
34

DNA Security using Symmetric and Asymmetric Cryptography

Radu Terec
1
, Mircea-Florin Vaida

1
, Lenuta Alboaie

2
, Ligia Chiorean

1

1
Technical University of Cluj-Napoca, Faculty of Electronics, Telecommunications

and Information Technology, Departament of Communications, 26 – 28 Gh. Baritiu,

400027, Cluj-Napoca, Romania, Phone: (+40) 264 401810,

Mircea.Vaida@com.utcluj.ro (corresponding author), RaduTerec@gmail.com,

Chiorean.Ligia@com.utcluj.ro
2
Alexandru Ioan Cuza University of Iasi, Romania, Faculty of Computer Science,

Berthelot, 16, Iasi, Romania, adria@info.uaic.ro

ABSTRACT

This paper presents alternative security

methods based on DNA. From the available

alternative security methods, symmetric

DNA algorithms were developed and

implemented. The first symmetric DNA

algorithm was implemented in the Java

language, while the second DNA algorithm

was implemented in BioJava and MatLab.

Comparisons have been made between the

performances of different standard

symmetrical algorithms and the DNA

proposed algorithms. As a new step to

enhance the security, an asymmetric key

generation inside a DNA security algorithm

is presented. The asymmetric key generation

algorithm starts from a password phrase.

The asymmetric DNA algorithm proposes a

mechanism which makes use of more

encryption technologies. Therefore, it is

more reliable and more powerful than the

OTP DNA symmetric algorithms.

KEYWORDS

DNA security, symmetric cryptography,

OTP, asymmetric cryptography, BioJava

1 INTRODUCTION

The security of a system is essential

nowadays. With the growth of the

information technology (IT) power, and

with the emergence of new technologies,

the number of threats a user is supposed

to deal with grew exponentially. It

doesn't matter if we talk about bank

accounts, social security numbers or a

simple telephone call. It is important that

the information is known only by the

intended persons, usually the sender and

the receiver.

A security system may have a lot of

weak spots: the place where the ciphers

are stored, the random number

generator, the strength of the used

algorithms and so on. The job of the

security designer is to make sure none of

these weaknesses gets exploited.

Based on the confidentiality property

in the domain of security the

symmetrical and asymmetrical

cryptographic algorithms are used.

Cryptography consists in processing

plain information [1], [2], applying a

cipher and producing encoded output,

meaningless to a third-party who does

not know the key.

In cryptography both encryption and

decryption phase are determined by one

or more keys. Depending on the type of

keys used, cryptographic systems may

be classified in:
a) Symmetric systems

-use the same key to encrypt and decrypt
data
-symmetric key encryption algorithms
(also called ciphers) process plain text

35

with the secret key to create encrypted
data called ciphertext
-are extremely fast and well suited for
encrypting large quantities of data
-They are vulnerable when transmitting
the key
-examples: DES, RC2, 3DES
-PBE (password based encryption)
algorithms are derived from symmetric
algorithms; such algorithms use a salt
(random bytes) and a number of
iterations to generate a key

b) Asymmetric systems
-overcome symmetric encryption's most
significant disability: the transmission of
the symmetric key
-rely on key pairs (contains a public and
a private key)
-the public key can be freely shared
because it cannot be easily abused, even
by an attacker
-messages encrypted with the public key
can be decrypted only with the private
key
-so, anyone can send encrypted
messages, but they can be decrypted by
only 1 person
-are not as fast, but are much more
difficult to break
-common use: encrypt and transfer a
symmetric key (used by HTTPS and
SSL) .

 Symmetrical algorithms use the

same key to encrypt and decrypt the

data, while asymmetric algorithms use a

public key to encrypt the data and a

private key to decrypt it. By keeping the

private key safe, you can assure that the

data remains safe, [3]. The disadvantage

of asymmetric algorithms is that they are

computationally intensive. Therefore, in

security a combination of asymmetric

and symmetric algorithms is used.

Another way of ensuring the

security of a system is to use a digital

signature. The signature is applied to the

whole document, so if the signature is

altered, the document becomes

unreadable.

In the future it is most likely that the

computer architecture and power will

evolve. Such systems might drastically

reduce the time needed to compute a

cryptographic key. As a result, security

systems need to find new techniques to

transmit the data securely without

relying on the existing pure

mathematical methods, [4].

We therefore use alternative security

concepts [5]. The major algorithms

which are accepted as alternative

security are the elliptic, vocal, quantum

and DNA encryption algorithms. Elliptic

algorithms are used for portable devices

which have a limited processing power,

use a simple algebra and relatively small

ciphers.

The quantum cryptography is not a

quantum encryption algorithm but rather

a method of creating and distributing

private keys. It is based on the fact that

photons send towards a receiver

changing irreversibly their state if they

are intercepted. Quantum cryptography

was developed starting with the 70s in

Universities from Geneva, Baltimore

and Los Alamos.

In [6] two protocols are described,

BB84 and BB92, that, instead of using

general encryption and decryption

techniques, verify if the key was

intercepted. This is possible because

once a photon is duplicated, the others

are immediately noticed. However, these

techniques are still vulnerable to the

Man-in-the-Middle and DoS attack.

DNA Cryptography is a new field

based on the researches in DNA

computation [7] and new technologies

like: PCR (Polymerase Chain Reaction),

Microarray, etc. DNA computing has a

high level computational ability and is

capable of storing huge amounts of data.

