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ABSTRACT 

 
This paper presents alternative security 

methods based on DNA. From the available 

alternative security methods, symmetric 

DNA algorithms were developed and 

implemented. The first symmetric DNA 

algorithm was implemented in the Java 

language, while the second DNA algorithm 

was implemented in BioJava and MatLab. 

Comparisons have been made between the 

performances of different standard 

symmetrical algorithms and the DNA 

proposed algorithms. As a new step to 

enhance the security, an asymmetric key 

generation inside a DNA security algorithm 

is presented. The asymmetric key generation 

algorithm starts from a password phrase. 

The asymmetric DNA algorithm proposes a 

mechanism which makes use of more 

encryption technologies. Therefore, it is 

more reliable and more powerful than the 

OTP DNA symmetric algorithms. 
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1 INTRODUCTION 
 

The security of a system is essential 

nowadays. With the growth of the 

information technology (IT) power, and 

with the emergence of new technologies, 

the number of threats a user is supposed  

to deal with grew exponentially. It 

doesn't matter if we talk about bank 

accounts, social security numbers or a 

simple telephone call. It is important that 

the information is known only by the 

intended persons, usually the sender and 

the receiver. 

A security system may have a lot of 

weak spots: the place where the ciphers 

are stored, the random number 

generator, the strength of the used 

algorithms and so on. The job of the 

security designer is to make sure none of 

these weaknesses gets exploited. 

Based on the confidentiality property 

in the domain of security the 

symmetrical and asymmetrical 

cryptographic algorithms are used. 

Cryptography consists in processing 

plain information [1], [2], applying a 

cipher and producing encoded output, 

meaningless to a third-party who does 

not know the key. 

In cryptography both encryption and 

decryption phase are determined by one 

or more keys. Depending on the type of 

keys used, cryptographic systems may 

be classified in: 
a) Symmetric systems 

-use the same key to encrypt and decrypt 
data 
-symmetric key encryption algorithms 
(also called ciphers) process plain text 
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with the secret key to create encrypted 
data called ciphertext 
-are extremely fast and well suited for 
encrypting large quantities of data 
-They are vulnerable when transmitting 
the key 
-examples: DES, RC2, 3DES 
-PBE (password based encryption) 
algorithms are derived from symmetric 
algorithms; such algorithms use a salt 
(random bytes) and a number of 
iterations to generate a key 

b) Asymmetric systems 
-overcome symmetric encryption's most 
significant disability: the transmission of 
the symmetric key 
-rely on key pairs (contains a public and 
a private key)  
-the public key can be freely shared 
because it cannot be easily abused, even 
by an attacker 
-messages encrypted with the public key 
can be decrypted only with the private 
key 
-so, anyone can send encrypted 
messages, but they can be decrypted by 
only 1 person 
-are not as fast, but are much more 
difficult to break 
-common use: encrypt and transfer a 
symmetric key (used by HTTPS and 
SSL) . 

 Symmetrical algorithms use the 

same key to encrypt and decrypt the 

data, while asymmetric algorithms use a 

public key to encrypt the data and a 

private key to decrypt it. By keeping the 

private key safe, you can assure that the 

data remains safe, [3]. The disadvantage 

of asymmetric algorithms is that they are 

computationally intensive. Therefore, in 

security a combination of asymmetric 

and symmetric algorithms is used. 

Another way of ensuring the 

security of a system is to use a digital 

signature. The signature is applied to the 

whole document, so if the signature is 

altered, the document becomes 

unreadable. 

In the future it is most likely that the 

computer architecture and power will 

evolve. Such systems might drastically 

reduce the time needed to compute a 

cryptographic key. As a result, security 

systems need to find new techniques to 

transmit the data securely without 

relying on the existing pure 

mathematical methods, [4]. 

We therefore use alternative security 

concepts [5]. The major algorithms 

which are accepted as alternative 

security are the elliptic, vocal, quantum 

and DNA encryption algorithms. Elliptic 

algorithms are used for portable devices 

which have a limited processing power, 

use a simple algebra and relatively small 

ciphers. 

The quantum cryptography is not a 

quantum encryption algorithm but rather 

a method of creating and distributing 

private keys. It is based on the fact that 

photons send towards a receiver 

changing irreversibly their state if they 

are intercepted. Quantum cryptography 

was developed starting with the 70s in 

Universities from Geneva, Baltimore 

and Los Alamos. 

In [6] two protocols are described, 

BB84 and BB92, that, instead of using 

general encryption and decryption 

techniques, verify if the key was 

intercepted. This is possible because 

once a photon is duplicated, the others 

are immediately noticed. However, these 

techniques are still vulnerable to the 

Man-in-the-Middle and DoS attack. 

DNA Cryptography is a new field 

based on the researches in DNA 

computation [7] and new technologies 

like: PCR (Polymerase Chain Reaction), 

Microarray, etc. DNA computing has a 

high level computational ability and is 

capable of storing huge amounts of data. 

A gram of DNA contains 10
21

 DNA 

bases, equivalent to 10
8
 terabytes of 
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data. In DNA cryptography we use 

existing biological information from 

DNA public databases to encode the 

plaintext [8], [9]. 

