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Abstract. This paper presents alternative security methods based on DNA. 

From the alternative security methods available, a DNA algorithm was 

implemented using symmetric coding in BioJava and MatLab. As results, a 

comparison has been made between the performances of different standard 

symmetrical algorithms using dedicated applications. In addition to this, we 

also present an asymmetric key generation and DNA security algorithm. The 

asymmetric key generation algorithm starts from a password phrase. The 

asymmetric DNA algorithm proposes a mechanism which makes use of more 

encryption technologies. Therefore, it is more reliable and more powerful than 

the OTP DNA symmetric algorithm. 

 Keywords: DNA security, BioJava, asymmetric cryptography. 

1   Introduction 

With the growth of the information technology (IT) power, and with the emergence of 

new technologies, the number of threats a user is supposed to deal with grew 

exponentially. For this reason, the security of a system is essential nowadays. It 

doesn't matter if we talk about bank accounts, social security numbers or a simple 

telephone call. It is important that the information is known only by the intended 

persons, usually the sender and the receiver. 

In the domain of security, to ensure the confidentiality property two main 

approaches can be used: that of symmetrical and asymmetrical cryptographic 

algorithms. Cryptography consists in processing plain information [1], [2], applying a 

cipher and producing encoded output, meaningless to a third-party who does not 

know the key. Symmetrical algorithms use the same key to encrypt and decrypt the 

data, while asymmetric algorithms use a public key to encrypt the data and a private 

key to decrypt it. By keeping the private key safe, you can assure that the data 

remains safe. The disadvantage of asymmetric algorithms is that they are 



computationally intensive. Therefore, in security a combination of asymmetric and 

symmetric algorithms is used. 

In the future it is most likely that the computer architecture and power will 

evolve. Such systems might drastically reduce the time needed to compute a 

cryptographic key. As a result, security systems need to find new techniques to 

transmit the data securely without relying on the existing pure mathematical methods. 

We therefore use alternative security concepts [9]. The major algorithms which 

are accepted as alternative security are the elliptic, vocal, quantum and DNA 

encryption algorithms. Elliptic algorithms are used for portable devices which have a 

limited processing power, use a simple algebra and relatively small ciphers. 

The quantum cryptography is not a quantum encryption algorithm but rather a 

method of creating and distributing private keys. It is based on the fact that photons 

send towards a receiver changing irreversibly their state if they are intercepted. 

Quantum cryptography was developed starting with the 70s in Universities from 

Geneva, Baltimore and Los Alamos. 

In [18] two protocols are described, BB84 and BB92, that, instead of using 

general encryption and decryption techniques, verify if the key was intercepted. This 

is possible because once a photon is duplicated, the others are immediately noticed. 

However, these techniques are still vulnerable to the Man-in-the-Middle and DoS 

attack. 

DNA Cryptography is a new field based on the researches in DNA computation 

[4] and new technologies like: PCR (Polymerase Chain Reaction), Microarray, etc. 

DNA computing has a high level computational ability and is capable of storing huge 

amounts of data. A gram of DNA contains 10
21

 DNA bases, equivalent to 10
8
 

terabytes of data. In DNA cryptography we use existing biological information from 

DNA public databases to encode the plaintext [7], [12]. 

The cryptographic process can make use of different methods. In [9] the one-

time pads (OTP) algorithms are described, which is one of the most efficient security 

algorithms, while in [15] a method based on the DNA splicing technique is detailed. 

In the case of the one-time pad algorithms, the plaintext is combined with a secret 

random key or pad which is used only once. The pad is combined with the plaintext 

using a typical modular addition, or an XOR operation, or another technique. In the 

case of [15] the start codes and the pattern codes specify the position of the introns, so 

they are no longer easy to find. However, to transmit the spliced key, they make use 

of public-key secured channel. 

Additionally, we will describe an algorithm which makes use of asymmetric 

cryptographic principles. The main idea is to avoid the usage of both purely 

mathematical symmetric and asymmetric algorithms and to use an advanced 

asymmetric algorithm based on DNA. The speed of the algorithm should be quite 

high because we make use of the powerful parallel computing possibilities of the 

DNA. Also, the original asymmetric keys are generated starting from a user password 

to avoid their storage. 

