
 1

Meditech2011_L1801

Medical Services Optimization using Differential Evolution

F.-C. Pop
1
, M. Cremene

1
, M.-F. Vaida

1
and A. Șerbănescu

2

1 Faculty of Electronics, Telecommunications and IT, The Technical University of Cluj-Napoca, Romania
2 The Faculty of Dental Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania

Abstract—This paper proposes a method to compose and

optimize medical services as business workflows. Such a work-

flow consists in a set of abstract services, and for each abstract

service there are several concrete services. Since each medical

service has different QoS (Quality of Service) parameters such

as response time, rating, distance and cost, determining the

optimal combination of concrete services that realize the ab-

stract services of the business workflow is an NP hard prob-

lem. Recent proposals for solving NP optimization problems

indicate the Genetic Algorithms (GA) as the best approach for

complex workflows. But this problem usually needs to be

solved at runtime, a task for which GA may be too slow. We

propose a new approach, based on Differential Evolution (DE),

that converges faster and it is more scalable and robust than

the existing solutions based on Genetic Algorithms.

Keywords— Services, Composition, QoS, Optimization, Se-

lection, Genetic Algorithms, Differential Evolution

I. INTRODUCTION

A. Background

The Service Oriented Architecture (SOA) model has be-

come very popular in enterprise environments, where the

complicated business logic is implemented by combining

the functionality of various services. First, the business

functions are defined. These functions represent the set of

activities used to manage the assets of the organization in

their various states. Then, the business functions are further

decomposed into services, which implement the logic re-

quired to realize defined functions.

In software engineering, SOA defines how to discover

and integrate disparate applications from different platforms

into web-based applications. For example, one image pro-

cessing application can be composed of several independent

software components, each of them realizing a different

function: enhancements, rotation, segmentation etc. and

each of these components can be offered by a different

service provider. Such a process that combines the func-

tionality of multiple services is called service composition,

and the resulted application is called a composite service.

In medicine, a service provider could be, for instance, a

dental office, which offers various dental treatment services.

A composite medical service can then be defined as any

medical activity that requires the patient to benefit from two

or more different medical services.

 The patient (or the user of a service) is called a service

consumer. A contract (formal or informal) is defined be-

tween the service provider and the service consumer to

specify the level of service. This contract is called the Ser-

vice Level Agreement (SLA). For example, the SLA be-

tween the dentist and the patient for a dental implant service

may include the amount of time the implant is guaranteed to

last, the cost of the medical procedure or the average rate of

success. Such attributes represent the Quality of Service

(QoS) properties of a service.

Two services that provide the same functionality often

have different QoS properties. For example, many clinics

offer a similar range of medical tests, but promote different

prices and require different amounts of time to deliver the

results. One may be cheaper, but require longer time to

provide the results than a more expensive service.

B. Motivating example

A composite service can be described as a process that

involves the execution of several activities according to a

workflow. An example workflow for a series of clinical

tests is depicted in Fig. 1. This workflow consists of the

following activities:

S1. Assisted General Diagnosis for reading the pa-

tient’s symptoms and classifying them in one of the

3 (example) categories: Heart Disease Symptoms,

Digestive System Symptoms or Other Symptoms.

According to the assigned category, the patient is

then scheduled for specific medical tests.

S2. Cholesterol Test for measuring the cholesterol lev-

el,

S3. Cardiac Exam for investigating signs of any cardi-

ovascular pathology,

S4. Endoscopy, where the digestive tract is investigat-

ed,

S5. Physician Consultation for having a physician ex-

amine the patient’s symptoms and the results of the

scheduled investigations,

S6. Send Test Results that ensures the delivery of the

patient’s investigations result to his home and/or

the location of his medical records.

2

Meditech2011_L1801

Fig. 1 An abstract process containing several clinical tests

Executing an activity means invoking a service. For each

activity, which is assimilated to an abstract service (S1, S2,

... in Fig. 1), several concrete services exist. Each concrete

service has different QoS properties. For describing the QoS

we use the following parameters: response time (t), rating

(r), distance (d) and cost (c).