A gram of DNA contains 10
21

 DNA

bases, equivalent to 10
8
 terabytes of

36

data. In DNA cryptography we use

existing biological information from

DNA public databases to encode the

plaintext [8], [9].

The cryptographic process can make

use of different methods, [10]. In [5] the

one-time pads (OTP) algorithms are

described, which is one of the most

efficient security algorithms, while in

[11] a method based on the DNA

splicing technique is detailed. In the case

of the one-time pad algorithms, the

plaintext is combined with a secret

random key or pad which is used only

once. The pad is combined with the

plaintext using a typical modular

addition, or an XOR operation, or

another technique. In the case of [11] the

start codes and the pattern codes specify

the position of the introns, so they are no

longer easy to find. However, to

transmit the spliced key, they make use

of public-key secured channel.

Additionally, we will describe an

algorithm which makes use of

asymmetric cryptographic principles.

The main idea is to avoid the usage of

both purely mathematical symmetric and

asymmetric algorithms and to use an

advanced asymmetric algorithm based

on DNA. The speed of the algorithm

should be quite high because we make

use of the powerful parallel computing

possibilities of the DNA. Also, the

original asymmetric keys are generated

starting from a user password to avoid

their storage.

The paper is structured in 5 sections.

In section 2 we present some general

aspects about the used technologies:

Java security API, genetic code and

BioJava. In section 3 we present a Java

algorithm implementation based on a

DNA mechanism, and another algorithm

for the symmetric DNA cryptography,

using a BioJava implementation (similar

in MatLab implementation). We will

also expose the limitation imposed by

these platforms. In section 4 we describe

an advanced asymmetric DNA

encryption algorithm. We will conclude

this paper in section 5 where a

comparison between the obtained results

is made and the conclusions and

possible continuations of our work are

presented.

2 USED TECHNOLOGIES

2.1. The Java Cryptography

Architecture

The Security API (Application

Programming Interface) is a core API of

the Java programming language, built

around the java.security package, [12].

This API is designed to allow

developers to incorporate both low-level

and high-level security functionality into

their programs.

The Java Cryptography Extension

(JCE) extends the JCA API to include

APIs for encryption, key exchange, and

Message Authentication Code (MAC).

Together, the JCE and the cryptography

aspects of the SDK provide a complete,

platform-independent cryptography API.

JCE was previously an optional package

(extension) to the Java 2 SDK, Standard

Edition, versions 1.2.x and 1.3.x. JCE

has been integrated into the Java 2 SDK,

v 1.4.

The Java Cryptography Architecture

(JCA) was designed around these

principles: implementation

independence and interoperability;

algorithm independence and

extensibility. Implementation

independence and algorithm

independence are complementary; when

complete algorithm-independence is not

possible, the JCA provides standardized,

algorithm-specific APIs. When

37

implementation-independence is not

desirable, the JCA lets developers

indicate a specific implementation.

The Java Cryptography Architecture

introduced the notion of a

Cryptographic Service Provider, or

simply provider. This term refers to a

package (or a set of packages) that

supply a concrete implementation of a

subset of the cryptography aspects of the

Security API. It has methods for

accessing the provider name, version

number, and other information.

For each engine class in the API (an

engine class provides the interface to the

functionality of a specific type of

cryptographic service, independent of a

particular cryptographic algorithm), a

particular implementation is requested

and instantiated by calling a

getInstance() method on the engine

class, specifying the name of the desired

algorithm and, optionally, the name of

the provider (or the Provider class)

whose implementation is desired.

If no provider is specified,

getInstance() searches the registered

providers for an implementation of the

requested cryptographic service

associated with the named algorithm. In

any given Java Virtual Machine (JVM),

providers are installed in a given

preference order, the order in which the

provider list is searched if a specific

provider is not requested. For example,

suppose there are two providers installed

in a JVM, PROVIDER_1 and

PROVIDER_2.
From the core classes specified by the

JCA a special attention will be drawn to
the following classes: The Security,
KeyGenerator and the Cipher class.

a) The Security Class
The Security class manages installed

providers and security-wide properties.
It only contains static methods and is
never instantiated. The methods for

adding or removing providers, and for
setting Security properties, can only be
executed by a trusted program.
Currently, a "trusted program" is either a
local application not running under a
security manager, or an applet or
application with permission to execute
the specified method (see below).

The determination that code is

considered trusted to perform an

attempted action (such as adding a

provider) requires that the applet is

granted permission for that particular

action.
b) The KeyGenerator Class
This class is used to generate secret

keys for symmetric algorithms,
necessary to encrypt the plaintext.
KeyGenerator objects are created using
the getInstance() factory method of the
KeyGenerator class. getInstance() takes
as its argument the name of the
symmetric algorithm for which the key
was generated. Optionally, a package
provider name may be specified:

public static KeyGenerator
getInstance(String alg, String
provider);

There are two ways to generate a key:

algorithm-independent manner and

algorithm-specific manner. In the

algorithm-independent manner, all key

generators share the concepts of a key

size and a source of randomness.