This paper is structured in 5 sections. In section 2 we present some general 

aspects about the genetic code. In section 3 we show 2 algorithms for the symmetric 

DNA implementation, a MatLab implementation and one realized in BioJava. We will 



also expose the limitation imposed by these platforms. In section 4 we describe an 

advanced asymmetric DNA encryption algorithm. We will conclude this paper in 

section 5 where a comparison between the obtained results is made and the 

conclusions and possible continuations of our work are presented. 

2   General aspects about Genetic code 

There are 4 nitrogenous bases used in making a strand of DNA. These are adenine 

(A), thymine (T), cytosine (C) and guanine (G). These 4 bases (A, T, C and G) are 

used in a similar way to the letters of an alphabet. The sequence of these DNA bases 

will code specific genetic information [7]. 

In our previous work we used a one-time pad, symmetric key cryptosystem [19]. 

In the OTP algorithm, each key is used just once, hence the name of OTP. The 

encryption process uses a large non-repeating set of truly random key letters. Each 

pad is used exactly once, for exactly one message.  The sender encrypts the message 

and then destroys the used pad. As it is a symmetric key cryptosystem, the receiver 

has an identical pad and uses it for decryption. The receiver destroys the 

corresponding pad after decrypting the message. New message means new key letters. 

A cipher text message is equally likely to correspond to any possible plaintext 

message. Cryptosystems which use a secret random OTP are known to be perfectly 

secure. 

By using DNA with common symmetric key cryptography, we can use the 

inherent massively-parallel computing properties and storage capacity of DNA, in 

order to perform the encryption and decryption using OTP keys. The resulting 

encryption algorithm which uses DNA medium is much more complex than the one 

used by conventional encryption methods. 

To implement and exemplify the OTP algorithm, we downloaded a chromosome 

from the open source NCBI GenBank. As stated, in this algorithm the chromosomes 

are used as cryptographic keys. They have a small dimension and a huge storage 

capability. There is a whole set of chromosomes, from different organisms which can 

be used to create a unique set of cryptographic keys. In order to splice the genome, we 

must know the order in which the bases are placed in the DNA string. 

The chosen chromosome was “Homo sapiens FOSMID clone ABC24-1954N7 

from chromosome 1”. It's length is high enough for our purposes (37983 bases). 

GenBank offers different formats in which the chromosomal sequences can be 

downloaded: 

 GenBank,  

 GenBank Full,  

 FASTA,  

 ASN.1.  

We chose the FASTA format because it’s easier to handle and manipulate. To 

manipulate the chromosomal sequences we used BioJava API methods, a framework 

for processing DNA sequences. Another API which can be used for managing DNA 



sequences is offered by MatLab. Using this API, a dedicated application has been 

implemented [10].  

In MatLab, the plaintext message was first transformed in a bit array. An 

encryption unit was transformed into an 8 bit length ASCII code.  After that, using 

functions from the Bioinformatics Toolbox, each message was transformed from 

binary to DNA alphabet. Each character was converted to a 4-letter DNA sequence 

and then searched in the chromosomal sequence used as OTP, [19]. 

Next, we will present an alternative implementation which makes use of the 

BioJava API. 

The core of BioJava is actually a symbolic alphabet API, [20]. Here, sequences 

are represented as a list of references to singleton symbol objects that are derived 

from an alphabet. The symbol list is stored as often as possible. The list is compressed 

and uses up to four symbols per byte.  

Besides the fundamental symbols of the alphabet (A, C, G and T as mentioned 

earlier), the BioJava alphabets also contain extra symbol objects which represent all 

possible combinations of the four fundamental symbols. The structure of the BioJava 

architecture together with its most important APIs is presented below: 

 

 

Figure 1. The BioJava Architecture 

 

By using the symbol approach, we can create higher order alphabets and 

symbols. This is achieved by multiplying existing alphabets. In this way, a codon can 

be treated as nothing more than just a higher level alphabet, which is very convenient 

in our case. With this alphabet, one can create views over sequences without 

modifying the underlying sequence. 