In software engineering, the response time (t) is a meas-

ure for the performance of a service. It represents the round-

trip time between sending a request and receiving the re-

sponse. In the medical world, the response time represents

the duration for which a patient benefits from a medical

service. The user rating (r) represents the score the patient

uses to reward a medical service after accessing it. The

distance (d) is a numerical description of how far apart are

the patient and the medical service. The cost (c) is the price

to pay for using each service.

The QoS of the composite service is obtained by aggre-

gating the QoS of the component services. The aggregation

rules are described in the section Proposed approach.

Given m abstract services and n concrete services for

each abstract service, there are n
m
 possibilities. The search

space is a discrete one since for each abstract service we

need to choose one concrete service and any combination is

possible. We have a combinatorial optimization problem

here. An exhaustive search algorithm is very inadequate

because the solution should be found at runtime. Finding the

solution with the optimal QoS is an NP-hard problem.

Numerous existing proposals for NP optimization prob-

lems indicate Genetic Algorithms (GA) as the preferred

approach. The particularity of QoS optimization is that it’s

usually done at runtime, where a fast algorithm is pre-

ferred. This fact and also the need to improve the accura-

cy and the exploration of the solutions space motivated us

to propose a new approach, based on Differential Evolu-

tion (DE). According to the experimental results this

method proved to outperform the GA in terms of conver-

gence time and scalability.

C. Outline

The next section presents some of the existing NP op-

timization solutions. Section three contains some intro-

ductory aspects about Differential Evolution. Section four

presents the proposed approach based on DE. In section

five we show some numerical experiments and we com-

pare the proposed method with the existing approaches.

The last section contains the conclusions and future work.

II. RELATED WORK

The NP optimization problem stated previously is well

known in domains like Service Oriented Computing (SOC)

and Search-based Software Engineering (SBSE). We found

it discussed in [2, 3, 7, 14, 18] and other papers. In the liter-

ature, various solutions are proposed based on different

approaches such as: integer programming (greedy algo-

rithms), genetic algorithms and hill climbing algorithms. In

this section we present what we considered the most rele-

vant of these proposals.

Genetic algorithms versus linear programming. G. Can-

fora et al. [2] have compared a linear integer programming

[16] based algorithm with a genetic algorithm. As a case

study, they considered a workflow containing 8 distinct

abstract services. The number of available concrete services

per abstract service was set to: 5, 10, 15, 20 and 25. The

comparison was based on the convergence time that was

considered proportional to the CPU user time. The authors

used an elitist GA where only the best 2 individuals are

copied to next generations, a crossover probability of 0.7, a

mutation probability of 0.01 and a population of 100 indi-

viduals. The selection mechanism adopted was the roulette

wheel selection. Their conclusion was that, in contrast with

linear integer programming (the widely adopted approach at

the moment), GA is able to deal with QoS attributes having

non-linear aggregation functions. Also, GA can scale-up

when the number of concrete services per abstract service

increases. When the workflow size and the number of con-

crete services per abstract service are limited and there is no

need to use non-linear aggregation functions, integer pro-

gramming is however preferable.

A genetic algorithm for services deployment optimiza-

tion. Yves Vanrompay et al. [14] also propose to use genetic

 3

Meditech2011_L1801

algorithms for mobile service composition and deployment.

In this case, the problem is formulated slightly different:

there is a system consisting of several nodes on which a

composite service can be deployed in a distributed manner.

The goal is to deploy the composite service onto a set of

connected nodes in a way that the allocation meets the given

QoS constraints and minimizes the communication cost

between the nodes. A set of constraints are added to the

problem model for specifying if a certain component can be

deployed on a specific node. The authors prove that GAs

provide a scalable mechanism which offers improvements

over relevant solutions.