The cryptographic process can make 

use of different methods, [10]. In [5] the 

one-time pads (OTP) algorithms are 

described, which is one of the most 

efficient security algorithms, while in 

[11] a method based on the DNA 

splicing technique is detailed. In the case 

of the one-time pad algorithms, the 

plaintext is combined with a secret 

random key or pad which is used only 

once. The pad is combined with the 

plaintext using a typical modular 

addition, or an XOR operation, or 

another technique. In the case of [11] the 

start codes and the pattern codes specify 

the position of the introns, so they are no 

longer easy to find. However, to 

transmit the spliced key, they make use 

of public-key secured channel. 

Additionally, we will describe an 

algorithm which makes use of 

asymmetric cryptographic principles. 

The main idea is to avoid the usage of 

both purely mathematical symmetric and 

asymmetric algorithms and to use an 

advanced asymmetric algorithm based 

on DNA. The speed of the algorithm 

should be quite high because we make 

use of the powerful parallel computing 

possibilities of the DNA. Also, the 

original asymmetric keys are generated 

starting from a user password to avoid 

their storage. 

The paper is structured in 5 sections. 

In section 2 we present some general 

aspects about the used technologies: 

Java security API, genetic code and 

BioJava. In section 3 we present a Java 

algorithm implementation based on a 

DNA mechanism, and another algorithm 

for the symmetric DNA cryptography, 

using a BioJava implementation (similar 

in MatLab implementation). We will 

also expose the limitation imposed by 

these platforms. In section 4 we describe 

an advanced asymmetric DNA 

encryption algorithm. We will conclude 

this paper in section 5 where a 

comparison between the obtained results 

is made and the conclusions and 

possible continuations of our work are 

presented. 

 

2 USED TECHNOLOGIES 

 

2.1. The Java Cryptography 

Architecture 
 

The Security API (Application 

Programming Interface) is a core API of 

the Java programming language, built 

around the java.security package, [12]. 

This API is designed to allow 

developers to incorporate both low-level 

and high-level security functionality into 

their programs. 

The Java Cryptography Extension 

(JCE) extends the JCA API to include 

APIs for encryption, key exchange, and 

Message Authentication Code (MAC). 

Together, the JCE and the cryptography 

aspects of the SDK provide a complete, 

platform-independent cryptography API. 

JCE was previously an optional package 

(extension) to the Java 2 SDK, Standard 

Edition, versions 1.2.x and 1.3.x. JCE 

has been integrated into the Java 2 SDK, 

v 1.4.  

The Java Cryptography Architecture 

(JCA) was designed around these 

principles: implementation 

independence and interoperability; 

algorithm independence and 

extensibility. Implementation 

independence and algorithm 

independence are complementary; when 

complete algorithm-independence is not 

possible, the JCA provides standardized, 

algorithm-specific APIs. When 
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implementation-independence is not 

desirable, the JCA lets developers 

indicate a specific implementation. 

The Java Cryptography Architecture 

introduced the notion of a 

Cryptographic Service Provider, or 

simply provider. This term refers to a 

package (or a set of packages) that 

supply a concrete implementation of a 

subset of the cryptography aspects of the 

Security API. It has methods for 

accessing the provider name, version 

number, and other information. 

For each engine class in the API (an 

engine class provides the interface to the 

functionality of a specific type of 

cryptographic service, independent of a 

particular cryptographic algorithm), a 

particular implementation is requested 

and instantiated by calling a 

getInstance() method on the engine 

class, specifying the name of the desired 

algorithm and, optionally, the name of 

the provider (or the Provider  class) 

whose implementation is desired. 

If no provider is specified, 

getInstance() searches the registered 

providers for an implementation of the 

requested cryptographic service 

associated with the named algorithm. In 

any given Java Virtual Machine (JVM), 

providers are installed in a given 

preference order, the order in which the 

provider list is searched if a specific 

provider is not requested. For example, 

suppose there are two providers installed 

in a JVM, PROVIDER_1 and 

PROVIDER_2. 
From the core classes specified by the 

JCA a special attention will be drawn to 
the following classes: The Security, 
KeyGenerator and the Cipher class. 

a) The Security Class 
The Security class manages installed 

providers and security-wide properties. 
It only contains static methods and is 
never instantiated. The methods for 

adding or removing providers, and for 
setting Security properties, can only be 
executed by a trusted program. 
Currently, a "trusted program" is either a 
local application not running under a 
security manager, or an applet or 
application with permission to execute 
the specified method (see below).  

The determination that code is 

considered trusted to perform an 

attempted action (such as adding a 

provider) requires that the applet is 

granted permission for that particular 

action.  
b) The KeyGenerator Class 
This class is used to generate secret 

keys for symmetric algorithms, 
necessary to encrypt the plaintext. 
KeyGenerator objects are created using 
the getInstance() factory method of the 
KeyGenerator class. getInstance() takes 
as its argument the name of the 
symmetric algorithm for which the key 
was generated. Optionally, a package 
provider name may be specified:  

 
public static KeyGenerator 
getInstance(String alg, String 
provider); 

 

There are two ways to generate a key: 

algorithm-independent manner and 

algorithm-specific manner. In the 

algorithm-independent manner, all key 

generators share the concepts of a key 

size and a source of randomness.  

