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Abstract 
Purpose – Noninvasive diagnosis of liver fibrosis is a popular topic in the medical literature. Textural 
analysis on B-mode ultrasound is viewed as a noninvasive tool for fibrosis staging. A liver tissue model 
is proposed and used to simulate ultrasound images.  
Methods – One hundred twenty-five patients with chronic hepatitis C were included in this study. 
Patients were investigated using B-mode ultrasound and liver biopsy (Metavir scoring). A texture 
analysis tool consisting of 12 algorithms and a logistic regression classifier was implemented and 
validated. Tissue model parameters were varied and ultrasound images were generated.  
Results – Texture analysis can discriminate between stages F0 and F4 using actual patient data 
(accuracy=69.5%) and synthetic images (accuracy=76.6%). A human expert is less sensitive than 
texture analysis in discriminating subtle changes in ultrasound images. High fibrosis detection 
accuracies are correlated with larger differences in portal space density (r2=0.5). Accuracies measured 
when we varied only the fibrosis stage and kept the rest of the tissue parameters constant showed high 
detection rates only in a narrow parameter interval. 
Conclusion – The texture analysis system shows limited performance in staging fibrosis and it cannot 
be used for accurate monitoring of fibrosis evolution over time. 
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Introduction 
Diagnosing liver fibrosis using noninvasive procedures like B-mode ultrasound is challenging because 
the visual aspects in ultrasound imaging between healthy and fibrotic liver are very much alike. On the 
other hand, the B-mode ultrasound examination is widely available, can be repeated many times, and is 
very cost-effective. Hence, there is a constant interest in improving the diagnostic power of B-mode 
imaging in the field of liver fibrosis. There are several approaches found in the literature. Some authors 
have evaluated the RF signal [1-2], while others have proposed some visual scores [3-4], but most 
authors have employed a texture analysis system to discriminate between various fibrosis stages [5-14].  
In a recent paper, Bonekamp et al. [15] reviewed current imaging modalities for detecting and staging 
hepatic fibrosis and cirrhosis. In their review, B-mode ultrasound was mentioned but without any 
reference to computerized image analysis as being a reliable tool in fibrosis detection. Nevertheless, the 
most often used method to enhance the diagnostic power of B-mode imaging in the literature is texture 
analysis. The main assumption of these papers is that fibrosis injuries at the tissue level can produce 
subtle texture alterations in the ultrasound image. These alterations are not distinguishable with the 
naked eye, but texture analysis methods can discriminate them, and hence detect fibrotic alterations. 
The main goal of this paper is to evaluate this assumption and to investigate the usefulness of a texture 
analysis tool in direct fibrosis detection and staging. There are two approaches investigated in the 
current paper. First, a liver tissue model was proposed, and ultrasound images were generated based on 
this model. The second approach involved a large number of patients who had undergone biopsy and 
ultrasound examination. 
The proposed liver tissue model allowed us to study how various tissue parameters influence the 
detection rates and to investigate the discrimination power of a human expert with respect to a software 
analysis tool when detecting certain structures present in the ultrasound image. The tissue model 
proposed here was built according to relevant histological findings at liver biopsy [16]. The proposed 
model allowed us to simulate the tissue alterations for each fibrosis stage  according to the Metavir 
scoring system [17]. Although the proposed model could generate all five stages (F0 through F4), the 
phantom experiments were focused on non-cirrhotic stages (F0-F3). 
In the present paper, Field II software was used to generate US images from software phantoms. This 
software was developed by J.A. Jensen as a fast and accurate method for calculating the pulsed 
pressure field emitted from an arbitrary shaped, apodized, and excited ultrasound transducer [18-20]. 
The tissue model was validated by analyzing the statistical properties of the gray levels in the simulated 
ultrasound image [21]. The textural analysis system implemented here included almost all the textural 
algorithms encountered in the fibrosis detection literature and was validated against a known set of 
textures [22]. Texture analysis was applied to a sample size of 125 biopsied patients. The sample size 
was relatively large when compared to other studies in this field. 
There are several major highlights in this paper. The first major contribution is the proposed liver tissue 
model. The model is accurate enough to capture the microscopic changes that occur during progression 
of fibrosis. The proposed model can be used to evaluate other noninvasive approaches to fibrosis 
staging. The second major contribution is the textural analysis system. We implemented a large number 
of textural algorithms. We also had a large sample size, with over 100 patients being included in the 
experiments presented in this study. 
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Material and Methods 
 
