
On-demand service composition based on natural language requests

Florin-Claudiu Pop, Marcel Cremene, Michel Riveill, Mircea Vaida
mail@florinpop.com; marcel.cremene, mircea.vaida@com.utcluj.ro, riveill@unice.fr

Abstract

In a context where various services are distributed, it’s possible to compose new services dy-
namically so that completely new functionality is achieved without the need of the services to be
previously deployed. Service retrieval and service orchestration are the most common problems
when dealing with on-demand service composition and the use of natural language requests makes
these problems even more difficult.

The proposed method analyzes the semantics of the service that is requested using the natural
language and generates a composed service based on the concepts that were identified whithin the
request. The service configuration relies on advices that are defined using aspects of assembley.
Each service that is used to build the application is linked to a component that is part (i.e. a word)
of the user demand.

In contrast to other approaches, the proposed method doesn’t find services using individual words,
nor is using a controlled subset of natural language, but tries to minimize the distance between the
user demand and the potential services that can be offered. The dynamic service composition
system was designed to build functional configurations of intelligent devices inside the intelligent
house. The intelligent house was simulated using WComp, a middleware for ubiquitous computing.

1 Introduction

Background. Ever since Web 2.0 marked it’s appearance as a concept in the fall of 2004 and
introduced the principle of the Internet as a platform [1], the complexity and diversity of this
platform grew together with the more enhanced features it was providing to its users. Given the
fact that the software in the Internet era is delivered as a service, not as a product and there is no
release cycle for the services, it is the user who’s in charge of finding a service and using it.

In a near future services will be more diverse and widespread as computers will become ubiquitous.
In the same way the information across the web is structured, classified and then presented to a
user that files a natural language request to a search engine, so a collection of applications should
be assembled, classified and deployed using the services that are to be found in a given context
based on a similar unrestricted language request coming from the user.

The problem. In a context where various services with different functionality are available, it’s

1



possible to compose new services dynamically, based on a user request, only when the right selection
of components is used.

On-demand service composition involves two operations: service retrieval and service orchestra-
tion. Service retrieval refers to identifying those specific services that are addressed within the user
requestor the closest functional match to the request. The transition from a natural language re-
quest to a list of services is a challenge that is even more difficult when no restrictions are added to
control the request. Service orchestration or service assembley is the process of linking the retrieved
services in a functional flow so that the user demand is fullfiled. Both mentioned problems make the
object of this paper, but while service retrieval was the field of our research, for service orchestration
we used an existing approach.

Scenario. We consider the following scenario to illustrate the purpose of dynamic service compo-
sition based on natural language requests. A handicapped person finds himself inside an intelligent
house, surrounded by intelligent devices, sensors and actuators. Each device has its own inputs
and outputs and is able to process different types of data, leading to a large number of possible
functional combinations of those devices. The person in the intelligent house wants to use those
devices by combining them in an intelligent fashion (i.e. link the output from a sensor to the input
of an actuator), but his disability affects its possibility to physically interact with the devices or he
simply lacks any technical knowledge. Therefore, he expresses his need using the natural language
(either written or spoken): ”I want to use my remote control on the wheel chair to turn off the
light, change the channel on TV and play some music on the media center”. Each component the
user addressed within his request (remote control, light, TV, media center) provides a different
service with specific actions that can be used in various configurations. Finding a way to sort these
configurations by the relevance to the user’s request is a key requirement for the imagined scenario.
Also, when one of the devices the user wants to use is not present in the intelligent house or it
was replaced with an updated version, the system should adapt and assemble a service that is the
closest match to the user’s need.

Approach. Dynamic service composition solves the problem of adaptation to different contexts
and user preferences. Also, by composing services on demand, the learning curve required for the
user to work with new configurations is reduced as the user ”gets what he wants” from the applica-
tion. Existing systems for dynamic service composition based on natural language requests either
provide a restricted natural language interface or don’t offer support for adaptation to structural
and behavioral changes of the service configuration.