In the algorithm-specific manner, for 

situations where a set of algorithm-

specific parameters already exists, there 

are two init methods that have an 

AlgorithmParameterSpec argument: 
 
public void init 
(AlgorithmParameterSpec params); 
 
public void init 

(AlgorithmParameterSp ec params, 
SecureRandom random); 
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In case the client does not explicitly 

initialize the KeyGenerator each 

provider must supply a default 

initialization 
Wrapping a key enables secure 

transfer of the key from one place to 
another, fact which can be used if one 
needs to send data over a media 
available to more people like a network, 
for example. 

c) The Cipher Class 
This class forms the core of the JCE 

framework. It establishes a link between 

the data, the algorithm and the key used 

whether it is for encoding, decoding or 

wrapping. Cipher objects are created 

using the getInstance() factory method 

of the Cipher class. 
 
public static Cipher 
getInstance(String 
transformation,String provider); 
 
A Cipher object obtained via 

getInstance() must be initialized for one 

of four modes: ENCRYPT_MODE = 

Encryption of data, DECRYPT_MODE 

= Decryption of data, WRAP_MODE = 

Wrapping a Key into bytes so that the 

key can be securely transported, 

UNWRAP_MODE = Unwrapping of a 

previously wrapped key into a 

java.security Key object. 

2.2. General Aspects about Genetic 

Code 

There are 4 nitrogenous bases used in 

making a strand of DNA. These are 

adenine (A), thymine (T), cytosine (C) 

and guanine (G). These 4 bases (A, T, C 

and G) are used in a similar way to the 

letters of an alphabet. The sequence of 

these DNA bases will code specific 

genetic information [8]. 

In our previous work we used a one-

time pad, symmetric key cryptosystem 

[13], [14], [15]. In the OTP algorithm, 

each key is used just once, hence the 

name of OTP. The encryption process 

uses a large non-repeating set of truly 

random key letters. Each pad is used 

exactly once, for exactly one message.  

The sender encrypts the message and 

then destroys the used pad. As it is a 

symmetric key cryptosystem, the 

receiver has an identical pad and uses it 

for decryption. The receiver destroys the 

corresponding pad after decrypting the 

message. New message means new key 

letters. A cipher text message is equally 

likely to correspond to any possible 

plaintext message. Cryptosystems which 

use a secret random OTP are known to 

be perfectly secure. 

By using DNA with common 

symmetric key cryptography, we can use 

the inherent massively-parallel 

computing properties and storage 

capacity of DNA, in order to perform 

the encryption and decryption using 

OTP keys. The resulting encryption 

algorithm which uses DNA medium is 

much more complex than the one used 

by conventional encryption methods. 

To implement and exemplify the 

OTP algorithm, we downloaded a 

chromosome from the open source 

NCBI GenBank, [16]. As stated, in this 

algorithm the chromosomes are used as 

cryptographic keys. They have a small 

dimension and a huge storage capability. 

There is a whole set of chromosomes, 

from different organisms which can be 

used to create a unique set of 

cryptographic keys. In order to splice the 

genome, we must know the order in 

which the bases are placed in the DNA 

string. 

The chosen chromosome was 

“Homo sapiens FOSMID clone ABC24-

1954N7 from chromosome 1”. Its length 
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is high enough for our purposes (37983 

bases). 

GenBank offers different formats in 

which the chromosomal sequences can 

be downloaded: 

• GenBank,  

• GenBank Full,  

• FASTA,  

• ASN.1.  

We chose the FASTA format 

because it’s easier to handle and 

manipulate. To manipulate the 

chromosomal sequences we used 

BioJava API methods, a framework for 

processing DNA sequences. Another 

API which can be used for managing 

DNA sequences is offered by MatLab. 

Using this API, a dedicated application 

has been implemented [13].  

In MatLab, the plaintext message 

was first transformed in a bit array. An 

encryption unit was transformed into an 

8 bit length ASCII code. After that, 

using functions from the Bioinformatics 

Toolbox, each message was transformed 

from binary to DNA alphabet. Each 

character was converted to a 4-letter 

DNA sequence and then searched in the 

chromosomal sequence used as OTP, 

[14]. 

 

2.3. BioJava API 

 

The core of BioJava is actually a 

symbolic alphabet API, [17]. Here, 

sequences are represented as a list of 

references to singleton symbol objects 

that are derived from an alphabet. The 

symbol list is stored as often as possible. 

The list is compressed and uses up to 

four symbols per byte.  

Besides the fundamental symbols of 

the alphabet (A, C, G and T as 

mentioned earlier), the BioJava 

alphabets also contain extra symbol 

objects which represent all possible 

combinations of the four fundamental 

symbols. The structure of the BioJava 

architecture together with its most 

important APIs is presented below: 

 

 
Figure 1. The BioJava Architecture 

 

By using the symbol approach, we 

can create higher order alphabets and 

symbols. This is achieved by 

multiplying existing alphabets. In this 

way, a codon can be treated as nothing 

more than just a higher level alphabet, 

which is very convenient in our case. 

With this alphabet, one can create views 

over sequences without modifying the 

underlying sequence. 
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In BioJava a typical program starts 

by using the sequence input/output API 

and the sequence/feature object model. 