Genetic algorithms versus greedy algorithms. Liu

Xiangwei et al. [7] also suggest that genetic algorithms are a

good approach for semi-automatic service composition. The

paper presents an independent global constrains-aware Web

service composition method based on extended Color Petri

net (eCPN) and a genetic algorithm (GA). The authors

compared the genetic algorithm with a greedy algorithm and

the conclusion was that GA has higher execution efficiency

and success rate.

Weise et al. [15] also compare genetic algorithms with

greedy algorithms and conclude that GAs offers a good

exploration of the solutions space but they are slower than

the greedy algorithm. Other advantages of the genetic algo-

rithms approach are the generality and the extensibility.

The large majority of existing proposals indicate genetic

algorithms as the best approach for large search spaces:

complex composite services with numerous abstract ser-

vices and numerous concrete services. One of the main

advantages of the GA is scalability.

Some existing research, as for instance Tusar and Filipic

[13], show that for some general optimization problems, the

algorithms based on Differential Evolution (DE) [11] per-

formed significantly better than the corresponding genetic

algorithms. This fact motivated us to choose a DE-based

approach.

III. DIFFERENTIAL EVOLUTION

The DE algorithm was introduced by Storn and Price

[11]. DE is a population based, stochastic, and continuous

function optimizer [12] where distance and direction infor-

mation from the current population is used to guide the

search process [4]. DE is known to be able to handle non-

differentiable, nonlinear, and multimodal objective func-

tions, to be easy to use, and to converge consistently to the

global optimum in consecutive, independent trials.

Essentially, for each individual of the population (target

vector xi(t)), a mutant vector mi(t) is first generated by add-

ing the weighted difference (difference vector) between two

randomly chosen vectors (parameter vectors pi1(t) and pi2(t))

to a third chosen vector (base vector bi3(t)) as follows:

mi(t) = bi3(t) + F ·(pi1(t) − pi2(t)) (1)

where i ≠ i1 ≠ i2 ≠ i3; i1, i2 are randomly and uniformly

chosen between 1 and the population size and F  +
 is the

scaling factor, controlling the amplification of the differen-

tial variation.

Secondly, one child, called trial vector, is obtained by

crossover of the mutant vector and the target vector. Finally,

the target vector is replaced by the best of either the trial or

target vector.

One issue in using Differential Evolution derives from

the fact that DE was originally proposed to solve problems

defined in a continuous domain and the problem we want to

solve is discrete. Since the objective functions we want to

optimize are of the form f : D  , where D is a discrete

domain, DE can't be used in its canonical form.

Several methods to apply differential evolution for dis-

crete variables were discussed in the literature [1, 6, 9, 17],

two of which are discussed below: TruncDE and XueDE.

TruncDE was proposed by Lampinen and Zelinka [6] for

applying DE to integer-valued problems. They maintain

floating-point variables for internal DE computations, and

truncate the values when evaluating the fitness function

f(yi), where

yi =
xi

INT (x i)

ì

í
ï

îï

 for continuous variables
(2)

for discrete variables

xi  D and INT is a function that converts a floating-point

number to an integer by truncation.

For finite discrete domains, the authors propose that in-

stead of attributing the actual discrete values to xi, this

should store the index of the discrete value in the corre-

sponding subset of values. Then, this problem can be han-

dled as an integer problem.

Xue et al. [17] replace the mutation operator of DE with

a conditional operator based on three probabilities: greedy

probability pg, mutation probability pm and crossover proba-

bility pc. A new individual is generated with the following

rule:

yi =

xbest j

rand(W j)

xa j

x j

ì

í

ï
ïï

î

ï
ï
ï

r ≤ pg

(3)

pg < r ≤ pg + pm

pg + pm < r ≤ pg + pm + pc

otherwise

where r is a random number, xbestj is the individual with

the highest fitness value from the population, j contains all

the possible values for allele j, xa j
 is a randomly selected

individual from parent population that is distinct with xj.