In the algorithm-specific manner, for

situations where a set of algorithm-

specific parameters already exists, there

are two init methods that have an

AlgorithmParameterSpec argument:

public void init
(AlgorithmParameterSpec params);

public void init

(AlgorithmParameterSp ec params,
SecureRandom random);

38

In case the client does not explicitly

initialize the KeyGenerator each

provider must supply a default

initialization
Wrapping a key enables secure

transfer of the key from one place to
another, fact which can be used if one
needs to send data over a media
available to more people like a network,
for example.

c) The Cipher Class
This class forms the core of the JCE

framework. It establishes a link between

the data, the algorithm and the key used

whether it is for encoding, decoding or

wrapping. Cipher objects are created

using the getInstance() factory method

of the Cipher class.

public static Cipher
getInstance(String
transformation,String provider);

A Cipher object obtained via

getInstance() must be initialized for one

of four modes: ENCRYPT_MODE =

Encryption of data, DECRYPT_MODE

= Decryption of data, WRAP_MODE =

Wrapping a Key into bytes so that the

key can be securely transported,

UNWRAP_MODE = Unwrapping of a

previously wrapped key into a

java.security Key object.

2.2. General Aspects about Genetic

Code

There are 4 nitrogenous bases used in

making a strand of DNA. These are

adenine (A), thymine (T), cytosine (C)

and guanine (G). These 4 bases (A, T, C

and G) are used in a similar way to the

letters of an alphabet. The sequence of

these DNA bases will code specific

genetic information [8].

In our previous work we used a one-

time pad, symmetric key cryptosystem

[13], [14], [15]. In the OTP algorithm,

each key is used just once, hence the

name of OTP. The encryption process

uses a large non-repeating set of truly

random key letters. Each pad is used

exactly once, for exactly one message.

The sender encrypts the message and

then destroys the used pad. As it is a

symmetric key cryptosystem, the

receiver has an identical pad and uses it

for decryption. The receiver destroys the

corresponding pad after decrypting the

message. New message means new key

letters. A cipher text message is equally

likely to correspond to any possible

plaintext message. Cryptosystems which

use a secret random OTP are known to

be perfectly secure.

By using DNA with common

symmetric key cryptography, we can use

the inherent massively-parallel

computing properties and storage

capacity of DNA, in order to perform

the encryption and decryption using

OTP keys. The resulting encryption

algorithm which uses DNA medium is

much more complex than the one used

by conventional encryption methods.

To implement and exemplify the

OTP algorithm, we downloaded a

chromosome from the open source

NCBI GenBank, [16]. As stated, in this

algorithm the chromosomes are used as

cryptographic keys. They have a small

dimension and a huge storage capability.

There is a whole set of chromosomes,

from different organisms which can be

used to create a unique set of

cryptographic keys. In order to splice the

genome, we must know the order in

which the bases are placed in the DNA

string.

The chosen chromosome was

“Homo sapiens FOSMID clone ABC24-

1954N7 from chromosome 1”. Its length

39

is high enough for our purposes (37983

bases).

GenBank offers different formats in

which the chromosomal sequences can

be downloaded:

• GenBank,

• GenBank Full,

• FASTA,

• ASN.1.

We chose the FASTA format

because it’s easier to handle and

manipulate. To manipulate the

chromosomal sequences we used

BioJava API methods, a framework for

processing DNA sequences. Another

API which can be used for managing

DNA sequences is offered by MatLab.

Using this API, a dedicated application

has been implemented [13].

In MatLab, the plaintext message

was first transformed in a bit array. An

encryption unit was transformed into an

8 bit length ASCII code. After that,

using functions from the Bioinformatics

Toolbox, each message was transformed

from binary to DNA alphabet. Each

character was converted to a 4-letter

DNA sequence and then searched in the

chromosomal sequence used as OTP,

[14].

2.3. BioJava API

The core of BioJava is actually a

symbolic alphabet API, [17]. Here,

sequences are represented as a list of

references to singleton symbol objects

that are derived from an alphabet. The

symbol list is stored as often as possible.

The list is compressed and uses up to

four symbols per byte.

Besides the fundamental symbols of

the alphabet (A, C, G and T as

mentioned earlier), the BioJava

alphabets also contain extra symbol

objects which represent all possible

combinations of the four fundamental

symbols. The structure of the BioJava

architecture together with its most

important APIs is presented below:

Figure 1. The BioJava Architecture

By using the symbol approach, we

can create higher order alphabets and

symbols. This is achieved by

multiplying existing alphabets. In this

way, a codon can be treated as nothing

more than just a higher level alphabet,

which is very convenient in our case.

With this alphabet, one can create views

over sequences without modifying the

underlying sequence.

40

In BioJava a typical program starts

by using the sequence input/output API

and the sequence/feature object model.

These mechanisms allow the sequences

to be loaded from a various number of

file formats, among which is FASTA,

the one we used. The obtained results

can be once more saved or converted

into a different format.

3 DNA CRYPTOGRAPHY

IMPLEMENTATIONS

In this chapter we will start by

presenting the initial Java

implementation of the symmetric OTP

encryption algorithm, [18]. We will then

continue by describing the

corresponding BioJava (and Matlab)

implementation and some drawbacks of

this symmetric algorithm.

3.1. Java Implementation

One approach of the DNA Cryptography

is a DNA-based symmetric

cryptographic algorithm. This algorithm

involves three steps: key generation,

encryption and decryption. In fact, the

encryption process makes use of two

classic cryptographic algorithms: the

one-time pad, and the substitution

cipher.

Due to the restrictions that limit the

use of JCE, [19], the algorithm was

developed using OpenJDK, which is

based on the JDK 7.0 version of the Java

platform and does not enforce certificate

verification.