Patients and images 
 
This study was approved by the local Ethical Committee of the University of Medicine and Pharmacy, 
Cluj-Napoca. The patients provided written informed consent before the study began, in accordance 
with the principles of the Declaration of Helsinki (revision of Edinburgh, 2000). 
We prospectively included in this study 125 patients with hepatitis C infection having fibrosis stage 0 
or 4 according to the Metavir scoring system. The fibrosis stages were determined by liver biopsy. This 
sample was selected from 1,200 patients prospectively examined at 3rd Medical Clinic, Cluj-Napoca, 
Romania, between May 2007 and August 2009. All patients were positive for HCV-RNA and 
underwent percutaneous liver biopsy (LB) in order to stage and grade their condition. A liver biopsy 
specimen was taken using the TruCut technique with a Biopty Gun (Bard GMBH, Karlsruhe, 
Germany) automatic needle device with a diameter of 1.8 mm (14G). The slides were evaluated by a 
single expert pathologist unaware of the clinical data. The liver fibrosis and necroinflammatory activity 
were evaluated semi-quantitatively according to the Metavir scoring system [23]. Each patient included 
in this study underwent an ultrasound examination using a GE Logiq 7 ultrasound machine (General 
Electric Company, Fairfield, England) with a 5.5-MHz convex phased array probe one day prior to 
liver biopsy. From each patient were acquired right lobe ultrasound images with liver tissue without 
blood vessels or other artifacts with a depth setting of 16 cm.  
The region of interest (ROI) establishment procedures followed the guidelines presented in the 
literature [6-8, 11-12, 24-27]. A human expert was instructed to choose one ROI for each patient. The 
ROI had to be placed as close as possible to the vertical axis of the ultrasound image and at 1 cm below 
the liver capsule. The ROI had to avoid artifacts and anatomical features like blood vessels, liver 
capsule, and shadowing, etc. The dimensions of the ROI were 64 x 64 pixels representing an area of 
2.62 x 2.62 cm. The expert was a trained radiologist with more than 10 years of experience in 
gastrointestinal ultrasound investigation. 
 
Liver tissue model 
 
In general, there is a limited number of biopsied patients who can be included in a study. Therefore, the 
volume of ultrasound images is low. The images are complicated by artifacts due to fat in the 
abdominal wall, fasting conditions, bowel movement, rib shadows, and blood vessels, etc. The biopsy 
reading is plagued by expert variability and small sampling volume [28]. As a result, the fibrosis 
staging is prone to error. The ROI is manually placed by an expert. The position is not fixed with 
respect to image geometry because the ROI must be set in an artifact-free region. It is known [29] that 
for a convex probe the point spread function of the system is highly dependent on axial and lateral 
position in the imaging field. This variation, along with the interpolation operation necessary to display 
the image, generates a specific texture that overlaps the “texture” produced by the underlying tissue.  
In this paper, we propose a liver tissue model that is used in ultrasound image simulations. The tissue 
model and the simulation setup are designed to meet the shortcomings present in real ultrasound 
images. The volume of images is limited only by the computation power. The fibrosis staging is a 
parameter of the tissue model, so it is set beforehand, eliminating the human factor. One can simulate 
only the desired ROI. This approach eliminates anatomically related artifacts (e.g., blood vessels and 
rib shadows) and point spread function-related artifacts because the position with respect to the probe is 
the same for all images. In the present study, we employed a linear aperture instead of a convex one in 
order to minimize interpolation-related artifacts. Figure 1 shows the difference between a convex probe 
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and a linear probe. One can see that the local properties of the image are translation invariant only in 
the case of a linear probe. Of course, the point spread function of the system varies with the position 
even with a linear aperture. 
The liver tissue model was built using relevant quantitative measurements of liver biopsies found in the 
literature [16]. The following anatomical structures were generated: portal triad (portal space) with the 
portal vein, fibrous septa, and liver parenchyma consisting of hepatocytes.  The model included the 
healthy liver, fibrosis stages 1, 2, and 3, and cirrhotic liver (F4). In addition, our model can generate a 
hexagonal grid with different dimensions. This hexagon grid was used in several synthetic experiments. 
Building of the model starts with a series of points placed in the vertices of a hexagonal grid. This 
hexagonal grid mimics the shape of the hepatic lobule. The radius of the circumscribed circle for the 
hexagonal unit is a parameter of the model. Figure 2 shows the hexagon representing the liver lobule. 
This grid is rotated and translated with a random value. In addition, the position of each point is 
affected by a normal noise with small standard deviation (SD). We randomly select a number of points. 
The number of selected points is computed based on the desired portal density. These points establish 
the position of portal triads. The portal density per mm2 is another parameter of the model. A Delaunay 
triangulation [30] is performed on these points, and the resulting edges are kept for later use. Figure 3 
shows selected vertices and the triangulated edges. 
In each portal triad position is fitted a disc with a random, normally distributed radius. This disc 
represents the fibrosis naturally occurring inside a portal space. Inside this circle is placed the portal 
vein. Again, the radius of the portal vein and its position are randomly chosen. Care is taken that the 
portal vein is inside the portal space. For fibrosis stages greater than 0, the radius of the portal space is 
progressively increased. In fibrosis stages 1, 2 and 3, fibrous septa are placed around the portal spaces. 
These septa are placed along the edges obtained after Delaunay triangulation. Each fibrosis stage has 
several parameters that control the probability of placing a septa, i.e., the mean and SD for the septa 
length and the septa thickness. In fibrosis stage 4, we place fibrous septa that are spawned along the 
entire length of the edges. In the liver tissue one can find larger structures, like branch veins and 
arteries. The walls of these blood vessels bring a significant quantity of fibrous tissue. However, this 
fibrous tissue has no diagnostic significance in the case of chronic hepatitis C and we did not simulate 
it.  
The parameters for the model variables are given in Table 1 and Table 2. Figure 4 shows several tissue 
models. For fibrosis stage 4, one should keep in mind that the main features are the fibrous septa that 
bridge the portal spaces and the regenerative nodules. The dimension of the regenerative nodules 
depends on the portal density spaces. A low-density value generates a phantom with large areas of 
“regular” tissue surrounded by thick fibrous septa. 
According to Field II specifications, an ultrasound phantom consists of a collection of scatters. We 
chose a fixed volume inside which we placed a certain number of scatters. The scatters were uniformly 
distributed inside this volume. The amplitude of each scatter was normally distributed with mean 0 and 
a certain SD. This standard deviation is referred to as amplitude. This amplitude depended on the 
underlying anatomical structure. For plain liver tissue, the amplitude was set to 1. If the scatter was 
inside a vein, the scatter had 0 amplitude (in current implementation the scatter was not generated, in 
order to improve computation performance). If the scatter was placed on a portal space, or fibrous 
septa, the amplitude was set to a certain value ≥1.  
 