In BioJava a typical program starts by using the sequence input/output API and the 

sequence/feature object model. These mechanisms allow the sequences to be loaded 

from a various number of file formats, among which is FASTA, the one we used. The 

obtained results can be once more saved or converted into a different format. 



3   DNA Cryptography Implementations 

In this chapter we will start by presenting the initial Java implementation of the 

symmetric OTP encryption algorithm, [19]. We will then continue by describing the 

corresponding BioJava implementation and some drawbacks of this symmetric 

algorithm. 

 

3.1. Java implementation 

 

Due to the restrictions that limit the use of JCE, the symmetric cryptographic 

algorithm was developed using OpenJDK, which is based on the JDK 6.0 version of 

the Java platform and does not enforce certificate verification. This algorithm 

involves three steps: key generation, encryption and decryption. 

In this algorithm, the length of the key must be exactly the same as the length of 

the plaintext. In this case, the plaintext is the secret message, translated according to 

the following substitution alphabet: 00 – A, 01 – C, 10 – G and 11 – T. Therefore, the 

length of the key is three times the length of the secret message. So, when trying to 

send very long messages, the length of the key would be huge. For this reason, the 

message is broken into fixed-size blocks of data. The cipher encrypts or decrypts one 

block at a time, using a key that has the same length as the block. 

The implementation of block ciphers raises an interesting problem: the message 

we wish to encrypt will not always be a multiple of the block size. To compensate for 

the last incomplete block, padding is needed. However, this DNA Cipher will not use 

a standard padding scheme but a shorter version (a fraction) of the original key. The 

only mode of operation implemented by the DNA Symmetric Cipher is ECB 

(Electronic Code Book). ECB mode has the disadvantage that the same plaintext will 

always encrypt to the same ciphertext, when using the same key. 

As we mentioned, the DNA Cipher applies a double encryption in order to 

secure the message we want to keep secret. The first encryption step uses a 

substitution cipher. 

For applying the substitution cipher a HashMap object was used. HashMap is a 

java.util class that implements the Map interface. These objects associate a value to a 

specified unique key in the map. Each character of the secret message is represented 

by a combination of 3 DNA bases. 

The result after applying the substitution cipher is a string containing characters 

from the DNA alphabet (A, C, G and T). This will further be transformed into a byte 

array, together with the key. The exclusive or operation (XOR) is then applied to the 

key and the message in order to produce the encrypted message. 

When decrypting an encrypted message, it is essential to have the key and the 

substitution alphabet. While the substitution alphabet is known, being public, the key 

is kept secret and is given only to the addressee. Any malicious third party won’t be 

able to decrypt the message without the original key. 

For the decryption, the received message is XOR-ed with the secret key which 

results in a DNA-based text. This text is then broken into groups of three characters 

and with the help of the reverse map each such group will be replaced with the 



corresponding letter. The reverse map is the inverse of the one used for translating the 

original message into a DNA message. This way the receiver is able to read the 

original secret message. 

A powerful implementation should consider medical analysis of a patient. In [8] 

an improved DNA algorithm is proposed. 

 

3.2 BioJava Implementation 

 

In this approach, we use more steps to obtain the DNA code starting from the 

plaintext. For each character from the message we wish to encode, we first apply the 

get_bytes() method which returns an 8bit ASCII string of the character we wish to 

encode. Further, we apply the get_DNA_code() method which converts the obtained 8 

bit string, corresponding to an ASCII character, into DNA alphabet. The function 

returns a string which contains the DNA-encoded message. 

The get_DNA_code() method is the main method for converting the plaintext to 

DNA encoded text. For each 2 bits from the initial 8 bit sequence, corresponding to an 

ASCII character, a specific DNA character is assigned: 00 – A, 01 – C, 10 – G and 11 

– T. Based on this process we obtain a raw DNA message. 