 In order to generate random data

we use the class SecureRandom housed

in the java.security package, class which

is designed to generate

cryptographically secure random

numbers. The next step is translating this

key in DNA language by limiting the

range of numbers to [0, 3] and

associating a letter to each number as

following:

Table 1. Translation table

Number Corresponding letter

0 a

1 c

2 g

3 t

At this time is very important to

know that the length of the key must be

exactly the same as the length of the

plaintext. In this case, the plaintext is the

secret message, translated according to

the substitution alphabet.

Therefore, the length of the key is

three times the length of the secret

message. The user may choose the

length of the key, the only restriction

being that this must be a multiple of

three.

Because the key must have three

times the length of the messages, when

trying to send very long messages, the

length of the key would be huge. For

this reason, the message is broken into

fixed-size blocks of data. The cipher

encrypts or decrypts one block at a time,

using a key that has the same length as

the block.

The implementation of block

ciphers raises an interesting problem: the

message we wish to encrypt will not

always be a multiple of the block size.

To compensate for the last incomplete

block, padding is needed. A padding

scheme specifies exactly how the last

block of plaintext is filled with data

before it is encrypted. A corresponding

procedure on the decryption side

removes the padding and restores the

plaintext's original length. However, this

DNA Cipher will not use a padding

scheme but a shorter version (a fraction)

41

of the original key. The only mode of

operation implemented by the DNA

Cipher is ECB (Electronic Code Book).

This is the simplest mode, in which each

block of plaintext encrypts to a block of

ciphertext. ECB mode has the

disadvantage that the same plaintext will

always encrypt to the same ciphertext,

when using the same key.

As we mentioned, the DNA Cipher

applies a double encryption in order to

secure the message we want to keep

secret. The first encryption step uses a

substitution cipher.

For applying the substitution cipher

it was used a HashMap Object.

HashMap is a java.util class that

implements the Map interface. These

objects associate a specified value to a

specified unique key in the map.

 One possible approach is

representing each character of the secret

message by a combination of 3 bases on

DNA, as shown in the table below:

Table 2. The substitution alphabet

a - cga l - tgc w - ccg 3 - gac

b - cca m -tcc x - cta 4 - gag

c - gtt n - tct y - aaa 5 - aga

d - ttg o -gga z - ctt 6 - tta

e -ggc p -gtg _ - ata 7 - aca

f - ggt q -aac , - tcg 8 - agg

g - ttt r - tca . - gat 9 - gcg

h -cgc s -acg : - gct space- ccc

i - atg t - ttc 0 - act

j - agt u - ctg 1 - acc

k -aag v - cct 2 - tag

Given the fact that this cipher replaces

only lowercase characters with their

corresponding triplet and that in most

messages we encounter also upper case

letters, the algorithm first transforms all

the letters of the given secret message

into lowercase letters.

The result after applying the

substitution cipher is a string containing

characters from the DNA alphabet (a, c,

g, t). This will further be transformed

into a byte array, together with the key.

The exclusive or operation (XOR) is

then applied to the key and the message

in order to produce the encrypted

message.

When decrypting an encrypted

message, it is essential to have the key

and the substitution alphabet. While the

substitution alphabet is known, being

public, the key is kept secret and is

given only to the addressee. Any

malicious third party won’t be able to

decrypt the message without the original

key.

The received message is XOR-ed

with the secret key resulting a text in

DNA alphabet. This text is then broken

into groups of three characters and with

the help of the reverse map each group

will be replaced with the corresponding

letter. The reverse map is the inverse of

the one used for translating the original

message into a DNA message. This way

the receiver is able to read the original

secret message.

3.2 BioJava Implementation

In this approach [20], we use more steps

to obtain the DNA code starting from

the plaintext. For each character from

the message we wish to encode, we first

apply the get_bytes() method which

returns an 8bit ASCII string of the

character we wish to encode. Further,

42

we apply the get_DNA_code() method

which converts the obtained 8 bit string,

corresponding to an ASCII character,

into DNA alphabet. The function returns

a string which contains the DNA-

encoded message.

The get_DNA_code() method is the

main method for converting the plaintext

to DNA encoded text. For each 2 bits

from the initial 8 bit sequence,

corresponding to an ASCII character, a

specific DNA character is assigned: 00 –

A, 01 – C, 10 – G and 11 – T. Based on

this process we obtain a raw DNA

message.

Table 3. DNA encryption test sequence

Plaintext message: „test”
ASCII message: 116 101 115
116
Raw DNA message:
„TCACGCCCTATCTCA”

The coded characters are searched in

the chromosome chosen as session key

at the beginning of the communication.

The raw DNA message is split into

groups of 4 bases. When such a group is

found in the chromosome, its base index

is stored in a vector. The search is made

between the first characters of the

chromosome up to the 37983
th

. At each

new iteration, a 4 base segment is

compared with the corresponding 4 base

segment from the raw DNA message.

So, each character from the original

string will have an index vector

associated, where the chromosome

locations of that character are found.

The get_index() method effectuates

the parsing – the comparison of the

chromosomal sequences and creates for

each character an index vector. To parse

the sequences in the FASTA format

specific BioJava API methods were

used.

BioJava offers us the possibility of

reading the FASTA sequences by using

a FASTA stream which is obtained with

the help of the SeqIOTools class. We

can pass through each of the sequences

by using a SequenceIterator object.

These sequences are then loaded into an

Sequence list of objects, from where

they can be accessed using the

SequneceAt() mrthod.

