (offered by a communica-347

tion component) because OSGi does not specify a communi-348

cation protocol like a web service. The component diagram349

for our service is depicted in ���figure Fig. 10 .350

Fig. 11 Communication
component, class diagram

The service interface is called ObjectDetectionService and 351

exposes a single operation, getObjectsFromImage . The input 352

parameters (an image) and the return values (a collection 353

of image objects) are not represented on this diagram. The 354

ObjectDetectionBundle represent the functional part of the 355

service (business layer) . This component uses a communi- 356

cation component and a gateway component. In ���figure Fig. 357

11 is depicted the class diagram for the communication bun- 358

dle. 359

The component interface is called CommunicationCom- 360

ponent and provides two operations, one for sending a packet 361

and the second for receiving a packet. A packet is a unit of 362

information exchanged by the service. In our case the packet 363

contains the image as a byte array. The Activator class imple- 364

ments BundleActivator � interface and is necessary in order 365

to allow the Knopflerfish framework to manage the bundle 366

(start and stop the bundle) . To be used, a bundle must be 367

started. The bundle interface has an implementation provided 368

by CommunicationComponentImpl. The communication is 369

based on standard sockets (with the help of ServerSocketLis- 370

tener and SocketHandler) . For this service, the resource 371

layer contains a component (ServiceGatewayBundle) for 372

accessing other services. The object detection algorithm im- 373

plemented needs to use a grayscale image in order to provide 374

good results. This component contains the logic to access our 375

grayscale web service presented in������
section 4.1. “Web service 376

example”. 377

Conclusions 378

In this paper, we have proposed a model for implementing 379

SOA-based image processing systems. The model contains 380

a programming model, a service model and a messaging 381

model. We have focused on the concept of service. The ser- 382

vice is represented as a layered architecture with a service 383

interface layer, a business layer and an optional resource 384

layer. The service interface layer contains the service con- 385

tract (service interface) . The business layer contains the 386

service functionality, contained in business components. The 387

resource layer contains non-functional components, used to 388

access external resources like database systems, other ser- 389

vices or legacy applications. Service Oriented Systems are 390

very flexible. A service can be discovered at runtime, can be 391

replaced if is unavailable or can be incorporated in a new ser- 392

vice (a powerful support for adaptability) . Our future goals 393

are to create a SOA based platform for adaptation with ap- 394

plicability in medical domains. This platform may be based 395

on ESB in order to provide full SOA facilities. The expe- 396

rience of different teams in medical image processing and 397

distributed applications will be ���used, used [15,16] . 398

123

6 Int J CARS (2007)

Acknowledgments The research activity will be supported by PN2399

IDEI project, no. 1083 and ��no. 1062 from National Authority for Sci-400

entific Research that will be realised till 2010.401

References402

1. Herrmann
�����������������
Muhammad Ahtisham Aslam, Oliver Dalferth, M,403

Aslam MA, Dalferth O (2005) Applying Semantics (WSDL,404

WSDL-S, OWL) in Service Oriented Architectures (SOA) �, .405

Universitä t Leipzig, Germany, Technical report406

2. Microsoft Healthcare (2007) [online] �, . http://www.microsoft.407

com/industry/healthcare����, (2007)408

3. Treadwell J (2005) Open
�����������������
Grid Services Architecture Glossary of Terms. grid409

services architecture glossary of terms. Hewlett-Packard410

4. Organization for the Advancement of Structured Information Stan-411

dards (OASIS) , Service Oriented Architecture (SOA) (2006)412

Reference Model, Public Review Draft 1.0413

5. Workflow definition (2007) [online] �, . http://en.wikipedia.org/414

wiki/Workflow����(2007)415

6. Srinivasan L, Treadwell J (2005) An416

����������������������������

Overview of Service-oriented Architecture, Web Services and Grid Computing, overview417

of service-oriented architecture, web services and grid computing.418

HP Software Global Business Unit419

7. Haller A, Gomez JM, Bussler C (2005) Exposing420

������������
Semantic Web Service Principles semantic web service principles421

in SOA to���Solve solve EAI scenarios422

8. Robinson R (2004) Understand���������
Enterprise Service Bus enterprise423

service bus scenarios and solutions in service-oriented architec-424

ture, IBM425

9. Patterns: Implementing an SOA Using an Enterprise Ser-426

vice Bus (IBM Redbooks) ���������
, IBM.Com/Redbooks, (2004)427

IBM.Com/Redbooks428

10. Specifications WS (2007) [online] �, . http://www.w3schools.429

com/webservices/default.asp����, (2007)430

11. Jeffrey Hasan Expert Service-Oriented Architecture in C#: Using431

the Web Services Enhancements�����2.0, Apress, 2.0. (2004) Apress432

12. Specifications SOAP (2007) [online] �, . http://www.w3schools.433

com/soap����, (2007)434

13. OSGi Service Platform The Open Service Gateway435

����Initiative, Initiative (2003) IOS Press436

14. OSGi Tutorial A Step by Step Introduction to OSGi Program-437

ming Based on the Open Source Knopflerfish OSGi Framework438

Sven���Haiges, Haiges (2004) http://www.knopflerfish.org/tutorials439

����, (2004)440

15. Mircea-Florin ����VAIDA, VAIDA (2007) Valeriu TODICA441

���������������������������������

Dynamic Adaptability of Image Processing Components in Medical Applications, ISSCS 2007, dynamic442

adaptability of image processing components in medical applica-443

tions, ISSCS. Iasi 2007,��Vol. vol 2,��pp. pp 381–384444

16. Cremene M, Riveill M (2007) Service-context knowledge-445

based solution for autonomic adaptation. In: Proceedings of446

the 4th ���������
International Conference international conference on447

�������������
Autonomic and Trusted Computing autonomic and trusted com-448

puting (ATC-07) , Hong Kong, ���China, China. Springer Verlag,449

Hong Kong, pp 11–13450

123

http://www.microsoft.com/ industry/healthcare
http://www.microsoft.com/ industry/healthcare
http://en.wikipedia.org/wiki/ Workflow
http://en.wikipedia.org/wiki/ Workflow
http://www.w3schools.com/ webservices/default.asp
http://www.w3schools.com/ webservices/default.asp
http://www.w3schools.com/ soap
http://www.w3schools.com/ soap
http://www.knopflerfish.org /tutorials

	Service oriented architecture for medical image processing
	Abstract
	Acknowledgments
	References