 

Table 1. DNA encryption test sequence 

 

Plaintext message: „test” 

ASCII message: 116 101 115 116 

Raw DNA message: „TCACGCCCTATCTCA” 

 

The coded characters are searched in the chromosome chosen as session key at 

the beginning of the communication. The raw DNA message is split into groups of 4 

bases. When such a group is found in the chromosome, its base index is stored in a 

vector. The search is made between the first characters of the chromosome up to the 

37983
th

. At each new iteration, a 4 base segment is compared with the corresponding 

4 base segment from the raw DNA message. So, each character from the original 

string will have an index vector associated, where the chromosome locations of that 

character are found. 

The get_index()  method effectuates the parsing – the comparison of the 

chromosomal sequences and creates for each character an index vector. To parse the 

sequences in the FASTA format specific BioJava API methods were used. 

BioJava offers us the possibility of reading the FASTA sequences by using a 

FASTA stream which is obtained with the help of the SeqIOTools class. We can pass 

through each of the sequences by using a SequenceIterator object. These sequences 

are then loaded into an Sequence list of objects, from where they can be accessed 

using the SequneceAt() mrthod. 

In the last phase of the encryption, for each character of the message, a random 

index from the vector index is chosen. We use the get_random() method for this 

purpose. In this way, even if we would use the same key to encrypt a message, we 

would obtain a different result because of the random indexes. 



 

Since the algorithm is a symmetric one, for the decryption we use the same key 

as for encryption. Each index received from the encoded message is actually pointing 

to a 4 base sequence, which is the equivalent of an ASCII character. 

So, the decode() method realizes following operations: It will first extract the 

DNA 4 base sequences from the received indexes. Then, it will convert the obtained 

raw DNA message into the equivalent ASCII-coded message. From the ASCII coded 

message we finally obtain the original plaintext. And with this, the decryption step is 

completed. 

The main vulnerability of this algorithm is that, if the attacker intercepts the 

message, he can decode the message himself if he knows the coding chromosomal 

sequence used as session key. 

4   BioJava asymmetric algorithm description 

In this chapter we will present in detail an advanced method of obtaining DNA-

encoded messages. It relies on the use of an asymmetric algorithm and on key 

generation starting from a user password. 

We will also present a pseudo-code description of the algorithm. 

 

4.1 Asymmetric key generation 

 

Our first concern when it comes to asymmetric key algorithms was to develop a way 

in which the user was no longer supposed to deal with key management authorities or 

with the safe storage of keys. The reason behind this decision is fairly simple: both 

methods can be attacked. Fake authorities can pretend to be real key-management 

authorities and intruders may breach the key storage security. By intruders we mean 

both persons who have access to the computer and hackers, which illegally accessed 

the computer. 

To address this problem, we designed an asymmetric key generation algorithm 

starting from a password. The method has some similarities with the RFC2898 

symmetric key derivation algorithm [21]. The key derivation algorithm is based on a 

combination of hashes and the RSA algorithm. Below we present the basic steps of 

this algorithm: 

 Step 1: First, the password string is converted to a byte array, hashed 

using SHA256 and then transformed to BigInteger number. This number is 

transformed in an odd number, tmp, which is further used to apply the RSA 

algorithm for key generation.  

 Step 2: Starting from tmp we search for 2 random pseudo-prime number 

p and q. The relation between tmp, p and q is simple: p < tmp < q. To spare the 

computational power of the device, we do not compute traditionally if p and q 

are prime but make primality tests. 

 A primality test determines the probability according to which a number 

is prime. The sequence of the primality test is the following: First, trial 



divisions are carried out using prime numbers below 2000. If any of the primes 

divides this BigInteger, then it is not prime. Second, we perform base 2 strong 

pseudo-prime test.  If this BigInteger is a base 2 strong pseudo-prime, we 

proceed on to the next step. Last, we perform the strong Lucas pseudo-prime 

test. If everything goes well, it returns true and we declare the number as being 

pseudo-prime. 