In the last phase of the encryption,

for each character of the message, a

random index from the vector index is

chosen. We use the get_random()

method for this purpose. In this way,

even if we would use the same key to

encrypt a message, we would obtain a

different result because of the random

indexes.

Since the algorithm is a symmetric

one, for the decryption we use the same

key as for encryption. Each index

received from the encoded message is

actually pointing to a 4 base sequence,

which is the equivalent of an ASCII

character.

So, the decode() method realizes

following operations: It will first extract

the DNA 4 base sequences from the

received indexes. Then, it will convert

the obtained raw DNA message into the

equivalent ASCII-coded message. From

the ASCII coded message we finally

obtain the original plaintext. And with

this, the decryption step is completed.

The main vulnerability of this

algorithm is that, if the attacker

intercepts the message, he can decode

the message himself if he knows the

coding chromosomal sequence used as

session key.

43

4 BIOJAVA ASYMMETRIC

ALGORITHM DESCRIPTION

In this chapter we will present in detail

an advanced method of obtaining DNA-

encoded messages. It relies on the use of

an asymmetric algorithm and on key

generation starting from a user

password.

We will also present a pseudo-code

description of the algorithm.

4.1 Asymmetric Key Generation

Our first concern when it comes to

asymmetric key algorithms was to

develop a way in which the user was no

longer supposed to deal with key

management authorities or with the safe

storage of keys. The reason behind this

decision is fairly simple: both methods

can be attacked. Fake authorities can

pretend to be real key-management

authorities and intruders may breach the

key storage security. By intruders we

mean both persons who have access to

the computer and hackers, which

illegally accessed the computer.

To address this problem, we

designed an asymmetric key generation

algorithm starting from a password. The

method has some similarities with the

RFC2898 symmetric key derivation

algorithm [21]. The key derivation

algorithm is based on a combination of

hashes and the RSA algorithm. Below

we present the basic steps of this

algorithm:

• Step 1: First, the password string

is converted to a byte array, hashed

using SHA256 and then transformed to

BigInteger number. This number is

transformed in an odd number, tmp,

which is further used to apply the RSA

algorithm for key generation.

• Step 2: Starting from tmp we

search for 2 random pseudo-prime

number p and q. The relation between

tmp, p and q is simple: p < tmp < q. To

spare the computational power of the

device, we do not compute traditionally

if p and q are prime but make primality

tests.

• A primality test determines the

probability according to which a number

is prime. The sequence of the primality

test is the following: First, trial divisions

are carried out using prime numbers

below 2000. If any of the primes divides

this BigInteger, then it is not prime.

Second, we perform base 2 strong

pseudo-prime test. If this BigInteger is a

base 2 strong pseudo-prime, we proceed

on to the next step. Last, we perform the

strong Lucas pseudo-prime test. If

everything goes well, it returns true and

we declare the number as being pseudo-

prime.

• Step 3: Next, we determine

Euler totient: phi = (p - 1) * (q - 1) ; and

n = p*q;

• Step 4: Next, we determine the

public exponent, e. The condition

imposed to e is to be coprime with phi.

• Step 5: Next, we compute the

private exponential, d and the CRT

(Chinese Reminder Theorem) factors:

dp, dq and qInv.

• Step 6: Finally, all computed

values are written to a suitable structure,

waiting further processing.

• The public key is released as the

public exponent, e together with n.

• The private key is released as the

private exponent, d together with n and

the CRT factors.

The scheme of this algorithm is

presented below:

44

Figure 2. Asymmetric RSA compatible key generation

In comparison with the RFC2898

implementation, here we no longer use

several iterations to derive the key. This

process has been shown to be time

consuming and provide only little extra

security. We therefore considered it safe

to disregard it.

The strength of the key-generator

algorithm is given by the large pseudo-

prime numbers it is using and of course,

by the asymmetric algorithm. By using

primality tests one can determine with a

precision of 97 – 99% that a number is

prime. But most importantly, the

primality tests save time. So, the average

computation time, including appropriate

key export, for the whole algorithm is

143 ms. After the generation process

was completed, the public or private key

can be retrieved using the static

ToXmlString method.

Next, we will illustrate the

algorithm through a short example.

Suppose the user password is

“DNACryptography”. Starting from this

password, we compute its hash with

SHA256. The result is shown below.

This hashed password is converted into

the BigInteger number tmp. Starting

from it, and according to the algorithm

described above, we generate the public

exponent e and the private exponent d.

Table 4. Asymmetric DNA encryption test

sequence

user password: “DNACryptography”
hashed password:
“ed38f5aa72c3843883c26c701dfce03
e0d5d6a8d”
tmp =
84597941392863984558746916592571
6582498797231629929694

46756202517881375676359726620829
8952112229
e = 1063
d =
62209727183718300693145403344094
08504766864571798543078

20679318486461619300337870725234
79660987299191525204542

43274292026224722073876853783177
36890998257538720690765
466158123868118572427782935

45

We conducted several tests and the

generated keys match the PKCS #5

specifications. Objects could be

instantiated with the generated keys and

used with the normal system-build RSA

algorithm.

4.2 Asymmetric DNA Algorithm

The asymmetric DNA algorithm

proposes a mechanism which makes use

of three encryption technologies. In

short, at the program initialization, both

the initiator and its partner generate a

pair of asymmetric keys. Further, the

initiator and its partner negotiate which

symmetric algorithms to use, its

specifications and of course, the codon

sequence where the indexes of the DNA

bases will be looked up. After this initial

negotiation is completed, the

communication continues with normal

message transfer. The normal message

transfer supposes that the data is

symmetrically encoded, and that the key

with which the data was encoded is

asymmetrically encoded and attached to

the data. This approach was first

presented in [22].