These mechanisms allow the sequences 

to be loaded from a various number of 

file formats, among which is FASTA, 

the one we used. The obtained results 

can be once more saved or converted 

into a different format. 

 

3 DNA CRYPTOGRAPHY 

IMPLEMENTATIONS 

 

In this chapter we will start by 

presenting the initial Java 

implementation of the symmetric OTP 

encryption algorithm, [18]. We will then 

continue by describing the 

corresponding BioJava (and Matlab) 

implementation and some drawbacks of 

this symmetric algorithm. 

 

3.1. Java Implementation 

 

One approach of the DNA Cryptography 

is a DNA-based symmetric 

cryptographic algorithm. This algorithm 

involves three steps: key generation, 

encryption and decryption. In fact, the 

encryption process makes use of two 

classic cryptographic algorithms: the 

one-time pad, and the substitution 

cipher. 

Due to the restrictions that limit the 

use of JCE, [19], the algorithm was 

developed using OpenJDK, which is 

based on the JDK 7.0 version of the Java 

platform and does not enforce certificate 

verification. 

 In order to generate random data 

we use the class SecureRandom housed 

in the java.security package, class which 

is designed to generate 

cryptographically secure random 

numbers. The next step is translating this 

key in DNA language by limiting the 

range of numbers to [0, 3] and 

associating a letter to each number as 

following:  

 
Table 1. Translation table 

Number Corresponding letter 

0 a 

1 c 

2 g 

3 t 

 

At this time is very important to 

know that the length of the key must be 

exactly the same as the length of the 

plaintext. In this case, the plaintext is the 

secret message, translated according to 

the substitution alphabet. 

Therefore, the length of the key is 

three times the length of the secret 

message. The user may choose the 

length of the key, the only restriction 

being that this must be a multiple of 

three. 

Because the key must have three 

times the length of the messages, when 

trying to send very long messages, the 

length of the key would be huge. For 

this reason, the message is broken into 

fixed-size blocks of data. The cipher 

encrypts or decrypts one block at a time, 

using a key that has the same length as 

the block. 

The implementation of block 

ciphers raises an interesting problem: the 

message we wish to encrypt will not 

always be a multiple of the block size. 

To compensate for the last incomplete 

block, padding is needed. A padding 

scheme specifies exactly how the last 

block of plaintext is filled with data 

before it is encrypted. A corresponding 

procedure on the decryption side 

removes the padding and restores the 

plaintext's original length. However, this 

DNA Cipher will not use a padding 

scheme but a shorter version (a fraction) 
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of the original key. The only mode of 

operation implemented by the DNA 

Cipher is ECB (Electronic Code Book). 

This is the simplest mode, in which each 

block of plaintext encrypts to a block of 

ciphertext. ECB mode has the 

disadvantage that the same plaintext will 

always encrypt to the same ciphertext, 

when using the same key. 

As we mentioned, the DNA Cipher 

applies a double encryption in order to 

secure the message we want to keep 

secret. The first encryption step uses a 

substitution cipher.  

For applying the substitution cipher 

it was used a HashMap Object. 

HashMap is a java.util class that 

implements the Map interface. These 

objects associate a specified value to a 

specified unique key in the map.  

 One possible approach is 

representing each character of the secret 

message by a combination of 3 bases on 

DNA, as shown in the table below: 

 
Table 2. The substitution alphabet 

a - cga l - tgc w - ccg 3 - gac 

b - cca m -tcc x - cta 4 - gag 

c - gtt n - tct y - aaa 5 - aga 

d - ttg o -gga z - ctt 6 - tta 

e -ggc p -gtg _ - ata 7 - aca 

f - ggt q -aac , - tcg 8 - agg 

g - ttt r - tca . - gat 9 - gcg 

h -cgc s -acg : - gct space- ccc 

i  - atg t - ttc 0 - act  

j - agt u - ctg 1 - acc  

k -aag v - cct 2 - tag  

 

Given the fact that this cipher replaces 

only lowercase characters with their 

corresponding triplet and that in most 

messages we encounter also upper case 

letters, the algorithm first transforms all 

the letters of the given secret message 

into lowercase letters.  

The result after applying the 

substitution cipher is a string containing 

characters from the DNA alphabet (a, c, 

g, t). This will further be transformed 

into a byte array, together with the key. 

The exclusive or operation (XOR) is 

then applied to the key and the message 

in order to produce the encrypted 

message. 

When decrypting an encrypted 

message, it is essential to have the key 

and the substitution alphabet. While the 

substitution alphabet is known, being 

public, the key is kept secret and is 

given only to the addressee. Any 

malicious third party won’t be able to 

decrypt the message without the original 

key. 

The received message is XOR-ed 

with the secret key resulting a text in 

DNA alphabet. This text is then broken 

into groups of three characters and with 

the help of the reverse map each group 

will be replaced with the corresponding 

letter. The reverse map is the inverse of 

the one used for translating the original 

message into a DNA message. This way 

the receiver is able to read the original 

secret message. 