We start with an initial set of services that are discoverable across a network. The user requests a
completely new service using an unrestricted natural language sentence. In order to find the devices
the user addresses within his request, we use concepts and define a conceptual distance between
the request and a service configuration. Concepts are leafs on a lexical tree that is generated by
deriving and generalizing a notion. Once the services that match the request are identified, some
aspect oriented advices are used to connect the services so that when a service disappears from the
context or a new service is made available, the service configuration adapts.

Outline. This paper is organized as follows: the next section examines the problems a dynamic
service composition system should solve in order to be usable in the modern context of web services.
Section 3 describes the solution we propose including the principles that lead to this solution, while
section 4 focuses on the design and implementation patterns we used, along with the test results.

2



Section 5 examines some of the existing dynamic service composition approaches. The paper ends
with conclusions and further research.

2 An overview of the problem

On-demand dynamic service composition based on natural language requests raises some chal-
lenges that need to be examined before a solution is to be proposed.

Service retrieval. The first problem addressed within this paper is finding and retrieving a par-
ticular service. The large variety of Web Services useable for composition needs to be classified in
a way that would make it machine meaningful and semantic-rich for the search to provide the best
results.

One Web extension, called Semantic Web [7] is focused on enabling better Web Service inter-
operation. The Semantic Webs purpose is to bring structure to the meaningful content of Web
pages, creating an environment where software agents roaming from page to page can readily carry
out sophisticated tasks for users. One dialect of the DAML [8] family of Semantic Web markup
languages was proposed in [9] for the markup of Web Services. This so-called semantic markup
of Web services creates a distributed knowledge base (KB) that provides a means for agents to
populate their local KBs so that they can reason about Web services to perform automatic Web
service discovery, execution and composition and interoperation. But the semantic mark-up uses a
narrow, predefined vocabulary as identified in [6], which makes possible only the retrieval of those
Web services for which the vocabulary is known. Queries or requests from Web services or user
requests, using another vocabulary than the predetermined vocabulary are not suitable to find or
retrieve such a Web service. Therefore, a narrow vocabulary for the semantic mark-up of Web
services is not appropriate to be used in combination with natural language requests.

Service composition. The second problem that needs to be solved is the actual composition of the
retrieved services. There are 3 types of systems for dynamic service composition according to [4].

Template-based systems [10, 11] are using a service template to compose an application. They can
handle complex interactions between components and allow some level of flexibility by choosing dif-
ferent sets of components. The drawback of this approach is that they cannot compose applications
for which templates are not available.

Interface-based systems [12] allow the user to submit a set of inputs and outputs for the application
he is requesting. These systems have a higher adaptability than the template-based systems, but
certain applications cannot be represented as a set of inputs and outputs (i.e. an email sending
service does not output any data).

Logic-based systems [13, 14] extend the interface-based approach by adding extra information into
interface information using first order logic or linear logic. A user requests an application by submit-
ting a first order formula representing the logic that must be satisfied by the application. They are
more adaptable than the template-based systems since they dont require service templates and offer
support for more varieties of services than the interface-based systems. Their main disadvantage is
given by the fact that they are not extensible and are not suitable for a distributed environment.

Adaptation. The last, but the most important problem that needs to be solved by a dynamic

3



service composition system is the adaptation. We distinguish two types of changes that require
adaptation [15]: structure changes and behavior changes. Structural adaptation consists in modi-
fying the retrieved services while preserving the global behavior of the application. The behavior
describes the sequence of operations to be executed to fulfill the user request. Structural changes
are triggered when a retrieved services disappears from the context or is replaced by another (for
example the analog TV is replaced by a digital TV). Behavior changes are related to the user who
may decide that the current service does no longer satisfy his need.