Next, we will describe the algorithm

in more detail and also provide a

pseudo-code description for a better

understanding.

Step 1: At the startup of the

program, the user is asked to provide a

password phrase. The password phrase

can be as long or as complicated as the

user sees fit. The password phrase will

be further hashed with SHA256.

Step 2: According to the algorithm

described in section 4.1, the public and

private asymmetric keys will be

generated. Since the pseudo-prime

numbers p and q are randomly chosen,

even if the user provides the same

password for more sessions, the

asymmetric keys will be different.

Step 3: The initiator selects which

symmetric algorithms will be used in the

case of normal message transfer. He can

choose between 3DES, AES and IDEA.

Further, he selects the time after which

the symmetric keys will be renewed and

the symmetric key length. Next, he will

choose the codon sequence where the

indexes will be searched. For all this

options appropriate visual selection tools

are provided.

Step 4: The negotiation phase

begins. The initiator sends to its partner

its public key. The partner responds by

encrypting his own public key with the

initiators public key. After the initiator

receives the partner's public key, he will

encrypt with it the chosen parameters.

Upon receiving the parameters of the

algorithms, the partner may accept or

propose his own parameters. In case the

initiators parameters are rejected, the

parties will chose the parameters which

provide the maximum available security.

Step 5: The negotiation phase is

completed with the sending of a test

message which is encrypted like any

regular message would be encrypted. If

the test message is not received correctly

by any of the two parties or if the

message transfer takes too much time,

the negotiation phase is restarted. In this

way, we protect the messages from

tampering and interception.

Step 6: The transmission of a

normal message. In this case, the actual

data will be symmetrically encoded,

according to the specifications

negotiated before. The symmetric key is

randomly generated at a time interval t.

The symmetric key is encrypted with the

partner's public key and then attached to

the message. So, the message consists in

the data, encrypted with a symmetric

46

key and the symmetric key itself,

encrypted with the partner's public key.

We chose to adopt this mechanism

because symmetric algorithms are faster

than asymmetric ones. Still, in this

scenario, the strength of the algorithm is

equivalent to a fully asymmetric one

because the symmetric key is encrypted

asymmetrically. The procedure is

illustrated below:

Figure 3. Encryption scheme

Next, the obtained key will be

converted into a byte array. The

obtained array will be converted to a raw

DNA message, by using a substitution

alphabet. Finally, the raw DNA message

is converted to a string of indexes and

then transmitted.

The decryption process is fairly

similar. The user converts the index

array back to raw DNA array and

extracts the ASCII data. From this data

he will decipher the symmetric key used

for that encryption, by using its private

key. Finally the user will obtain the data

by using the retrieved symmetric key. At

the end of the communication, all

negotiated data is disregarded

(symmetric keys used, the asymmetric

key pair and the codon sequence used).

5 CONCLUSIONS AND

COMPARED RESULTS

In this chapter we will present the results

we obtained for the symmetric algorithm

implementation along with the

conclusions of our present work.

The symmetric OTP DNA

algorithm based on Java Cryptography

Architecture was first tested, [14]. The

purpose is to compare the time required

to complete the encryption/ decryption

in the case of the DNA Cipher with the

time required by other classical

encryption algorithms.

The secret message used with all

five ciphers was:

„TAACAGATTGATGATGCATG

AAATGGGCCCATGAGTGGCTCCT

AAAGCAGCTGCTtACAGATTGATG

ATGCATGAAATGGGgggtggccaggggt

ggggggtgagactgcagagaaaggcagggctggttc

ataacaagctttgtgcgtcccaatatgacagctgaagttt

tccaggggctgatggtgagccagtgagggtaagtaca

cagaacatcctagagaaaccctcattccttaaagattaa

aaataaagacttgctgtctgtaagggattggattatcctat

ttgagaaattctgttatccagaatggcttaccccacaatg

ctgaaaagtgtgtaccgtaatctcaaagcaagctcctcc

tcagacagagaaacaccagccgtcacaggaagcaaa

gaaattggcttcacttttaaggtgaatccagaacccagat

gtcagagctccaagcactttgctctcagctccacGCA

GCTGCTTTAGGAGCCACTCATGaG

”.

The tests ran on a system with the

following specifications:

Intel Pentium 4 CPU, 3.00 GHz,

RAM: 1,5GB, OS: Ubuntu 9.04

47

Figure 4. Encryption/Decryption time for DNA and classical ciphers.

As seen on Figure 4, the DNA

Cipher requires a longer time for

encryption and decryption,

comparatively to the other ciphers. We

would expect these results because of

the platform used for developing this

algorithm. JCA contains the classes of

the security package Java 2 SDK,

including engine classes. The methods

in the classes that implement

cryptographic services are divided into

two groups. The first group is

represented by the APIs (Application

Programming Interface). It consists of

public methods that can be used by the

instances of these classes. The second

group is represented by the SPIs

(Service Provider Interface)- a set of

methods that must be implemented by

the derived classes. Each SPI class is

abstract. In order to implement a specific

service, for a specific algorithm, a

provider must inherit the corresponding

SPI class and implement all the abstract

methods. All these methods process

array of bytes while the DNA Cipher is

about strings. The additional

conversions from string to array of bytes

and back make this cipher to require

more time for encryption and decryption

then other classic algorithms.