 

3.2 BioJava Implementation 

 

In this approach [20], we use more steps 

to obtain the DNA code starting from 

the plaintext. For each character from 

the message we wish to encode, we first 

apply the get_bytes() method which 

returns an 8bit ASCII string of the 

character we wish to encode. Further, 
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we apply the get_DNA_code() method 

which converts the obtained 8 bit string, 

corresponding to an ASCII character, 

into DNA alphabet. The function returns 

a string which contains the DNA-

encoded message. 

The get_DNA_code() method is the 

main method for converting the plaintext 

to DNA encoded text. For each 2 bits 

from the initial 8 bit sequence, 

corresponding to an ASCII character, a 

specific DNA character is assigned: 00 – 

A, 01 – C, 10 – G and 11 – T. Based on 

this process we obtain a raw DNA 

message. 

 
 

Table 3. DNA encryption test sequence 

Plaintext message: „test” 
ASCII message: 116 101 115 
116 
Raw DNA message: 
„TCACGCCCTATCTCA” 

 

The coded characters are searched in 

the chromosome chosen as session key 

at the beginning of the communication. 

The raw DNA message is split into 

groups of 4 bases. When such a group is 

found in the chromosome, its base index 

is stored in a vector. The search is made 

between the first characters of the 

chromosome up to the 37983
th

. At each 

new iteration, a 4 base segment is 

compared with the corresponding 4 base 

segment from the raw DNA message. 

So, each character from the original 

string will have an index vector 

associated, where the chromosome 

locations of that character are found. 

The get_index()  method effectuates 

the parsing – the comparison of the 

chromosomal sequences and creates for 

each character an index vector. To parse 

the sequences in the FASTA format 

specific BioJava API methods were 

used. 

BioJava offers us the possibility of 

reading the FASTA sequences by using 

a FASTA stream which is obtained with 

the help of the SeqIOTools class. We 

can pass through each of the sequences 

by using a SequenceIterator object. 

These sequences are then loaded into an 

Sequence list of objects, from where 

they can be accessed using the 

SequneceAt() mrthod. 

In the last phase of the encryption, 

for each character of the message, a 

random index from the vector index is 

chosen. We use the get_random() 

method for this purpose. In this way, 

even if we would use the same key to 

encrypt a message, we would obtain a 

different result because of the random 

indexes. 

Since the algorithm is a symmetric 

one, for the decryption we use the same 

key as for encryption. Each index 

received from the encoded message is 

actually pointing to a 4 base sequence, 

which is the equivalent of an ASCII 

character. 

So, the decode() method realizes 

following operations: It will first extract 

the DNA 4 base sequences from the 

received indexes. Then, it will convert 

the obtained raw DNA message into the 

equivalent ASCII-coded message. From 

the ASCII coded message we finally 

obtain the original plaintext. And with 

this, the decryption step is completed. 

The main vulnerability of this 

algorithm is that, if the attacker 

intercepts the message, he can decode 

the message himself if he knows the 

coding chromosomal sequence used as 

session key. 
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4 BIOJAVA ASYMMETRIC 

ALGORITHM DESCRIPTION 

 

In this chapter we will present in detail 

an advanced method of obtaining DNA-

encoded messages. It relies on the use of 

an asymmetric algorithm and on key 

generation starting from a user 

password. 

We will also present a pseudo-code 

description of the algorithm. 

 

4.1 Asymmetric Key Generation 

 

Our first concern when it comes to 

asymmetric key algorithms was to 

develop a way in which the user was no 

longer supposed to deal with key 

management authorities or with the safe 

storage of keys. The reason behind this 

decision is fairly simple: both methods 

can be attacked. Fake authorities can 

pretend to be real key-management 

authorities and intruders may breach the 

key storage security. By intruders we 

mean both persons who have access to 

the computer and hackers, which 

illegally accessed the computer. 

To address this problem, we 

designed an asymmetric key generation 

algorithm starting from a password. The 

method has some similarities with the 

RFC2898 symmetric key derivation 

algorithm [21]. The key derivation 

algorithm is based on a combination of 

hashes and the RSA algorithm. Below 

we present the basic steps of this 

algorithm: 

• Step 1: First, the password string 

is converted to a byte array, hashed 

using SHA256 and then transformed to 

BigInteger number. This number is 

transformed in an odd number, tmp, 

which is further used to apply the RSA 

algorithm for key generation.  

• Step 2: Starting from tmp we 

search for 2 random pseudo-prime 

number p and q. The relation between 

tmp, p and q is simple: p < tmp < q. To 

spare the computational power of the 

device, we do not compute traditionally 

if p and q are prime but make primality 

tests. 

• A primality test determines the 

probability according to which a number 

is prime. The sequence of the primality 

test is the following: First, trial divisions 

are carried out using prime numbers 

below 2000. If any of the primes divides 

this BigInteger, then it is not prime. 

Second, we perform base 2 strong 

pseudo-prime test.  If this BigInteger is a 

base 2 strong pseudo-prime, we proceed 

on to the next step. Last, we perform the 

strong Lucas pseudo-prime test. If 

everything goes well, it returns true and 

we declare the number as being pseudo-

prime. 

• Step 3: Next, we determine 

Euler totient: phi = (p - 1) * (q - 1) ; and 

n = p*q; 

• Step 4: Next, we determine the 

public exponent, e. The condition 

imposed to e is to be coprime with phi.  