3 Proposed solution

Premises. Our dynamic service composition system was developed out of the users need to interact
with the intelligent devices that surround him. This user-machine interaction should be as natural
as human interaction, through unrestricted natural language. We consider each intelligent device an
entity that provides one or more services to the user and has some communication capabilities. The
intelligent devices are connected to form a dynamic network inside the intelligent house, which they
use to exchange information. We assume there are 2 types of intelligent devices: client devices that
offer a basic service (e.g. a light that offers the illuminating service, a TV that offers the tuning
service that allows changing the TV channels) and server devices that can control other devices
serving as interfaces for the assembly they manage (e.g. a mobile phone, an ultra-mobile PC).
Hybrid devices that implement both previously mentioned functionalities can also be imagined.
The dynamic network concept refers to the fact that the devices can appear and disappear from the
network structure on the fly: a device can auto-configure when it joins the network and then leave
the network without notice. All these prerequisites are met by the middleware used to control the
devices.

WSDL [16] is intended for the functional description of Web services and the semantic Web mark-
up is not suited for natural language requests as we showed in the previous section. A lexical tree
[6] would add too much semantic information to a service and would not be suited for embedded
devices. Therefore, we propose the use of general notions, called concepts, to describe the utility
of a service. A service is not entirely identified by a single concept, but by an infinite number of
concepts that are determined through the generalization of a notion. This notion will serve as a
semantic description for an intelligent device that offers a service. We use the television notion to
describe a TV, for example. Through generalization we find that both the television and electronic
equipment concepts address the same device. To increase the precision, a lexical analysis is also
conducted for the service description and the user request by the composition system. This way,
the service description suffers little or no modifications due to the extra semantic information.

Linguistic processing. We imagined the scenario where the user interacts with appliances and he
expresses his need through a phrase: ”I want to use my phone to turn off the light, turn on the TV
and play some music on HiFi”. In order to retrieve the services required to satisfy the user need,
the request goes through a linguistic processing module, responsible for:

• Text segmentation required to separate the words in the phrase (e.g. switch off the light is
transformed into switch, off, the, light);

• Removing stop words that are considered to be irrelevant (e.g. the, to, and);

4



• Stemming (e.g. lights is transformed into light, using becomes use);

• Spell-checking to correct the misspelled words and the words ”damaged” during stemming.

If the user request in the imagined scenario is apply to the word processing module, the output
text segments would be: want, use, phone, switch, light, turn, tv, play, music, hifi.

The conceptual graph. The text segments together with the service descriptions are used to create
nodes in a conceptual graph. The arcs in this graph connect each text segment to each service
description. The weight of each arc represents the conceptual distance between the text segment and
the service description. We introduced the conceptual distance to measure the relationship between
2 notions. It represents the accuracy of those notions to describe the same concept. For example
the words phone and telephone describe the same concept a communication device, therefore the
conceptual distance is null. On the other hand, the words phone and electronic equipment can
describe the same concept a communication device, but one of them is more general, therefore it
can address more concepts, which leads to a non-null distance between these words.

Figure 1 shows an example of a conceptual graph where the text segments are tv, light, hifi,
phone and the service semantic descriptions are Television, Light, DVD, HiFi, Mobile Phone and
PDA. The thick lines represent arcs with minimum conceptual distance, while the thin dashed lines
represent arcs with a bigger conceptual distance.

Figure 1: The conceptual graph

Knowledge structure. In order to evaluate the conceptual distance we need to find a way to classify
the lexical basis of the English language. We used for this purpose a specialized dictionary called
WordNet [17]. WordNet groups nouns, verbs, adjectives and adverbs in sets of synonyms, called
synsets. Each synset describes a different concept. Different senses of a word are in different synsets.
Most synsets are connected to other synsets via a number of semantic relations. For example, the
semantic relations for nouns include:

5



• hypernyms: Y is a hypernym of X if every X is a (kind of) Y (mobile phone is a hypernym of
phone);

• hyponyms: Y is a hyponym of X if every Y is a (kind of) X (phone is a hyponym of mobile
phone);

• coordinate terms: Y is a coordinate term of X if X and Y share a hypernym (mobile phone is
a coordinate term of cellular phone, and cellular phone is a coordinate term of mobile phone);

• holonym: Y is a holonym of X if X is a part of Y (mobile phone is a holonym of transmitter);

• meronym: Y is a meronym of X if Y is a part of X (transmitter is a meronym of mobile
phone).