To emphasize the difference

between DNA and classical algorithms a

dedicated application (SmartCipher) was

developed.

The user has the possibility to enter

the text in plain format in the first box

and then choose a suitable algorithm to

encrypt his text. The encrypted text can

be visualized in the second box, while in

the third one the user can verify if the

decryption process was successful.

An interesting feature of the dedicated

application is that it shows the

encryption and decryption time. Based

on this criterion and the strength of the

cipher, the user can estimate the

efficiency of the used algorithm.

In the second case considering the

symmetrical BioJava mechanism, our

first goal was to compare the time

required to complete the encryption/

decryption process. We compared the

execution time of the DNA Symmetric

Cipher with the time required by other

classical encryption algorithms. We

chose a random text of 360 characters,

in string format which was applied to all

tests.

The testing sequence is:

48

Table 5. Testing sequence

k39pc3xygfv(!x|jl+qo|9~7k9why(kt
r6pkiaw|gwnn&aw+be|r|*4u+rz$
wm)(v_e&$dz|hc7^+p6%54vp*g*)kzlx
!%4n4bvb#%vex~7c^qe_d745h40i
$_2j*6t0h$8o!c~9x4^2srn81x*wn9&k
%*oo_co(*~!bfur7tl4udm!m4t+a
|tb%zho6xmv$6k+#1$&axghrh*_3_zz@
0!05u*|an$)5)k+8qf0fozxxw)_u
pryjj7_|+nd_&x+_jeflua^^peb_+%@0
3+36w)$~j715*r)x(*bumozo#s^j
u)6jji@xa3y35^$+#mbyizt*mdst&h|h
bf6o*)r2qrwm10ur+mbezz(1p7$f

To be able to compute the time

required for encryption and decryption,

we used the public static nanoTime()

method from the System class which

gives the current time in nanoseconds.

We called this method twice: once

before instantiating the Cipher object,

and one after the encryption. By

subtracting the obtained time intervals,

we determine the execution time.

It is important to understand that the

execution time varies depending on the

used OS, the memory load and on the

execution thread management. We

therefore measured the execution time

on 3 different machines:

• System 1: Intel Core 2 Duo 2140,

1.6 GHz, 1 Gb RAM, Vista OS

• System 2: Intel Core 2 Duo T6500,

2.1 GHz, 4 Gb RAM, Windows 7

OS

• System 3: Intel Dual Core T4300,

2.1 GHz, 3 Gb RAM, Ubuntu

10.04 OS

Next, we present the execution time

which was obtained for various

symmetric algorithms in the case of the

first, second and the third system, for

different cases:

Table 6. Results obtained for System 1

Analysis results for Vista OS

DES
Encryption 50 26 1.03 0.81 0.84 0.84

Decryption 1.63 0.35 0.33 0.32 0.34 0.36

AES
Encryption 80 26 0.92 0.95 0.88 0.54

Decryption 27 2.09 0.30 22.26 0 0.14

Blowfish
Encryption 65 10.91 25 24 0.15 1.45

Decryption 3 1.87 1.72 29 1.09 1

3DES
Encryption 82 24 2.41 25 2.12 1.42

Decryption 1.56 1.42 26 1.23 1.41 0.66

BIO sym.

algorithm

Encryption 4091 4871 4875 4969 4880 4932

Decryption 6.29 4.19 4.19 4.19 4.19 4.19

49

Table 7. Results obtained for System 2

Analysis results for Windows 7

DES
Encryption 34 1.43 1.09 1.2 1.73 1.19

Decryption 0.75 0.37 0.44 0.42 0.38 0.37

AES
Encryption 28 1.3 1.16 0.07 1.77 0.82

Decryption 0.12 0.14 2.09 0.9 2.09 0.16

Blowfish
Encryption 22 28.4 6.2 4 1.6 2.83

Decryption 2.24 2.21 1.8 1.8 1.8 1.71

3DES
Encryption 41 6.59 2.78 2.62 2.69 2.12

Decryption 1.12 1.78 1.24 1.74 1.48 1

BIO sym.

algorithm

Encryption 3970 3884 3887 3901 3900 3910

Decryption 4.19 4.19 4.19 2.09 4.19 2.09

Table 8. Results obtained for System 3

Analysis results for Ubuntu 10.04

DES
Encryption 12.64 0.9 0.61 0.59 0.61 0.56

Decryption 1.24 0.45 0.44 0.45 0.43 0.41

AES
Encryption 0.66 0.6 0.63 0.63 0.62 0.63

Decryption 0.66 0.71 0.64 0.64 0.19 0.19

Blowfish
Encryption 37.07 32 19 13 15 14

Decryption 0.81 0.77 0.81 0.58 0.74 0.59

3DES
Encryption 14 11 17.7 10.21 10.11 13

Decryption 0.77 0.79 0.78 0.6 0.6 0.6

BIO sym.

algorithm

Encryption 1896 1848 1857 1846 1850 1850

Decryption 2.62 13.1 1.83 1.31 1.57 2.62

In Figure 5 and 6, we will illustrate

the maximum, mean, olimpic (by

eliminating the absolute minimum and

maximum values) and minimum

encryption and decryption time for the

Symmetric Bio Algorithm.