• Step 5: Next, we compute the 

private exponential, d and the CRT 

(Chinese Reminder Theorem) factors: 

dp, dq and qInv. 

• Step 6: Finally, all computed 

values are written to a suitable structure, 

waiting further processing. 

• The public key is released as the 

public exponent, e together with n. 

• The private key is released as the 

private exponent, d together with n and 

the CRT factors. 

The scheme of this algorithm is 

presented below: 
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Figure 2. Asymmetric RSA compatible key generation 

 

 

In comparison with the RFC2898 

implementation, here we no longer use 

several iterations to derive the key. This 

process has been shown to be time 

consuming and provide only little extra 

security. We therefore considered it safe 

to disregard it. 

The strength of the key-generator 

algorithm is given by the large pseudo-

prime numbers it is using and of course, 

by the asymmetric algorithm. By using 

primality tests one can determine with a 

precision of 97 – 99% that a number is 

prime. But most importantly, the 

primality tests save time. So, the average 

computation time, including appropriate 

key export, for the whole algorithm is 

143 ms. After the generation process 

was completed, the public or private key 

can be retrieved using the static 

ToXmlString method. 

Next, we will illustrate the 

algorithm through a short example. 

Suppose the user password is 

“DNACryptography”. Starting from this 

password, we compute its hash with 

SHA256. The result is shown below. 

This hashed password is converted into 

the BigInteger number tmp. Starting 

from it, and according to the algorithm 

described above, we generate the public 

exponent e and the private exponent d. 
 

Table 4. Asymmetric DNA encryption test 

sequence 

user password: “DNACryptography” 
hashed password: 
“ed38f5aa72c3843883c26c701dfce03
e0d5d6a8d” 
tmp = 
84597941392863984558746916592571
6582498797231629929694 
      
46756202517881375676359726620829
8952112229 
e = 1063 
d = 
62209727183718300693145403344094
08504766864571798543078 
    
20679318486461619300337870725234
79660987299191525204542 
    
43274292026224722073876853783177
36890998257538720690765 
466158123868118572427782935 
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We conducted several tests and the 

generated keys match the PKCS #5 

specifications. Objects could be 

instantiated with the generated keys and 

used with the normal system-build RSA 

algorithm. 

 

4.2 Asymmetric DNA Algorithm 

 

The asymmetric DNA algorithm 

proposes a mechanism which makes use 

of three encryption technologies. In 

short, at the program initialization, both 

the initiator and its partner generate a 

pair of asymmetric keys. Further, the 

initiator and its partner negotiate which 

symmetric algorithms to use, its 

specifications and of course, the codon 

sequence where the indexes of the DNA 

bases will be looked up. After this initial 

negotiation is completed, the 

communication continues with normal 

message transfer. The normal message 

transfer supposes that the data is 

symmetrically encoded, and that the key 

with which the data was encoded is 

asymmetrically encoded and attached to 

the data. This approach was first 

presented in [22]. 

Next, we will describe the algorithm 

in more detail and also provide a 

pseudo-code description for a better 

understanding. 

 

Step 1: At the startup of the 

program, the user is asked to provide a 

password phrase. The password phrase 

can be as long or as complicated as the 

user sees fit. The password phrase will 

be further hashed with SHA256. 

Step 2: According to the algorithm 

described in section 4.1, the public and 

private asymmetric keys will be 

generated. Since the pseudo-prime 

numbers p and q are randomly chosen, 

even if the user provides the same 

password for more sessions, the 

asymmetric keys will be different. 

Step 3: The initiator selects which 

symmetric algorithms will be used in the 

case of normal message transfer. He can 

choose between 3DES, AES and IDEA. 

Further, he selects the time after which 

the symmetric keys will be renewed and 

the symmetric key length. Next, he will 

choose the codon sequence where the 

indexes will be searched. For all this 

options appropriate visual selection tools 

are provided. 

Step 4: The negotiation phase 

begins. The initiator sends to its partner 

its public key. The partner responds by 

encrypting his own public key with the 

initiators public key. After the initiator 

receives the partner's public key, he will 

encrypt with it the chosen parameters. 

Upon receiving the parameters of the 

algorithms, the partner may accept or 

propose his own parameters. In case the 

initiators parameters are rejected, the 

parties will chose the parameters which 

provide the maximum available security. 

Step 5: The negotiation phase is 

completed with the sending of a test 

message which is encrypted like any 

regular message would be encrypted. If 

the test message is not received correctly 

by any of the two parties or if the 

message transfer takes too much time, 

the negotiation phase is restarted. In this 

way, we protect the messages from 

tampering and interception. 

Step 6: The transmission of a 

normal message. In this case, the actual 

data will be symmetrically encoded, 

according to the specifications 

negotiated before. The symmetric key is 

randomly generated at a time interval t. 

The symmetric key is encrypted with the 

partner's public key and then attached to 

the message. So, the message consists in 

the data, encrypted with a symmetric 
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key and the symmetric key itself, 

encrypted with the partner's public key. 