Ultrasound simulation setup 
 
In this section, we will present the simulation setup used to produce ultrasound images. The ultrasound 
simulation procedure followed the guidelines presented in [18-20]. The tissue phantom was placed 
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along the X and Z axes (width and depth). Figure 5 shows the simulation setup. On the Y axis 
(thickness), there are no differences induced by the model; hence, the portal spaces were modeled as 
cylinders. The physical dimensions of the phantom were width 25.6 mm, depth 25.6 mm, and thickness 
5 mm. The phantom was placed under a virtual linear aperture and an ultrasound image was generated.  
The probe used in this simulation was a 5.5-Mhz linear probe with 98 elements. Apodization was 
implemented using a Hanning window of 20 active elements. The excitation signal was two wavelengths 
long. The returned signal was sampled at 100 Mhz. The speed of sound was set at 1540 m/s. In the axial 
direction, two scatters can be discriminated if they are situated at a distance larger than 1/2 of the pulse 
width [29]. For the proposed simulation setup, this axial resolution was 0.28 mm: 
ܣ  ൌ ሺ ܰߣሻ/2 (1) 
where Ar is the axial resolution, Np is the number of wavelengths in the excitation signal, and λ is the 
wavelength of the ultrasound waves. 
There were 25 lines acquired from the underlying medium. Care was taken that all 25 lines were 
uniformly distributed along the X (width) axis of the phantom. The lateral resolution for the acquisition 
was 0.97 lines/mm. The envelope of the signal was detected using Hilbert transform. The envelope 
signal was sampled, logarithmically compressed, and scaled to a 256-level gray scale map. From 
Equation 1 one can derive the minimum resolution cell than can be resolved by the simulation setup. As 
a result, the resolution cell for this setup was 0.28 x 0.97 mm2. However, we assumed a resolution cell of 
0.28 x 0.28 mm2 for density-related computations. 
From the RF signals the images were synthesized at a resolution of 5 pixels/mm. At this resolution the 
physical distance between two pixels was 0.2 mm. This distance was slightly smaller than the theoretical 
axial resolution for this simulation setup. This ensured that we did not lose information during scan 
conversion and interpolation. The final image dimension was 128 x 128 pixels. The phantom was placed 
30 mm below the ultrasound aperture. In Figure 6 are shown five images corresponding to each of the 
five fibrosis stages generated using the proposed tissue model. 
In [31], the authors established that a large number of scatters could be replaced by a regular grid having 
a smaller number of scatter points. They also showed that there was no dependence between the number 
of scatters per resolution cell and the observed speckle pattern. Moreover, in certain conditions the same 
speckle pattern could be obtained using different underlying scatter distributions. In the present study, 
50,000 was chosen as the number of scatters for each phantom . The methods for building an ultrasound 
phantom with the minimum number of scatters for a certain model is not covered in this paper. Field II 
simulation software was run on an Intel Pentium D at 3.4 Ghz. In Table 3 are shown the scatter densities 
and the computation times for various numbers of scatters. We took advantage of both cores; the jobs 
were distributed by RF lines. 
Wagner et al. noted in [21] that the amplitude distribution of a B-mode ultrasound image follows a 
Rayleigh distribution. This property is used in the ultrasound image simulation literature as a validation 
method for the simulation setup [31-32]. In the present study, we computed the gray level histogram 
over several images and compared it with Rayleigh pdf: 
ሻݔሺ݂݀  ൌ ௫