While semantic relations apply to all members of a synset because they share the same meaning,
words can also be connected to other words through lexical relations, including antonyms and
derivationally related, as well. Both nouns and verbs are organized into hierarchies, defined by
hypernym or IS A relationships. For example, the hierarchy for mobile phone is:

→ cellular telephone, cellular phone, cellphone, cell, mobile phone

→ radiotelephone, radiophone, wireless telephone

→ telephone, phone, telephone set

→ electronic equipment

→ equipment

The words at the same level in hierarchy are synonyms of each other.

The concept hierarchy. The algorithm that evaluates the conceptual distance uses the WordNet
lexicon to create concept hierarchies. A concept hierarchy is generated in 4 steps:

Step 1. Find the synset that contains the concept for which the hierarchy is generated. Each word in
the synset becomes a root for a tree in the concept hierarchy.

Step 2. For each tree root, find the synsets that are in a relationship with the roots synset. Each word
in the related synset becomes a leaf for the tree, on the next level in hierarchy, branching from
the root.

Step 3. For each word on the current level in hierarchy, find the synsets related to the words synset
and add the words in the found synsets as leafs for the tree on the next level.

Step 4. Repeat Step 3 until the hierarchy is big enough so that the degree of generalization for the
notion for which the hierarchy is built, corresponds to an accepted accuracy that produces
best results. The bigger the hierarchy the longer it takes to generate it, but the smaller the
hierarchy the more confusion can occur among concepts.

6



Figure 2: The concept hierarchy for the notion mobile phone

The hierarchy for the notion mobile phone is shown in Figure 2. The roots of each the tree are
part of the same synset and each level in a tree represents the words from the synsets that are
related to the word they are branching from.

The conceptual distance. In order to evaluate the conceptual distance for 2 notions, a concept
hierarchy is built for each notion. Then, the conceptual distance is calculated as follows:

• The minimum difference of levels between the common node of the 2 hierarchies and the node
that represents the notion on which the hierarchy is built for, if such a common node exists.

• The maximum number of levels a hierarchy can have if theres no common notion among the
two.

Examples:

D (Mobile Phone, Cell) = 0

D (Radiotelephone, Radiophone) = 0

D (Mobile Phone, Radiophone) = 1

D (Mobile Phone, Telephone) = 2

Service retrieval. Finding and retrieving the closest services to the user request resumes to
identifying the couples (text segment, service description) in the conceptual graph that have a
minimum sum of conceptual distances. This makes it easier to take advantage of a service that only
partially matches a request. In order to find mentioned couples we need to apply 2 transformations
to the conceptual graph:

• Finding the sub-graph that has the minimum distance path that includes all the nodes. After
this transformation each service description will be connected to 2 text segments.

7



• For each triplet (service description, text segment 1, text segment 2) remove the arc that has
the maximum weight.

In order to find the minimum weight sub-graph, we use the Kruskal [18] algorithm that calculates
the minimum spanning tree (MST). The nodes that contain the service descriptions resulted after
the 2 transformations are applied represent the services that are used to orchestrate the high-level
service requested by the user. The transformed sub-graph for the graph in Figure 1 contains the
nodes that are connected with the thick continuous line.

Service composition. We used a template-based service composition system because of its capability
to handle complex interactions between components and the flexibility of choosing different sets of
components. The system we used, called Aspects of Assembly (AoA) [19] is part of the WComp
[20] middleware for ubiquitous computing and besides the benefits that derive from the fact that is
template-based, also offers support for auto-adaptation.

These templates can be automatically selected either by the service composition system when
satisfying a user request or triggered by context changes in a self-adaptive process and composed
by a weaver with logical merging of high-level specications. The result of the weaver is projected
in terms of pure elementary modications (PEMs) add, remove components, link, unlink ports.
The AoA architecture consists of an extended model of Aspect Oriented Programming (AOP) for
adaptation advices and of a weaving process with logical merging.

An AoA template is structured as an aspect with a list of components involved in composition
(called pointcut) and adaptation advice (a description of the architectural reconfigurations), which
is specified using a domain specific language (DSL). We will examine some AoA templates and the
composition process in detail in the next section.