 Step 3: Next, we determine Euler totient: phi = (p - 1) * (q - 1) ; and n = 

p*q; 

 Step 4: Next, we determine the public exponent, e. The condition 

imposed to e is to be coprime with phi.  

 Step 5: Next, we compute the private exponential, d and the CRT 

(Chinese Reminder Theorem) factors: dp, dq and qInv. 

 Step 6: Finally, all computed values are written to a suitable structure, 

waiting further processing. 

 The public key is released as the public exponent, e together with n. 

 The private key is released as the private exponent, d together with n 

and the CRT factors. 

The scheme of this algorithm is presented below: 

 

Figure 2. Asymmetric RSA compatible key generation 

 

In comparison with the RFC2898 implementation, here we no longer use several 

iterations to derive the key. This process has been shown to be time consuming and 

provide only little extra security. We therefore considered it safe to disregard it. 



The strength of the key-generator algorithm is given by the large pseudo-prime 

numbers it is using and of course, by the asymmetric algorithm. By using primality 

tests one can determine with a precision of 97 – 99% that a number is prime. But most 

importantly, the primality tests save time. So, the average computation time, including 

appropriate key export, for the whole algorithm is 143 ms. After the generation 

process was completed, the public or private key can be retrieved using the static 

ToXmlString method. 

Next, we will illustrate the algorithm through a short example. Suppose the user 

password is “DNACryptography”. Starting from this password, we compute its hash 

with SHA256. The result is shown below. This hashed password is converted into the 

BigInteger number tmp. Starting from it, and according to the algorithm described 

above, we generate the public exponent e and the private exponent d. 

 

Table 2. Asymmetric DNA encryption test sequence 

 

user password: “DNACryptography” 

hashed password: “ed38f5aa72c3843883c26c701dfce03e0d5d6a8d” 

tmp = 845979413928639845587469165925716582498797231629929694 

      467562025178813756763597266208298952112229 

e = 1063 

d = 6220972718371830069314540334409408504766864571798543078 

    2067931848646161930033787072523479660987299191525204542 

    4327429202622472207387685378317736890998257538720690765 

    466158123868118572427782935 

 

We conducted several tests and the generated keys match the PKCS #5 

specifications. Objects could be instantiated with the generated keys and used with the 

normal system-build RSA algorithm. 

 

4.2 Asymmetric DNA algorithm 

 

The asymmetric DNA algorithm proposes a mechanism which makes use of three 

encryption technologies. In short, at the program initialization, both the initiator and 

its partner generate a pair of asymmetric keys. Further, the initiator and its partner 

negotiate which symmetric algorithms to use, its specifications and of course, the 

codon sequence where the indexes of the DNA bases will be looked up. After this 

initial negotiation is completed, the communication continues with normal message 

transfer. The normal message transfer supposes that the data is symmetrically 

encoded, and that the key with which the data was encoded is asymmetrically 

encoded and attached to the data. This approach was first presented in [17]. 

Next, we will describe the algorithm in more detail and also provide a pseudo-

code description for a better understanding. 

 



Step 1: At the startup of the program, the user is asked to provide a password 

phrase. The password phrase can be as long or as complicated as the user sees fit. The 

password phrase will be further hashed with SHA256. 

Step 2: According to the algorithm described in section 4.1, the public and 

private asymmetric keys will be generated. Since the pseudo-prime numbers p and q 

are randomly chosen, even if the user provides the same password for more sessions, 

the asymmetric keys will be different. 

Step 3: The initiator selects which symmetric algorithms will be used in the case 

of normal message transfer. He can choose between 3DES, AES and IDEA. Further, 

he selects the time after which the symmetric keys will be renewed and the symmetric 

key length. Next, he will choose the codon sequence where the indexes will be 

searched. For all this options appropriate visual selection tools are provided. 

Step 4: The negotiation phase begins. The initiator sends to its partner its public 

key. The partner responds by encrypting his own public key with the initiators public 

key. After the initiator receives the partner's public key, he will encrypt with it the 

chosen parameters. Upon receiving the parameters of the algorithms, the partner may 

accept or propose his own parameters. In case the initiators parameters are rejected, 

the parties will chose the parameters which provide the maximum available security. 