ఊ
݁ି൫మ ଶఊ⁄ ൯ (2) 

where x is the amplitude and γ is a constant. Two kinds of experiments were performed with the liver 
tissue model. Synthetic experiments were focused on the study of individual model parameters over the 
detection rates. These experiments employed the hexagonal grid (Figure 7). Fibrosis detection 
experiments employed the variability noted in the literature for each model parameter. The detection 
rates between adjacent fibrosis stages were noted. We investigated in mode detail the impact of portal 
space density and liver lobule dimensions over the fibrosis stage discrimination. The liver tissue 
models and the simulation setup were implemented in MATLAB (The MathWorks Inc., Natick, MA) 
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Texture Analysis 
 
In texture analysis, there are two main steps [33]. The first step is the computation of several textural 
attributes that numerically describe the texture (using dedicated algorithms). The second step involves 
the training and evaluation of a classifier using the previously computed textural features. We have 
provided an overview of each of these two steps as follows. 
In the literature, there are many algorithms that describe the texture. Each algorithm treats the texture as 
being produced by a certain model [33]. There are algorithms that assume the texture as being a 
collection of pixels having random intensities; other algorithms treat the texture as a superposition of 
sinusoidal waves with different phases, amplitudes, and frequencies, etc. We selected algorithms that 
were proposed by various authors for use in fibrosis detection.  
Each texture description algorithm has a certain number of parameters that control the feature extraction 
process. Each algorithm implemented in the present study used the same proposed set of parameters 
found in corresponding fibrosis detection papers. The following is a list of the algorithms and the papers 
that use these algorithms in fibrosis detection (when possible): First order statistics [13, 34], gray tone 
difference matrix [33], gray level co-occurrence matrix [7, 13, 34-35] , multiresolution fractal dimension 
[7], differential box counting [8, 36], morphological fractal dimension estimators [37], Fourier power 
spectrum [6-7], Gabor filters [12], Law’s energy measures [7], texture edge co-occurrence matrix [8], 
phase congruency [24], and texture feature coding matrix [14].  
Twelve algorithms that process the entire ROI were implemented and 234 features were computed per 
image.  Each image histogram was equalized before entering the feature computation step. This ensured 
that the detection was not due to some difference in overall gray level. We used logistic regression as a 
classifier [38]. There are other algorithms that are employed in fibrosis detection, including k-nearest 
neighbor, neuronal networks, decision trees, and support vector machines, etc. [34]. The reasons for our 
choice were that logistic regression produces a simple-to-interpret model and does not overfit the data 
even if the number of instances is lower than the number of features [39-40]. Once the logistic model is 
generated one can easily study the relevance of the features by looking at the model coefficients. The 
performance criterion was accuracy, i.e., the ratio between correctly classified instances and the total 
number of instances in the dataset. To measure the accuracy for a certain dataset the following 
procedure was applied: 
The available data were split into 10 disjointed folds. Iteratively, one fold was used for testing and the 
other nine for training. The predictions were collected at each step. After 10 steps, the accuracy was 
computed on all the collected predictions. This process was repeated 10 times with different random 
splits. The mean accuracy was reported as the performance of the algorithm for the current dataset. 
Before entering the classification step, each feature was normalized to [0, 1] interval. The test fold 
subset was also normalized using the same values that were used for the corresponding training set. We 
recorded only the mean performance and not the variance because cross-validation produces biased 
variance estimation [41-42]. 
The texture analysis system was validated using a set of known textures from the Brodatz [43] library.  
Each image was divided into 100 non-overlapping ROIs. Each ROI had a 64 x 64 pixel area. The 
textural analysis system was trained to predict the original image from where the ROI originated. The 
images were chosen according to the guidelines in [22]. Textural algorithms were implemented in a 
custom-made software system developed at Technical University of Cluj Napoca, Romania. 
Classification and performance evaluation were implemented using the Weka framework [44] (public 
domain, ver. 3.7).  
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Results 

Validation of the liver tissue ultrasound image simulation 
 
The simulation setup presented earlier generated 50 images with various tissue parameters. A 
histogram was computed over this 50 images by summing each histogram bin from individual images. 
Figure 8 shows the image histogram with the Rayleigh probability distribution function overlapped. 
The γ parameter (Equation 2) was determined by applying the maximum likelihood algorithm to the 
amplitude values. One can easily see that the proposed setup behaved as expected. 
 
Validation of the textural analysis system 
 
The texture analysis system was validated using three sets of images. The first dataset contained 
regions from D77, D84, D55, D53, and D24 Brodatz textures. The second dataset consisted of D4 and 
D84 textures. The third set had regions from D5 and D92. The classification accuracy was 98.9 for the 
first set, 98.4 for the second set, and 97.9 for the third set. The image combinations applied here are 
three of the image sets employed by Randen et al. [22] to evaluate  several texture analysis algorithms. 
These image sets covered binary and multiclass classification problems. 
 