4 Implementation and results

We used the WComp [20] platform for ubiquitous computing to simulate the intelligent devices
that offer services used to satisfy the user request. WComp uses the UPnP protocol [21] to commu-
nicate with the devices. Each UPnP device has a software proxy that acts like a software component,
exposing the devices services. We added some meta-data to the UPnP service description for each
device to serve as semantic description.

Using WComp, we simulated the following appliances (Figure 3):

• TV set, described by the television notion;

• DVD recorder, described by the DVD notion;

• Mobile phone, described by the mobile phone notion;

• PDA, described by the PDA notion;

• HiFi, described by the HiFi notion;

• Lighting system, described by the light notion.

8



Figure 3: Simulated intelligent appliances

The interactions between these components were specified using AoA templates. Following, is an
example of such a template that is used to connect the mobile phone to the TV:

1. mobilephone:=/mobilePhone.*/

2. tv:=/television.*/

3. schema Phone Television(mobilephone, tv):

4. mobilephone.ˆControlChanged -> (

5. tv.set Channel

6. )

The first 2 lines describe, using filters in the AWK language [22], the components involved in the in-
teraction: a mobile phone (mobilephone) and a television (tv). The filters of type /instanceName.*/
will find components that have their name prefixed by instanceName. Line 3 declares a compo-
sition schema that uses the previously described components. Lines 4-6 specify the composition
mechanics: call the tv.set Channel method when the mobilephone fires the event ControlChanged.

The service composition system implements a UPnP device that offers the service of designing
high-level services for the user in order to fit seamlessly with the WComp middleware. Requests from
the user are captured by a WComp assembly of components, then sent using the UPnP protocol
to the service designer along with a description of the context where the devices are located. The
service designer queries the devices for service descriptions and semantic meta-data, then finds only

9



those services that are relevant to the user request. Instances of the devices that provide the named
services are interconnected based on the rules described in the AoA templates.

Scenario 1. ”I want to use my phone to turn off the light, turn on the TV and play some music
on HiFi”. This phrase contains many irrelevant words to the service composition system, but the
relevant words are identical (except TV) to the service semantic descriptions. Irrelevant words have
an effect of increasing the time required to process the conceptual graph. All the relevant services
are identified and then composed.

Figure 4: The dynamically composed service for Scenario 1

Scenario 2. ”Use PDA for broadcasting”. This user request is challenging for any composition
system because it doesnt address the TV directly, but through the abstract concept of broadcasting.
Due to the use of the specialized dictionary, the TV is found and then connected to the PDA.

Figure 5: The dynamically composed service for Scenario 2

5 Related work

Composing Web Services on the basis of natural language requests. The solution described in [2]

10



and [3] assumes that the user requests are expressed with a controlled subset (a narrow vocabulary)
of natural language. The sentence that represents the users request is transformed into a flow
model using templates (i.e. if . . . then . . . else, when . . . do). Verbs are used to identify the action
and its parameters. Each available service is paired with a well-defined set of keywords. OWL-
S annotations are used to provide operation semantics and an ontological classification of Web
Services. The operations act as nodes of a direct acyclic graph and the relations among their
IOPEs (Inputs, Outputs, Preconditions and Effects) establish arcs. The graph is translated into an
executable service at invocation time.

The example the authors use to sustain the proposed solution uses the phrase ”If there is any
cinema showing ”Big Fish” in Turin then send a SMS to Dario containing ”Lets go to the movies
tonight!”” An if . . . then template is used to identify the flow model. In the next step, called context
focus, the service types are identified: cinema, SMS. The verb (send) triggers the parameter retrieval
stage where IOTypes recognizers based on format (Date, Time, Telephone Numbers) and values
(City names) are used to extract the actions parameters.

This solution establishes a synergy between the semantic service descriptions and the Natural
Language interpretation of user requests, through a common ontology and a consistent lexical
vocabulary. Therefore it cant be used in active environments where new components that act as
black-boxes appear and disappear from the context dynamically. Also, the use of a controlled subset
of natural language makes it non intuitive for the user as he is restricted to the use of templates
when expressing a request.