Step 5: The negotiation phase is completed with the sending of a test message 

which is encrypted like any regular message would be encrypted. If the test message 

is not received correctly by any of the two parties or if the message transfer takes too 

much time, the negotiation phase is restarted. In this way, we protect the messages 

from tampering and interception. 

Step 6: The transmission of a normal message. In this case, the actual data will 

be symmetrically encoded, according to the specifications negotiated before. The 

symmetric key is randomly generated at a time interval t. The symmetric key is 

encrypted with the partner's public key and then attached to the message. So, the 

message consists in the data, encrypted with a symmetric key and the symmetric key 

itself, encrypted with the partner's public key. We chose to adopt this mechanism 

because symmetric algorithms are faster than asymmetric ones. Still, in this scenario, 

the strength of the algorithm is equivalent to a fully asymmetric one because the 

symmetric key is encrypted asymmetrically. The procedure is illustrated below: 

 

Figure 3. Encryption scheme 

 

Next, the obtained key will be converted into a byte array. The obtained array 

will be converted to a raw DNA message, by using a substitution alphabet. Finally, 

the raw DNA message is converted to a string of indexes and then transmitted. 



 

The decryption process is fairly similar. The user converts the index array back 

to raw DNA array and extracts the ASCII data. From this data he will decipher the 

symmetric key used for that encryption, by using its private key. Finally the user will 

obtain the data by using the retrieved symmetric key. At the end of the 

communication, all negotiated data is disregarded (symmetric keys used, the 

asymmetric key pair and the codon sequence used). 

5   Conclusions and compared results 

In this chapter we will present the results we obtained for the symmetric algorithm 

implementation along with the conclusions of our present work. 

Our first goal was to compare the time required to complete the encryption/ 

decryption process. We compared the execution time of the DNA Symmetric Cipher 

with the time required by other classical encryption algorithms. We chose a random 

text of 360 characters, in string format which was applied to all tests. 

The testing sequence is: 

 

Table 3. Testing sequence 

 

k39pc3xygfv(!x|jl+qo|9~7k9why(ktr6pkiaw|gwnn&aw+be|r|*4u+rz$ 

wm)(v_e&$dz|hc7^+p6%54vp*g*)kzlx!%4n4bvb#%vex~7c^qe_d745h40i 

$_2j*6t0h$8o!c~9x4^2srn81x*wn9&k%*oo_co(*~!bfur7tl4udm!m4t+a 

|tb%zho6xmv$6k+#1$&axghrh*_3_zz@0!05u*|an$)5)k+8qf0fozxxw)_u 

pryjj7_|+nd_&x+_jeflua^^peb_+%@03+36w)$~j715*r)x(*bumozo#s^j 

u)6jji@xa3y35^$+#mbyizt*mdst&h|hbf6o*)r2qrwm10ur+mbezz(1p7$f 

 
To be able to compute the time required for encryption and decryption, we used 

the public static nanoTime() method from the System class which gives the current 

time in nanoseconds. We called this method twice: once before instantiating the 

Cipher object, and one after the encryption. By subtracting the obtained time 

intervals, we determine the execution time. 

It is important to understand that the execution time varies depending on the used 

OS, the memory load and on the execution thread management. We therefore 

measured the execution time on 3 different machines: 

 System 1: Intel Core 2 Duo 2140, 1.6 GHz, 1 Gb RAM, Vista OS 

 System 2: Intel Core 2 Duo T6500, 2.1 GHz, 4 Gb RAM, Windows 7 

OS 

 System 3: Intel Dual Core T4300, 2.1 GHz, 3 Gb RAM, Ubuntu 10.04 

OS 

 

Next, we present the execution time which was obtained for various symmetric 

algorithms in the case of the first, second and the third system, for different cases: 



Table 4. Results obtained for System 1 

 