We chose to adopt this mechanism 

because symmetric algorithms are faster 

than asymmetric ones. Still, in this 

scenario, the strength of the algorithm is 

equivalent to a fully asymmetric one 

because the symmetric key is encrypted 

asymmetrically. The procedure is 

illustrated below: 
 

 
Figure 3. Encryption scheme 

 

Next, the obtained key will be 

converted into a byte array. The 

obtained array will be converted to a raw 

DNA message, by using a substitution 

alphabet. Finally, the raw DNA message 

is converted to a string of indexes and 

then transmitted. 

The decryption process is fairly 

similar. The user converts the index 

array back to raw DNA array and 

extracts the ASCII data. From this data 

he will decipher the symmetric key used 

for that encryption, by using its private 

key. Finally the user will obtain the data 

by using the retrieved symmetric key. At 

the end of the communication, all 

negotiated data is disregarded 

(symmetric keys used, the asymmetric 

key pair and the codon sequence used). 

5 CONCLUSIONS AND 

COMPARED RESULTS 

In this chapter we will present the results 

we obtained for the symmetric algorithm 

implementation along with the 

conclusions of our present work. 

The symmetric OTP DNA 

algorithm based on Java Cryptography 

Architecture was first tested, [14]. The 

purpose is to compare the time required 

to complete the encryption/ decryption 

in the case of the DNA Cipher with the 

time required by other classical 

encryption algorithms. 

The secret message used with all 

five ciphers was:  

 

„TAACAGATTGATGATGCATG

AAATGGGCCCATGAGTGGCTCCT

AAAGCAGCTGCTtACAGATTGATG

ATGCATGAAATGGGgggtggccaggggt

ggggggtgagactgcagagaaaggcagggctggttc

ataacaagctttgtgcgtcccaatatgacagctgaagttt

tccaggggctgatggtgagccagtgagggtaagtaca

cagaacatcctagagaaaccctcattccttaaagattaa

aaataaagacttgctgtctgtaagggattggattatcctat

ttgagaaattctgttatccagaatggcttaccccacaatg

ctgaaaagtgtgtaccgtaatctcaaagcaagctcctcc

tcagacagagaaacaccagccgtcacaggaagcaaa

gaaattggcttcacttttaaggtgaatccagaacccagat

gtcagagctccaagcactttgctctcagctccacGCA

GCTGCTTTAGGAGCCACTCATGaG

”. 

 

The tests ran on a system with the 

following specifications: 

Intel Pentium 4 CPU, 3.00 GHz, 

RAM: 1,5GB, OS: Ubuntu 9.04 



47 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Encryption/Decryption time for DNA and classical ciphers. 

 

As seen on Figure 4, the DNA 

Cipher requires a longer time for 

encryption and decryption, 

comparatively to the other ciphers. We 

would expect these results because of 

the platform used for developing this 

algorithm. JCA contains the classes of 

the security package Java 2 SDK, 

including engine classes. The methods 

in the classes that implement 

cryptographic services are divided into 

two groups. The first group is 

represented by the APIs (Application 

Programming Interface). It consists of 

public methods that can be used by the 

instances of these classes. The second 

group is represented by the SPIs 

(Service Provider Interface)- a set of 

methods that must be implemented by 

the derived classes. Each SPI class is 

abstract. In order to implement a specific 

service, for a specific algorithm, a 

provider must inherit the corresponding 

SPI class and implement all the abstract 

methods. All these methods process 

array of bytes while the DNA Cipher is 

about strings. The additional 

conversions from string to array of bytes 

and back make this cipher to require 

more time for encryption and decryption 

then other classic algorithms. 

To emphasize the difference 

between DNA and classical algorithms a 

dedicated application (SmartCipher) was 

developed. 

The user has the possibility to enter 

the text in plain format in the first box 

and then choose a suitable algorithm to 

encrypt his text. The encrypted text can 

be visualized in the second box, while in 

the third one the user can verify if the 

decryption process was successful. 

An interesting feature of the dedicated 

application is that it shows the 

encryption and decryption time. Based 

on this criterion and the strength of the 

cipher, the user can estimate the 

efficiency of the used algorithm. 

In the second case considering the 

symmetrical BioJava mechanism, our 

first goal was to compare the time 

required to complete the encryption/ 

decryption process. We compared the 

execution time of the DNA Symmetric 

Cipher with the time required by other 

classical encryption algorithms. We 

chose a random text of 360 characters, 

in string format which was applied to all 

tests. 

The testing sequence is: 
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Table 5. Testing sequence 

k39pc3xygfv(!x|jl+qo|9~7k9why(kt
r6pkiaw|gwnn&aw+be|r|*4u+rz$ 
wm)(v_e&$dz|hc7^+p6%54vp*g*)kzlx
!%4n4bvb#%vex~7c^qe_d745h40i 
$_2j*6t0h$8o!c~9x4^2srn81x*wn9&k
%*oo_co(*~!bfur7tl4udm!m4t+a 
|tb%zho6xmv$6k+#1$&axghrh*_3_zz@
0!05u*|an$)5)k+8qf0fozxxw)_u 
pryjj7_|+nd_&x+_jeflua^^peb_+%@0
3+36w)$~j715*r)x(*bumozo#s^j 
u)6jji@xa3y35^$+#mbyizt*mdst&h|h
bf6o*)r2qrwm10ur+mbezz(1p7$f 

 

To be able to compute the time 

required for encryption and decryption, 

we used the public static nanoTime() 

method from the System class which 

gives the current time in nanoseconds. 