4

Meditech2011_L1801

IV. PROPOSED APPROACH

A. Services technologies

Several technologies for creating and executing business

workflows (such as the one depicted in Fig. 1.) exist: WS-

BPEL (Web Services Business Process Execution Lan-

guage) [10], WSCI (Web Service Choreography Interface),

and others.

The most widely used standard for composing services,

WS-BPEL, was chosen as service model. In WS-BPEL, a

business process (workflow) consists in a set of activities

that are executed according to some control structures. Such

control structures include: flow, sequence, switch and while.

Flow is used to define concurrent activities. A flow com-

pletes when all its activities did complete. A sequence is a

set of activities that are executed one after the other. Switch

selects between any number of case branches based on a

condition. While is used to create conditional loops.

B. Genotype

Let SA={SA1, SA2, .., SAm} be the set of abstract services

from a business workflow and SCi={SCi,1, SCi,2, .., SCi,n} the

set of concrete services that can realize the abstract service

SAi and Qi,j=(t, r, a, c) the vector of QoS properties (re-

sponse time - t, rating - r, distance - d and cost - c) for SCi,j.

For the problem of services QoS optimization, the ge-

nome is usually encoded as a vector of integers: the ordinal

value represents the identity of the abstract service and the

cardinal value corresponds to the concrete service or to the

execution node.

The genome encoding is depicted in Fig. 2 and was ini-

tially proposed in [2]. It consists in an array of integer val-

ues and has the length equal to the number of abstract ser-

vices in SA. Each gene stores the index of the concrete

service that realizes the corresponding abstract service.

C. Fitness assignment

The fitness is assigned to a composite service function of

its QoS attributes. But the composite service QoS is not

given. Thus, it is necessary to compute the QoS of a compo-

site service starting from the QoS of the concrete services

called by that composite service. This operation is called

QoS aggregation.

The aggregation operations depend on the composite ser-

vice architecture. Table 1 shows how the aggregate QoS is

computed for each control structure. For flow and sequence

the QoS vector for individual services is sufficient to evalu-

ate the aggregate QoS. For example, since flow executes

several activities in parallel, the total response time is given

by the maximum response time of all executed activities.

Fig. 2 Genome encoding [2]

Control struct.

QoS Property

Flow Sequence Switch While

Response Time (T)

iÎ1..m
max(ti)

ti
i=1

m

å pi × ti
i=1

m

å
k × t

Rating (R) ri
i=1

m

Õ ri
i=1

m

Õ pi × ri
i=1

m

å

rk

Distance (D) di
i=1

m-1

å di
i=1

m-1

å pi ×di
i=1

m-1

å
k ×d

Cost (C) ci
i=1

m

å ci
i=1

m

å pi ×ci
i=1

m

å
k ×c

Table 1. QoS Aggregation

In case of the switch construct, the BPEL process needs

to be monitored at runtime during multiple executions, to

determine the probabilities pi associated to each case

branch, pi =1
i=1

m

å .

pi represents the probability to select case branch i. In

case of the while loop, the average number of iterations k is

also determined during monitoring.

To evaluate the quality of each potential solution, we

consider an aggregate objective function (AOF) similar to

the one proposed by Canfora et al. [2]:

F(y) =
w1 ×R

w2 ×T +w3 ×D+w4 ×C
 (4)

where wi are the weights that correspond to the im-

portance of each QoS property to the user and R, T, D, C are

the aggregate QoS values for the business workflow.

 5

Meditech2011_L1801

V. NUMERICAL EXPERIMENTS AND EVALUATION

In order to test our solution, we implemented the follow-

ing algorithms:

1. TruncDE - the DE algorithm based on Lampinen

and Zelinka's proposal [6] with the parameters: scaling

factor F = 0.95, jitter F_NOISE = 0.001 and crossover

constant Cr = 0.95. The strategy used for Differential Evo-

lution is DE/best/1/bin. This means that the base vector is

the best vector from the population, one difference vector is

considered for generating the new vector and uniform

crossover is used, based on a binomial distribution.