Figure 5. Encryption time for the

Symmetric Bio Algorithm

50

Figure 6. Decryption time for the Symmetric

Bio Algorithm

First of all, we can notice that the

systems 1 and 2 (with Windows OS)

have larger time variations for the

encryption and decryption processes.

The third system, based on the Linux

platform, offers a better stability, since

the variation of the execution time is

smaller.

As seen from the figures and tables

above, the DNA Cipher requires a

longer execution time for encryption and

decryption, comparatively to the other

ciphers. We would expect these results

because of the type conversions which

are needed in the case of the symmetric

Bio algorithm. All classical encryption

algorithms process array of bytes while

the DNA Cipher is about strings. The

additional conversions from string to

array of bytes and back make this cipher

to require more time for encryption and

decryption then other classic algorithms.

However, this inconvenience should

be solved with the implementation of

full DNA algorithms and the usage of

Bio-processors, which would make use

of the parallel processing power of DNA

algorithms.

In this paper we proposed an

asymmetric DNA mechanism that is

more reliable and more powerful than

the OTP DNA symmetric algorithm. As

future developments, we would like to

make some test for the asymmetric DNA

algorithm and increase its execution

time.

Acknowledgments. This work was

supported by CNCSIS–UEFISCSU,

project number PNII – IDEI 1083/2007-

2010.

6 REFERENCES

1. Hook, D., Beginning Cryptography with Java,

Wrox Press, (2005)

2. Kahn, D., The codebrakers McMillan, New

York, (1967)

3. Schneier, B., Description of a New Variable-

Length Key, 64-Bit Block Cipher (Blowfish):

Springer-Verlag, andf, Fast Software

Encryption, Cambridge Security Workshop

Proceedings (1993).

4. Schena, M., Microarray analysis Wiley-Liss,

July (2003)

5. Gehani, A., LaBean, T., Reif, J., DNA-Based

Cryptography. s.l.: DIMACS Series in Discrete

Mathematics and Theoretical Computer Science,

Vol. 54, and Lecture Notes in Computer Science,

Springer, (2004)

6. Techateerawat, P., A Review on Quantum

Cryptography Technology, International

Transaction Journal of Engineering,

Management & Applied Sciences &

Technologies, Vol. 1, pp. 35-41, (2010)

7. Adleman, L. M., Molecular computation of

solution to combinatorial problems, Science,

266, 1021-1024, (1994)

8 8. Genetics Home Reference. U.S. National

Library of Medicine.

 http://ghr.nlm.nih.gov/handbook/basics/dna.

(2011)

9. DNA Alphabet. VSNS BioComputing

Division, http://www.techfak.uni-

bielefeld.de/bcd/Curric/PrwAli/node7.html#SEC

TION00071000000000000000, (2011)

10. Schneier, B., Applied cryptography:

protocols, algorithms, and source code in C,

John Wiley & Sons Inc, (1996)

11. Amin, S. T., Saeb, M., El-Gindi, S., A DNA-

based Implementation of YAEA Encryption

Algorithm, IASTED International Conference on

Computational Intelligence, San Francisco, pp.

120-125, (2006)

51

12. Java Cryptography Architecture. Sun

Microsystems.

http://java.sun.com/j2se/1.4.2/docs/guide/securit

y/CryptoSpec.html (2011)

13. Tornea, O., Borda, M., Hodorogea, T.,

Vaida, M.F., Encryption System with Indexing

DNA Chromosomes Cryptographic Algorithm,

IASTED International Conference on

Biomedical Engineering (BioMed 2010), 15-18

Feb., Innsbruck, Austria, paper 680-099, pp. 12-

15, (2010)

14. Vaida, M.F., Terec, R., Tornea, O.,

Chiorean, L., Vanea, A., DNA Alternative

Security, Advances in Intelligent Systems and

Technologies Proceedings ECIT2010 – 6th

European Conference on Intelligent Systems and

Technologies, Iasi, Romania, October 07-09, pp.

1-4, (2010)

15. Vaida, M.F., Terec, R., Alboaie, L.,

Alternative DNA Security using BioJava,

DICTAP2011, Conference SDIWC, Univ. de

Bourgogne, Dijon, France, 21-23 June, 2011,

pp.455-469

16. Wilson, R. K., The sequence of Homo

sapiens FOSMID clone ABC14-50190700J6,

submitted to http://www.ncbi.nlm.nih.gov,

(2009)

17. Holland, R.C.G., Down, T., Pocock, M.,

Prlić, A., Huen, D., James, K., Foisy, S., Dräger,

A., Yates, A., Heuer, M., Schreiber M.J.,

“BioJava: an Open-Source Framework for

Bioinformatics”, Bioinformatics (2008)

18. Hodorogea, T., Vaida, M. F., Deriving DNA

Public Keys from Blood Analysis, International

Journal of Computers Communications &

Control Volume: 1 Pages: 262-267, (2006)

19. Wagner, N. R., The Laws of Cryptography

with Java Code. [PDF], (2003).

20. BioJava –

http://java.sun.com/developer/technicalArticles/j

avaopensource/biojava/, (2011)

21. RSA Security Inc. Public-Key Cryptography

Standards (PKCS) – “PKCS #5 v2.0: Password-

Based Cryptography Standard”, (2000)

22. Nobelis, N., Boudaoud K., Riveill M., “Une

architecture pour le transfert électronique

sécurisé de document”, PhD Thesis, Equipe

Rainbow, Laboratories I3S – CNRS, Sophia-

Antipolis, France, (2008)