We called this method twice: once 

before instantiating the Cipher object, 

and one after the encryption. By 

subtracting the obtained time intervals, 

we determine the execution time. 

 

It is important to understand that the 

execution time varies depending on the 

used OS, the memory load and on the 

execution thread management. We 

therefore measured the execution time 

on 3 different machines: 

• System 1: Intel Core 2 Duo 2140, 

1.6 GHz, 1 Gb RAM, Vista OS 

• System 2: Intel Core 2 Duo T6500, 

2.1 GHz, 4 Gb RAM, Windows 7 

OS 

• System 3: Intel Dual Core T4300, 

2.1 GHz, 3 Gb RAM, Ubuntu 

10.04 OS 

Next, we present the execution time 

which was obtained for various 

symmetric algorithms in the case of the 

first, second and the third system, for 

different cases: 

 
 

 

 

Table 6. Results obtained for System 1 

Analysis results for Vista OS 

DES 
Encryption 50 26 1.03 0.81 0.84 0.84 

Decryption 1.63 0.35 0.33 0.32 0.34 0.36 

AES 
Encryption 80 26 0.92 0.95 0.88 0.54 

Decryption 27 2.09 0.30 22.26 0 0.14 

Blowfish 
Encryption 65 10.91 25 24 0.15 1.45 

Decryption 3 1.87 1.72 29 1.09 1 

3DES 
Encryption 82 24 2.41 25 2.12 1.42 

Decryption 1.56 1.42 26 1.23 1.41 0.66 

BIO sym. 

algorithm 

Encryption 4091 4871 4875 4969 4880 4932 

Decryption 6.29 4.19 4.19 4.19 4.19 4.19 
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Table 7. Results obtained for System 2 

Analysis results for Windows 7 

DES 
Encryption 34 1.43 1.09 1.2 1.73 1.19 

Decryption 0.75 0.37 0.44 0.42 0.38 0.37 

AES 
Encryption 28 1.3 1.16 0.07 1.77 0.82 

Decryption 0.12 0.14 2.09 0.9 2.09 0.16 

Blowfish 
Encryption 22 28.4 6.2 4 1.6 2.83 

Decryption 2.24 2.21 1.8 1.8 1.8 1.71 

3DES 
Encryption 41 6.59 2.78 2.62 2.69 2.12 

Decryption 1.12 1.78 1.24 1.74 1.48 1 

BIO sym. 

algorithm 

Encryption 3970 3884 3887 3901 3900 3910 

Decryption 4.19 4.19 4.19 2.09 4.19 2.09 

 

 

 

 

Table 8. Results obtained for System 3 

Analysis results for Ubuntu 10.04 

DES 
Encryption 12.64 0.9 0.61 0.59 0.61 0.56 

Decryption 1.24 0.45 0.44 0.45 0.43 0.41 

AES 
Encryption 0.66 0.6 0.63 0.63 0.62 0.63 

Decryption 0.66 0.71 0.64 0.64 0.19 0.19 

Blowfish 
Encryption 37.07 32 19 13 15 14 

Decryption 0.81 0.77 0.81 0.58 0.74 0.59 

3DES 
Encryption 14 11 17.7 10.21 10.11 13 

Decryption 0.77 0.79 0.78 0.6 0.6 0.6 

BIO sym. 

algorithm 

Encryption 1896 1848 1857 1846 1850 1850 

Decryption 2.62 13.1 1.83 1.31 1.57 2.62 
 

 

In Figure 5 and 6, we will illustrate 

the maximum, mean, olimpic (by 

eliminating the absolute minimum and 

maximum values) and minimum 

encryption and decryption time for the 

Symmetric Bio Algorithm. 

 
Figure 5. Encryption time for the 

Symmetric Bio Algorithm 
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Figure 6. Decryption time for the Symmetric 

Bio Algorithm 

 

First of all, we can notice that the 

systems 1 and 2 (with Windows OS) 

have larger time variations for the 

encryption and decryption processes. 

The third system, based on the Linux 

platform, offers a better stability, since 

the variation of the execution time is 

smaller. 

As seen from the figures and tables 

above, the DNA Cipher requires a 

longer execution time for encryption and 

decryption, comparatively to the other 

ciphers. We would expect these results 

because of the type conversions which 

are needed in the case of the symmetric 

Bio algorithm. All classical encryption 

algorithms process array of bytes while 

the DNA Cipher is about strings. The 

additional conversions from string to 

array of bytes and back make this cipher 

to require more time for encryption and 

decryption then other classic algorithms. 

However, this inconvenience should 

be solved with the implementation of 

full DNA algorithms and the usage of 

Bio-processors, which would make use 

of the parallel processing power of DNA 

algorithms. 

In this paper we proposed an 

asymmetric DNA mechanism that is 

more reliable and more powerful than 

the OTP DNA symmetric algorithm. As 

future developments, we would like to 

make some test for the asymmetric DNA 

algorithm and increase its execution 

time. 
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