2. XueDE - the DE algorithm proposed by Xue et al.

[17] with the following parameters: DE/best/1/bin strategy,

scaling factor F = 0.9, jitter F_NOISE = 0.25 and crossover

constant Cr = 0.95. The probabilities for the conditional

operator in equation (3) are: greedy probability pg = 0.1,

mutation probability pm = 0.65 and crossover probability

pc= 0.2.

3. IntGA - the GA algorithm proposed by Canfora et

al. [2] with the parameters: uniform crossover where one

parent is selected using tournament selection and the second

parent is selected using roulette-wheel selection, the tour-

nament size is 5. The mutation probability suggested in [2]

is pm = 0.01.

For all these algorithms, the population was limited to

100 individuals, which were evolved for 1000 generations.

We conducted experiments for 25 scenarios that include all

combinations of m  {10, 20, 30, 40, 50} abstract services

and n  {10, 20, 30, 40, 50} concrete services. Each scenar-

io ran 100 times and the results were averaged. All algo-

rithms were implemented using ECJ version 20 [8].

Figures 3 – 7 show most significant numerical results for

two of the considered test scenarios.

A case with a business workflow consisting in m=10 ab-

stract services, each of them having n=10 concrete alterna-

tive services was evaluated. The results are depicted in Fig.

3. Within the first 80 generations all algorithms find a very

good individual. Then, the best fitness of the population

increases at a very slow rate. The fastest algorithm for this

scenario is TruncDE.

A more complex scenario, involving a business work-

flow consisting in m=20 abstract services, each of them

having n=40 alternatives is presented in Fig. 4. We notice

that when increasing the complexity of the problem, XueDE

becomes the fastest algorithm to converge, while TruncDE

is the slowest. IntGA’s performance is above average, being

comparable to the best DE in every scenario.

Since our aggregate fitness function (4) is composed of

several objectives, some requiring to be maximized, others

requiring to be minimized, we present the evolution of the

objectives represented by the distance, cost and rating for

the second scenario in Fig. 5 – 7.

These results show that the proposed DE approach

(TruncDE and XueDE) outperforms the genetic algorithm

proposed by Canfora et al. IntGA [2]) for solving the NP-

hard problem of QoS-based service optimization.

Fig. 3 The evolution of the best fitness over 90 generations for m=10
abstract services and n=10 concrete services

Fig. 4 The evolution of the best fitness over 200 generations for m=20

abstract services and n=40 concrete services

Fig. 5 Distance minimization during 200 generations for m=20 abstract

services and n=40 concrete services

6

Meditech2011_L1801

Fig. 6 Cost minimization during 200 generations for m=20 abstract ser-

vices and n=40 concrete services

Fig. 7 Rating maximization during 200 generations for m=20 abstract

services and n=40 concrete services

VI. CONCLUSION

This paper proposes a method to compose and optimize

medical services as business workflows. Such a workflow

consists in a set of abstract services, and for each abstract

service there are several concrete services. Since each medi-

cal service has different QoS parameters such as response

time, rating, distance and cost, determining the optimal

combination of concrete services that realize the abstract

services of the business workflow is an NP hard problem.

To solve this problem, we propose a new solution, based

on Differential Evolution. We implemented two Discrete

DE algorithms from the literature TruncDE [6] and XueDE

[17] which we adapted to solve the services QoS optimiza-

tion problem. We compare these algorithms with the genetic

algorithm proposed by Canfora et al. in [2] – IntGA.

The results show that the approach based on DE outper-

forms the genetic algorithms. TruncDE proved to be suited

for scenarios of low complexity (up to 15 abstract services,

each of them having up to 40 alternatives), while XueDE

was superior for scenarios of medium and high complexity.

The performance of IntGA was average, but it was not the

slowest to converge in any of the test scenarios.