Fibrosis detection in hepatitis C patients 
 
The fibrosis stage distribution in our patients was as follows: F0 –51 (40.8%) and F4 – 74 (59.2%). 
Figure 9 shows several portal spaces with various fibrosis stages. On average, 12.94 (standard 
deviation: 6.69) right lobe ultrasound images were acquired from each patient. The radiologist 
established 122 ROIs, one for each patient, as shown in Figure 10. There were three patients with poor 
quality images in whom the radiologist was not able to establish a ROI. Two were healthy patients and 
one cirrhotic. Each ROI was labeled according to Metavir findings and processed by means of texture 
analysis. Texture analysis was trained to predict the fibrosis stage of the patient (F0 or cirrhotic – F4). 
The overall recorded accuracy was 69.5%. 
 
Synthetic experiments on liver tissue models 
 
Experiment 1. In this experiment, we compared the discrimination power of the human expert versus 
the accuracy of the texture analysis. The following experiment was designed. Using the hexagonal grid 
model several sets of images were generated. Each set had 50 images. The hexagonal grid radius was set 
to 6 mm, and 50,000 scatters were generated per phantom. There were two parameters that were varied.  
First, the amplitude was varied between 1 and 4 in steps of 0.1. A set was generated for each amplitude 
value. The thickness of the hexagon edge was set to 0.3 mm. The other tested parameter was the edge 
thickness. With the amplitude set to 3, the thickness was set between 0.01 and 0.35 mm with various 
steps. Five images were extracted from some of the amplitude sets and some of the thickness sets. These 
images were shown to two radiologists. The experts were instructed to note when they observed a 
hexagonal grid on the images. They were told that the grid dimensions were the same but the position 
would vary for each image. They were not told the expected number of images with the hexagonal grid. 
Before the experiment began, they visualized several examples of hexagonal grid images with a high 
amplitude (5) and 0.5 mm grid thickness (Figure 7). The results are shown in Figure 11 and Figure 12. 
Because the human expert is a scarce resource, we were not able to test the entire spectra of values.  
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Experiment 2. In this experiment, we varied the fibrosis stage and the two main parameters, portal 
space density and portal lobule dimensions. The values for portal space density were 0.1, 0.34, 0.58, 
0.82, 1.07, 1.31, 1.55, and 1.8 portal spaces/mm2. The values for lobule radius were 0.4, 0.51, 0.63, and 
0.75 mm. A 50-image set was generated  from each combination of fibrosis stage (F0-F3), portal density, 
and lobule radius. For this experiment, we generated 6,400 phantoms. 
Each fibrosis stage was paired with the next stage. Among adjacent fibrosis stages, all possible 
parameter combinations were grouped in two class problems. A classifier was trained for each pair and 
the accuracy was determined. The correlation rates of the detection accuracy with each of the model 
parameters are shown in Table 4.  
From the same experiment, we selected only cases where the two tissue parameters were the same. 
These comparison cases could be found when we employed the noninvasive staging tool to observe the 
fibrosis evolution for the same patient over time. We assumed that the portal density space and lobule 
dimensions remained constant for a specified patient. Graphs representing the detection accuracy for 
each parameter combination are shown in Figure 13 through Figure 15. Again, we grouped adjacent 
fibrosis stages.  
 
Fibrosis detection in liver tissue models 
 
Experiment 3. In this experiment, we investigated the fibrosis detection rates when the liver lobule 
dimensions and portal space density varied. Each phantom was generated using random values for these 
two parameters. There were two experiments, one with uniformly distributed values in +- 2 SD from 
mean and another one with normally distributed values. The values for the mean and standard deviations 
were set according to histological findings (see Table 1 and Table 2). Eight hundred images were 
generated from each fibrosis stages (F0-F4). The results are shown in Figure 16. One should note a 
sharp drop in performance when discriminating between F2 and F3. We also investigated the 
discrimination accuracy between the F0 model and F4 model in order to match the actual patient data. 
The overall recorded accuracy was 74.2% for uniformly distributed parameters and 76.6% for normally 
distributed parameters.  
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Discussion 
 