Analysis results for Vista OS 

DES 
Encryption 50 26 1.03 0.81 0.84 0.84 

Decryption 1.63 0.35 0.33 0.32 0.34 0.36 

AES 
Encryption 80 26 0.92 0.95 0.88 0.54 

Decryption 27 2.09 0.30 22.26 0 0.14 

Blowfish 
Encryption 65 10.91 25 24 0.15 1.45 

Decryption 3 1.87 1.72 29 1.09 1 

3DES 
Encryption 82 24 2.41 25 2.12 1.42 

Decryption 1.56 1.42 26 1.23 1.41 0.66 

BIO sym. 

algorithm 

Encryption 4091 4871 4875 4969 4880 4932 

Decryption 6.29 4.19 4.19 4.19 4.19 4.19 

 

  

Table 5. Results obtained for System 2 

 

Analysis results for Windows 7 

DES 
Encryption 34 1.43 1.09 1.2 1.73 1.19 

Decryption 0.75 0.37 0.44 0.42 0.38 0.37 

AES 
Encryption 28 1.3 1.16 0.07 1.77 0.82 

Decryption 0.12 0.14 2.09 0.9 2.09 0.16 

Blowfish 
Encryption 22 28.4 6.2 4 1.6 2.83 

Decryption 2.24 2.21 1.8 1.8 1.8 1.71 

3DES 
Encryption 41 6.59 2.78 2.62 2.69 2.12 

Decryption 1.12 1.78 1.24 1.74 1.48 1 

BIO sym. 

algorithm 

Encryption 3970 3884 3887 3901 3900 3910 

Decryption 4.19 4.19 4.19 2.09 4.19 2.09 

 
  

Table 6. Results obtained for System 3 

 

Analysis results for Ubuntu 10.04 

DES 
Encryption 12.64 0.9 0.61 0.59 0.61 0.56 

Decryption 1.24 0.45 0.44 0.45 0.43 0.41 

AES 
Encryption 0.66 0.6 0.63 0.63 0.62 0.63 

Decryption 0.66 0.71 0.64 0.64 0.19 0.19 

Blowfish 
Encryption 37.07 32 19 13 15 14 

Decryption 0.81 0.77 0.81 0.58 0.74 0.59 

3DES 
Encryption 14 11 17.7 10.21 10.11 13 

Decryption 0.77 0.79 0.78 0.6 0.6 0.6 

BIO sym. 

algorithm 

Encryption 1896 1848 1857 1846 1850 1850 

Decryption 2.62 13.1 1.83 1.31 1.57 2.62 



 
Below, we will illustrate the maximum, mean, olimpic (by eliminating the 

absolute minimum and maximum values) and minimum encryption and decryption 

time for the Symmetric Bio Algorithm. 

 
Figure 4. Encryption time for the Symmetric Bio Algorithm 

 
Figure 5. Decryption time for the Symmetric Bio Algorithm 



 

First of all, we can notice that the systems 1 and 2 (with Windows OS) have 

larger time variations for the encryption and decryption processes. The third system, 

based on the Linux platform, offers a better stability, since the variation of the 

execution time is smaller. 

As seen from the figures and tables above, the DNA Cipher requires a longer 

execution time for encryption and decryption, comparatively to the other ciphers. We 

would expect these results because of the type conversions which are needed in the 

case of the symmetric Bio algorithm. All classical encryption algorithms process 

array of bytes while the DNA Cipher is about strings. The additional conversions 

from string to array of bytes and back make this cipher to require more time for 

encryption and decryption then other classic algorithms. 

However, this inconvenience should be solved with the implementation of full 

DNA algorithms and the usage of Bio-processors, which would make use of the 

parallel processing power of DNA algorithms. 

In this paper we proposed an asymmetric DNA mechanism that is more reliable 

and more powerful than the OTP DNA symmetric algorithm. As future developments, 

we would like to make some test for the asymmetric DNA algorithm and increase its 

execution time. 

 

Acknowledgments. This work was supported by CNCSIS–UEFISCSU, project 

number PNII – IDEI 1083/2007-2010. 