Semantics-based dynamic service composition. Papers [4] and [5] propose the CoSMoS model and
the SegSeC platform for dynamic service composition. Their idea is to transform the semantics of
the user request into a semantic graph. Nodes in the semantic graph represent operations, inputs,
outputs and properties of a component, as well as their data types and concepts. Arcs (labeled links)
represent the relationships among the nodes. Concepts, entities representing abstract ideas actions
are used to annotate the semantics of the operations, inputs, outputs and properties of components.
The user request is parsed and the components addressed by the user form a workflow.

The example in [5] uses the phrase ”Print directions from home to restaurant”. The semantic
graph contains the predicate (print), the target of the action (direction) and the parameters (home,
restaurant). The workflow, containing the retrieved components, is executed as soon as it satisfies
the user request. This analysis takes place in a step called semantic matching and consists in a test
that verifies that all the links that appear in the user request also appear in the graph that models
the workflow.

The authors admit that their solution is not suited for environments where a large number of
components are deployed. The platform lacks the feature of providing a solution in the case where
the workflow doesnt satisfy the users request. If the generated workflow doesnt match exactly the
user request, then the dynamic service composition fails. Also, the ability of the implementation
to discover certain components is to be questioned because its limited to work with a narrow set of
keywords and it lacks a vocabulary.

Web service with associated lexical tree. The invention clamed by Alcatel [6] relates to a method
to mark-up a web service in order to allow finding and retrieving said service via a natural language
request. A lexical tree, built by deriving the service description, finding synonyms and related forms

11



of the derived keywords, is associated to each service. Finding a service based on the user request
resumes to comparing the natural language query to the lexical tree of each web service. This
method of retrieving a web service proves to be the most appropriate when dealing with natural
language requests. The invention however doesnt exploit the full potential of this finding, as it lacks
service composition.

6 Conclusion

This paper proposes a method to dynamically compose services on-demand using unrestricted
natural language requests. The proposed solution consists in a semantic analysis of the user request
in order to identify the concepts used to address the services. Retrieved services are composed
based on templates called aspects of assembly. This system was designed to be used in the context
of ubiquitous computing, especially for human-centered computing.

The paper shows the design, implementation and an empirical evaluation of the proposed method.
The design is based on the intelligent house scenario where we focus on composing services pro-
vided by intelligent devices. The implementation uses a ubiquitous computing middleware called
WComp, which offers support for adaptation and device interoperability through the use of the
UPnP protocol. The empirical evaluation of the proposed method analyses some test cases for the
dynamic service composition system.

In contrast to other approaches, the proposed method doesn’t find services using individual words,
nor is using a controlled subset of natural language, but tries to minimize the distance between the
user demand and the potential services that can be offered. This way, for each request there is
a composable service that can be provided for the user. We introduce an original algorithm to
evaluate the distance between a need and a service, called the conceptual distance.

Service composition relies on the use of predefined aspects of assembly. Writing such templates
is reserved to the expert user, who knows the existing device architecture. In order to surpass this
inconvenient we intend to extend the proposed method to compose aspects of assembly instead of
services. By using aspects of assembly the application will be able to adapt to structural changes,
while behavioral changes will be handled by the dynamic composition system. This makes the
object of our future research.

References

[1] O’Reilly, T. What Is Web 2.0, Website, 2005
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.
html

[2] Bosca, A.; Ferrato, A.; Corno, F.; Congiu, I.; Valetto, G., Composing Web services on the basis
of natural language requests, IEEE International Conference on Web Services (ICWS’05), pp.
817-818, 2005.

12



[3] Bosca, A.; Corno, F.; Valetto, G.; Maglione, R., On-the-fly Construction of Web Services
Compositions from Natural Language Requests, JOURNAL OF SOFTWARE (JSW), ISSN :
1796-217X, Vol. 1 Issue 1, pag 53-63, July 2006.