The ultrasound simulation field is a rich one. The main applications are focused on cardiovascular 
imaging or simulation of ultrasound imaging from CT data, but there are approaches to ultrasound 
image segmentation and registration, etc.  
In [45], the authors showed that there are several tools available to simulate ultrasound images. The 
authors pointed out that the realism of the simulation cannot be achieved without computational effort. 
After analyzing several commercial and noncommercial ultrasound simulation systems, the authors in 
[46] claimed that the Field II package [18] yields the best results with a carefully designed phantom, but 
this method has the disadvantage of being very slow. In a recent review [47] focused on ultrasound 
image segmentation, the authors referred to the Field II software package as an effective application for 
producing ground truth data. There are other approaches that relate to the Field II package. In [32], the 
authors proposed a faster, convolution-based system that simulates 2D/3D cardiac images. The authors 
showed that the generated images had the same Rayleigh statistics and the same visual aspects as those 
of Field II-generated images. In [31], the authors investigated phantom complexity-related issues and 
presented means of reducing the number of scatters and the computational time.  
The most important part of an ultrasound simulation system is the ultrasound phantom. Again, most of 
the papers are focused on the cardiovascular system. Ultrasound liver imaging has received less 
attention. In [48], the authors proposed a software liver phantom that was focused mainly on other liver 
diseases like steatosis. The features they used were built around the concept of attenuation. In [49], the 
authors proposed a liver phantom that was then used to study the modifications of speckle distribution in 
cirrhosis. They proposed a tissue model that consisted of a reticular structure with high scattering 
properties. Inside this structure were regions with low scattering properties (mimicking the regenerative 
nodules). In [50], the same authors proposed a software phantom that could reproduce the statistical 
distributions of fibrosis. The phantoms presented in the literature accounted for fibrosis in a statistical 
manner. To our knowledge, there are no software phantoms that mimic the microscopic structure of liver 
tissue in as much detail as our proposal. 
The tissue model proposed here includes the most important features of liver tissues that can be found 
at the microscopical level. The dimensions of these structures are set according to relevant quantitative 
measurements encountered in the literature [16]. The alterations due to fibrosis were modeled 
according to Metavir score. Figure 9 shows several portal spaces affected by various stages of fibrosis 
due to hepatitis C infection. Figure 4 shows the proposed tissue model mimicking the fibrosis 
distribution in each stage. The parameters of the proposed model allow the user to vary the patient 
characteristics such as portal space density, radius of a liver lobule, and dimensions of the portal space. 
The portal space density was expressed in portal spaces per mm2 instead of mm3 because when 
evaluating a liver biopsy the physician counts the number of portal spaces found on a certain biopsy. At 
biopsy, the tissue is prepared as a series of thin slices; hence, they measure the area instead of the 
volume. The present model can be adapted to match other fibrosis scoring systems. 
Textural analysis on B-mode ultrasound follows four main steps. First, a physician acquires a right lobe 
ultrasound image. Then, another physician (or the same one) establishes a rectangular ROI on the 
ultrasound image. For fibrosis detection, most authors suggest that the ROI should be placed in a 
homogenous area, avoiding artifacts and anatomical features like blood vessels, liver capsule, and rib 
shadows. In the present liver model, we considered the ideal case, i.e., the absence of such structures in 
the simulated regions. In the remaining steps, the texture analysis is employed and detection rates are 
computed. It is important to note that the simulation setup presented here eliminated the need for a 
human expert and thus eliminated the operator-dependent variability that is present in the first two 
steps of the classical approach.  
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Discussions regarding performance evaluation methodology and user variability introduced by the 
experts are beyond the scope of this paper; however, these are issues that need attention because a 
permissive methodology might yield positively biased performance estimations.  
Another clear advantage to the simulation setup is that there are no constraints regarding patient 
availability. The volume of data is limited only by the computational power. The drawbacks of the 
approach presented here are that the liver tissue model might not be accurate enough and the variability 
introduced in the model might not match the variability present in an actual population. Another 
limitation is that the ultrasound simulation step requires a lot of processing time. 
The experiments presented here tested the main assumption of direct fibrosis detection by means of 
texture analysis. The assumption is that fibrosis alterations at the liver lobule level can induce significant 
changes in the speckle pattern of the ultrasound image. Even if these alterations are not visible with the 
naked eye, a texture analysis system can detect and learn these alterations. 
From Figure 11 and Figure 12 of the first experiment, one can observe that the software system 
outperformed the “performance” of the human expert. The test could be more accurate if we instructed 
the physicians to mark the hexagonal grid on the images. Unfortunately, this is a very time-consuming 
activity and the experts were not available for this activity. The texture analysis system was more 
sensitive to the presence of certain structures in the underlying medium than the human eye. However, 
one can see that there are limitations in detection rates even for the texture analysis system. These 
findings endorse the assumption that a texture analysis tool is more sensitive to ultrasound texture 
alterations than a human expert. 
The second experiment was conducted to study performance with respect to various tissue parameters. 
The detection rates depended heavily on the physical parameters of the phantom. An interesting finding 
was that a low portal density for the lower fibrosis stage was correlated with high detection rates. In a 
similar fashion, a greater difference in the portal density value between the two lots correlated with 
greater detection rates. One can note that in a lower fibrosis stage there is less fibrosis. At the same 
time, a lower density value translates into fewer portal spaces and again in a lower fibrosis quantity in 
the tissue. The other parameter, the liver lobule radius, does not have an impact on detection rates. The 
data gathered from this experiment indicated that the textural analysis is more sensitive to the variation 
in the portal space density than to the variation in fibrosis stage. Moreover, the detection rates 
correlated with differences in the amount of fibrosis present in the liver tissue and not with the 
distribution of the fibrosis (as presented in Table 4). 
The second part of experiment 2 studied the performance when we employed the noninvasive staging 
tool to observe fibrosis evolution in the same patient over time. One can note that higher detection rates 
are obtained only for a small parameter domain. Even these values are not high enough to be 
considered for clinical practice. We concluded that textural analysis cannot be used as an accurate 
noninvasive instrument to observe fibrosis evolution over time. This result was rather disappointing 
because such a tool could be very useful in clinical practice.  
The results obtained from experiment 3 (Figure 16) showed low detection rates when the texture 
analysis was trained to discriminate between adjacent fibrosis stages. The findings presented in the 
simulation section do not endorse the assumption that the liver fibrosis in chronic hepatitis C produces 
significant alterations of the ultrasound speckles, alterations that can be directly detected by means of 
textural analysis.  
The detection performance on actual patient data was lower than the accuracy recorded on the simulated 
images. Expert variability at biopsy interpretation, at ultrasound examination, and at the establishment of 
the ROI could contribute to lower detection rates in patient images. On the other hand, there is the 
possibility that the variation in tissue parameters reported by the authors in [16] is much larger.  
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There are other possibilities, less explored in the literature, for B-mode ultrasound-based fibrosis 
staging. Some authors have proposed fibrosis detection using several visual scores [3-4]. These scores 
are quantified by a trained physician. Unsupervised quantification of the visual scores could be more 
effective in staging or tracking the fibrosis evolution because they quantify the ultrasound image 
alterations that are indirectly produced by fibrosis. Other authors have studied the properties of the 
reflected RF signal, properties like attenuation [51], backscatter [52], or statistical properties [9, 49-50, 
53]. The tissue phantom presented here can be applied to optimize these methods. The speed of the 
simulation can be improved by employing scatter equivalence introduced in [31]. The liver tissue model 
can be improved by further quantitative studies on liver biopsies.  
This paper brings several contributions to the noninvasive diagnosis field. To our knowledge, the liver 
tissue model introduced here has the most accurate representation of actual liver structures encountered 
at the microscopic level. The number of patients included in the present paper (over 120) is relatively 
large when compared to other studies in this field. Gaitini et al. [26] included 44 patients, Li et al. [5] 
included six patients, Cao et al. [8, 25] included 36 patients, Horng et al. [27] included 40 patients, Yeh 
et al. [35] included 20 fresh human liver samples obtained from surgical specimens, Badawi et al. [13] 
included 140 patients, Mojsilovic et al. [11] included 30 patients, Kadah et al. [34] included 120 
patients, Abe et al. [6] included 22 patients, and Wu et al. [7] included 45 patients. Other authors did 
not report the number of patients, only the number of images [10, 12, 14, 24, 36]. Our textural analysis 
system included almost all of the textural algorithms encountered in the fibrosis detection literature. 
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Conclusions 
 