References 

1. David Hook, Beginning Cryptography with Java, Wrox Press, (2005)   

2. Kahn D., The codebrakers  McMillan, New York, (1967) 

3. M. Schena, Microarray analysis Wiley-Liss, July (2003) 

4. L. M. Adleman, Molecular computation of solution to combinatorial problems, Science, 266, 

1021-1024, (1994) 

5. B. Schneier, Applied cryptography: protocols, algorithms, and source code in C, John Wiley 

& Sons Inc, (1996) 

6. Java Cryptography Architecture. Sun Microsystems. 

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html (2011) 

7. Genetics Home Reference. U.S. National Library of Medicine. 

http://ghr.nlm.nih.gov/handbook/basics/dna. (2011) 

8. T. Hodorogea, Mircea-F. Vaida, Blood Analysis as Biometric Selection of Public Keys, 7 th 

International Carpathian Control Conference ICCC’2006, Ostrava – Beskydy, Czech Republic, 

May 29-31, pp. 675-678, (2006) 

9. Ashish Gehani, Thomas LaBean, John Reif, DNA-Based Cryptography.  s.l.: DIMACS 

Series in Discrete Mathematics and Theoretical Computer Science, Vol. 54, and Lecture Notes 

in Computer Science, Springer, (2004)  



10. Olga Tornea, Monica Borda, Tatiana Hodorogea, Mircea-Florin Vaida, Encryption System 

with Indexing DNA Chromosomes Cryptographic Algorithm, IASTED International 

Conference on Biomedical Engineering (BioMed 2010), 15-18 Feb., Innsbruck, Austria, paper  

680-099, pp. 12-15, (2010) 

11. R. K. Wilson, The sequence of Homo sapiens FOSMID clone ABC14-50190700J6, 

submitted to http://www.ncbi.nlm.nih.gov, (2009) 

12. DNA Alphabet. VSNS BioComputing Division. http://www.techfak.uni-

bielefeld.de/bcd/Curric/PrwAli/node7.html#SECTION00071000000000000000, (2011) 

13. Wagner, Neal R., The Laws of Cryptography with Java Code. [PDF], (2003). 

14. B. Schneier, Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish): 

Springer-Verlag, andf, Fast Software Encryption, Cambridge Security Workshop Proceedings 

(1993).  

15. S. T. Amin, M. Saeb, S. El-Gindi, A DNA-based Implementation of YAEA Encryption 

Algorithm, IASTED International Conference on Computational Intelligence, San Francisco, 

pp. 120-125, (2006) 

16. BioJava - http://java.sun.com/developer/technicalArticles/javaopensource/biojava/ (2011) 

17. Nicolas Nobelis, Karima Boudaoud, Michel Riveill – “Une architecture pour le transfert 

électronique sécurisé de document”, PhD Thesis, Equipe Rainbow, Laboratories I3S – CNRS,  

Sophia-Antipolis, France, (2008) 

18. Piya Techateerawat, A Review on Quantum Cryptography Technology,  International 

Transaction Journal of Engineering, Management & Applied Sciences & Technologies, Vol. 1, 

pp. 35-41, (2010) 

19. Mircea-Florin Vaida, Radu Terec, Olga Tornea, Chiorean Ligia, Alexandra Vanea, DNA 

Alternative Security, Advances in Intelligent Systems and Technologies Proceedings 

ECIT2010 – 6th European Conference on Intelligent Systems and Technologies, Iasi, Romania, 

October 07-09, pp. 1-4, (2010) 

20. R.C.G. Holland; T. Down; M. Pocock; A. Prlić; D. Huen; K. James; S. Foisy; A. Dräger; A. 

Yates; M. Heuer; M.J. Schreiber - “BioJava: an Open-Source Framework for Bioinformatics”, 

Bioinformatics (2008) 

21. RSA Security Inc. Public-Key Cryptography Standards (PKCS) – “PKCS #5 v2.0: 

Password-Based Cryptography Standard”, (2000) 

 