As future work, we intend do some more comparative

experiments with other meta-heuristics such as: hill-

climbing, simulated annealing and others. Another future

direction is to develop a solution based on multi-objective

optimization algorithms.

ACKNOWLEDGMENT

This project was supported by the national project code

TE 252 financed by CNCSIS-UEFISCSU.

REFERENCES

1. M. Zhang, S. Zhao, and X. Wang. Multi-objective evolutionary

algorithm based on adaptive discrete differential evolution. In Pro-

ceedings of the Eleventh conference on Congress on Evolutionary
Computation, CEC’09, pages 614–621, Piscataway, NJ, USA, 2009.

IEEE Press.

2. G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach
for qos-aware service composition based on genetic algorithms. In

Proceedings of the 2005 conference on Genetic and evolutionary

computation, GECCO’05, pages 1069–1075, New York, NY, USA,
2005. ACM.

3. D. Comes, H. Baraki, R. Reichle, M. Zapf, and  K. Geihs. Heuristic

approaches for qos-based service selection. In ICSOC 2010, Lecture
Notes in Computer Science, 2010.

4. A. P. Engelbrecht. Computational Intelligence: An Introduction. John

Wiley and Sons, 2nd edition, 2007.

5. J. Kennedy and R. Eberhart. A discrete binary version of the particle

swarm algorithm. In Systems, Man, and Cybernetics, 1997. ’Compu-

tational Cybernetics and Simulation’., 1997 IEEE International Con-
ference on, volume 5, pages 4104 –4108 vol.5, Oct. 1997.

6. J. Lampinen and I. Zelinka. Mechanical engineering design optimiza-

tion by differential evolution, pages 127–146. McGraw-Hill Ltd., UK,
Maidenhead, UK, England, 1999.

7. X. Liu, Z. Xu, and L. Yang. Independent global constraints-aware

web service composition optimization based on genetic algorithm. In-
telligent Information Systems, IASTED International Conference on,

0:52–55, 2009.

8. S. Luke. Ecj - a java-based evolutionary computation research system.
9. G. Onwubolu and D. Davendra. Scheduling flow shops using differ-

ential evolution algorithm. European Journal of Operational Research,

171(2):674 – 692, 2006.
10. Organization for the Advancement of Structured Information Stand-

ards (OASIS). Web Services Business Process Execution Language

(WS-BPEL) Version 2.0, April 2007.
11. R. Storn and K. Price. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces.

Technical Report TR-95-012, March 1995.
12. R. Storn and K. Price. Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces. Journal of
Global Optimization, 11:341-359, 1997.

13. T. Tusar and B. Filipic. Differential evolution versus genetic algo-

rithms in multiobjective optimization. In Proceedings of the 4th inter-
national conference on Evolutionary multi-criterion optimization,

EMO’07, pages 257–271, Berlin, Heidelberg, 2007. Springer-Verlag.

14. Y. Vanrompay, P. Rigole, and Y. Berbers. Genetic algorithm-based
optimization of service composition and deployment. In Proceedings

of the 3rd international workshop on Services integration in pervasive

environments, SIPE’08, pages 13–18, New York, NY, USA, 2008.
15. T. Weise, S. Bleul, D. Comes, and K. Geihs. Different approaches to

semantic web service composition. In

16. L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,  J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services composition.

IEEE Trans. Softw. Eng., 30:311–327, May 2004.

17. F. Xue, A. Sanderson, and R. Graves. Multi-objective differential
evolution and its application to enterprise planning. In Robotics and

Automation, 2003. Proceedings. ICRA ’03. IEEE International Con-

ference on, volume 3, pages 3535 – 3541 vol.3, 2003.
18. L. Alboaie, T. Barbu. Reputation System User Classification Using a

Hausdorff-Based Metric. Computational Intelligence for Modelling

Control & Automation, 2008 International Conference on, pp. 1035-
1040, Dec. 2008