In the present paper, we proposed a liver tissue model and evaluated noninvasive fibrosis detection 
from B-mode ultrasound images by means of texture analysis. The proposed liver tissue model is a 
reliable tool for investigating noninvasive fibrosis staging and detection methods. The model is 
presented in enough detail to allow easy implementation. The model parameters have been established 
following quantitative liver biopsy measurements and are fully presented throughout the paper. 
The major findings from the experiments performed here are that the texture analysis methods have 
superior discrimination powers compared to human experts. At the same time, texture analysis tools are 
not useful in accurate direct fibrosis detection. This is true for transversal and longitudinal studies. It is 
safe to conclude that the prediction of Metavir fibrosis stage cannot be accurately made using textural 
analysis because textural analysis is more sensitive to the overall quantity of fibrosis and various tissue 
parameters than to the quality and distribution of the fibrosis at the hepatic lobule level. Findings from 
the actual patient population endorse this conclusion. 
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Figure 1. Convex array (left) vs. linear array (right). Pixel intensities are computed along the A lines 
(thin lines). The rest of the pixels are interpolated. The thick rectangles represent the region of interest. 
In the case of the convex array, one can note different image properties when this region of interest is 
moved. In the case of the linear probe, different positions yield the same image properties. 
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Figure 2. Hexagonal grid with three adjacent liver lobules. (a) Liver lobule boundary. (b) Portal space. 
(d) Liver lobule diameter.  

 

 
Figure 3. Portal spaces (red circles) and the Delaunay edges. The fibrosis is placed along these edges. 
One should note that these edges extend also to portal spaces outside the simulated region, like in real 
liver tissue. 
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Figure 4. Examples of tissue simulations for each of the model types. (a)-(e) Fibrosis stages 0 through 
4. (f) Hexagonal grid used in synthetic tests. Each image is 5.12 x 5.12 mm and is taken from the same 
position. The position of the portal spaces is identical in the five images. 

 

 
Figure 5. Simulation setup. The phantom (p) is placed under a linear aperture (a). Note the axis 
convention, where Z is perpendicular to the aperture and X is parallel to the length of the aperture. 
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Figure 6. Ultrasound images generated from F0 through F4 fibrosis tissue models. One can note that 
the visual aspects of these images are very much alike. The random number generator that selected the 
portal triads was initialized with the same value for all five phantoms. As a result, the position of the 
portal spaces is the same in all five phantoms. 