[4] Fujii, K.; Suda, T., Component Service Model with Semantics (CoSMoS): A New Component
Model for Dynamic Service Composition, SAINT-W ’04: Proceedings of the 2004 Symposium
on Applications and the Internet-Workshops (SAINT 2004 Workshops). Washington, DC, USA:
IEEE Computer Society, 2004.

[5] Fujii, K.; Suda, T., Semantics-based dynamic service composition, IEEE Journal on Selected
Areas in Communications, Vol 23(12), pag 2361- 2372, Dec 2005.

[6] Larvet, P., Web service with associated lexical tree, European Patent, EP1835417.

[7] Berners-Lee, T.; Hendler, J.; Lassila, O., The Semantic Web, Scientific American Magazine,
May 17 2001.

[8] Hendler, J.; McGuinness, D., The DARPA Agent Markup Language, IEEE Intelligent Systems,
vol. 15, no. 6, Nov./Dec. 2000, pp. 7273.

[9] McIlraith, S. A.; Cao Son, T.; Zeng H., Semantic Web Services, IEEE Intelligent Systems, vol.
16, no. 2, Mar./Apr. 2001, pp. 46-53.

[10] Sirin, E.; Parsia, B.; Hendler J., Template-based Composition of Semantic Web Services, In
AAAI Fall Symposium on Agents and the Semantic Web, 2004.

[11] Molina A. J.; Koo H.-M.; Ko I.-Y., A Template-Based Mechanism for Dynamic Service Com-
position Based on Context Prediction in Ubicomp Applications, In Proceedings of the Interna-
tional Workshop on Intelligent Web Based Tools (IWBT’2007), 2007.

[12] Chandrasekaran S.; Madden S.; Ionescu M., Ninja Paths: An Architecture for Composing
Services Over Wide Area Networks, CS262 class project writeup, UC Berkeley, 2000.

[13] Rao J.; Kungas P.; Matskin M., Logic-based Web services composition: from service description
to process model, Proceedings of the IEEE International Conference on Web Services, p.446,
June 06-09, 2004.

[14] Wu D.; Parsia B.; Sirin E.; Hendler J.; Nau D., Automating DAML-S Web Services Composi-
tion Using SHOP2, In Proceedings of 2nd International Santic Web Conference (ISWC2003),
Sanibel Island, Florida, October 2003.

[15] Anastasopoulos M.; Klus H.; Koch J.; Niebuhr D.; Werkman E., DoAmI - A Middleware Plat-
form facilitating (Re-)conguration in Ubiquitous Systems, In System Support for Ubiquitous
Computing Workshop. At the 8th Annual Conference on Ubiquitous Computing (Ubicomp
2006), Sep 2006.

[16] Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. Web Services Description Lan-
guage (WSDL) 1.1, Website, 2001
http://www.w3.org/TR/wsdl

13



[17] Cognitive Science Laboratory, Princeton University, WordNet a lexical database for the English
language, Website, 2006
http://wordnet.princeton.edu/

[18] Kruskal, J. B., On the shortest spanning subtree of a graph and the traveling salesman problem,
Proc. Amer. Math. Soc., Vol 7, 1956.

[19] Cheung-Foo-Wo, D.; Tigli, J.-Y.; Lavirotte, S.; Riveill, M., Self-adaptation of event- driven
component-oriented Middleware using Aspects of Assembly, In 5th International Workshop on
Midd leware for Pervasive and Ad-Hoc Computing (MPAC), California, USA, Nov 2007.

[20] Cheung-Foo-Wo, D.; Tigli, J.-Y.; Lavirotte, S.; Riveill, M., Wcomp: a multi-design approach
for prototyping applications using heterogeneous resources, In 17th IEEE Intern. Workshop on
Rapid Syst. Prototyping, pag 119125, Crete, 2006.

[21] UPnP Forum, Website, 2008
http://www.upnp.org/

[22] Aho, A. V.; Kernighan, B. W.; Weinberger, P. J., The AWK Programming Language, Addison-
Wesley, 1988.

14