 
Figure 7. Hexagonal tissue model (a) and generated ultrasound image (b). 
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Figure 8. Statistics of the simulated images. The bars represent the image histogram and the thick blue 
line the fitted Rayleigh distribution.  

 
Figure 9. Examples of portal spaces with various fibrosis stages. F0: healthy liver, F1-F3: fibrosis 
stages 1 through 3, F4: regenerative nodule from a cirrhotic liver. Thick arrows show the portal spaces. 
Thin arrows show the fibrous septa. The horizontal bar represents 100 µm. 
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Figure 10. Left lobe liver ultrasound image. The rectangle shows the 64 x 64-pixel region of interest. 

 
Figure 11. Comparison between discrimination performance of the human experts and texture analysis 
system. The amplitude of the model is varied. The rest of the parameters remain unchanged. The Y 
coordinate represents accuracy (%). The X coordinate represents the amplitude. 

 
Figure 12. Comparison between discrimination performance of the human experts and texture analysis 
system. The thickness of the hexagonal grid is varied. The rest of the parameters remain unchanged. 
The Y coordinate represents accuracy (%). The X coordinate represents the thickness in mm. 
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Figure 13. Detection rates between F0 and F1 stages when the model parameters are kept constant 
throughout the matching datasets. All 8 x 4 parameter combinations generated a dataset. 

 
Figure 14. Detection rates between F1 and F2 stages when the model parameters are kept constant 
throughout the matching datasets. All 8 x 4 parameter combinations generated a dataset. 
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Figure 15. Detection rates between F2 and F3 stages when the model parameters are kept constant 
throughout the matching datasets. All 8 x 4 parameter combinations generated a dataset. 

 
Figure 16. Detection rates when discriminating between adjacent fibrosis stages. The Y scale represents 
accuracy (%). The detection rates behave identically regardless of the normal/uniform variable 
distribution. 
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Table 1. Model variables for healthy human liver. Portal density is evaluated as seen at the liver biopsy. 

Parameter Mean Standard Deviation 
Radius of the hexagonal cell (mm) 1.15 0.11 
Portal density (portal spaces/mm2) 0.8 0.5 
Radius of the healthy portal space (mm) 0.2 0.015 
Radius of the portal vein (mm) 0.08 0.015 
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Table 2. Model variables for fibrosis stages greater than 0. The radius of the portal space and septa 
length, etc., are randomly chosen for each individual portal space. Occurrence probabilities are fixed 
for the model. 
 

Parameter Fibrosis 1 Fibrosis 2 Fibrosis 3 Fibrosis 4 
Mean SD Mean SD Mean SD Mean SD 

Radius of the portal space (mm) 0.25 0.015 0.3 0.015 0.35 0.015 0.25 0.015 
Length of a septa (mm) 0.45 0.015 0.55 0.015 0.6 0.015 N/A4 N/A 
Thickness of a septa (mm) 0.02 0.0008 0.02 0.0008 0.02 0.0008 0.105 0.015 
Probability of a septa 0.05 N/A 0.9 N/A 0.9 N/A 0 N/A 
Probability of a bridging septa 0 N/A 0 N/A 0.4 N/A 1 N/A 
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Table 3. Computation times and densities for different numbers of scatters. The scatter density is 
computed after projecting the whole phantom on the XZ plane. The total area of the phantom 
projection is 25.6 x 25.6 mm2. The resolution cell is assumed to be 0.28 x 0.28 mm2. Computation 
times are evaluated for a single core. 

Number of 
scatters 

Scatter density 
per mm2 

Scatter density per 
resolution cell 

Computation time per 
phantom (seconds) 

10000 15.2 1.19 50 
17000 25.9 2.03 75 
30000 45.7 3.58 150 
50000 76.2 5.98 250 
100000 152.5 11.96 500 
300000 457.7 35.88 1475 
500000 762.9 59.81 2575 
1000000 1525.9 119.63 5150 
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Table 4. Correlation coefficients between accuracy of detection and each of the model parameters. The 
datasets group adjacent fibrosis stages. For each dataset we have two sets of parameters, one for the 
lower fibrosis stage and the other for the higher fibrosis stages. The correlation was also computed with 
respect to the absolute difference between the model parameters.  

 Lower fibrosis stage Higher fibrosis stage   
Comparison 

case 
Radius of 

hexagonal cell 
Portal 
density 

Radius of 
hexagonal cell 

Portal 
density 

Difference 
of radius 

Difference of 
portal density 

F0 - F1 0.031 -0.558 -0.062 0.165 0.001 0.504 
F1 - F2 0.041 -0.468 -0.057 -0.083 0.023 0.466 
F2 - F3 0.034 -0.421 -0.033 -0.058 0.0191 0.414 

 
 
 


