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Abstract: Optical coherence tomography (OCT) has become the leading diagnostic tool in modern
ophthalmology. We are interested here in developing a support tool for the segmentation of retina
layers. The proposed method relies on graph theory and geodesic distance. As each retina layer
is characterised by different features, the proposed method interleaves various gradients during
detection, such as horizontal and vertical gradients or open-closed gradients. The method was tested
on a dataset of 750 OCT B-Scan Spectralis provided by the Ophthalmology Department of the County
Emergency Hospital Cluj-Napoca. The method has smaller signed error on layers B1, B7 and B8, with
the highest value of 0.43 pixels. The average value of signed error on all layers is−1.99 ± 1.14 px. The
average value for mean absolute error is 2.60± 0.95 px. Since the target is a support tool for the human
agent, the ophthalmologist can intervene after each automatic step. Human intervention includes
validation or fine tuning of the automatic segmentation. In line with design criteria advocated by
explainable artificial intelligence (XAI) and human-centered AI, this approach gives more control and
transparency as well as more of a global perspective on the segmentation process.

Keywords: optical coherence tomography; retina layer segmentation; geodesic distance; vertical and
horizontal gradients; human-centered AI

1. Introduction

Optical coherence tomography is a non-invasive imaging method that revolutionized
ophthalmology and whose continuous improvement opened new perspectives on the man-
agement of retinal diseases. However, the high number of people with retinal conditions
requiring constant OCT monitoring results in a significant burden for ophthalmologists.
Simultaneously, the evolution of artificial intelligence (AI) has led to the development of
methods capable of performing high-level analysis of images and other data. Consequently,
AI-based healthcare services are expanding, with expectations of USD 6.6 bn by the end
of 2021.

Optical coherence tomography (OCT) has become the leading diagnostic tool in
modern ophthalmology [1–3], providing various OCT-based biomarkers, including retinal
thickness, intraretinal cystoid fluid, subretinal fluid, alterations of outer retinal layers, and
hyperreflective foci.

While interpreting the OCT, the ophthalmologist uses both qualitative and quantitative
features contained in the OCT images. The first evaluation concerns the overall aspect of the
macula on the OCT B-scan corresponding to the fovea. Global retinal deformations, such
as concavities or convexities, can be discovered. At this point, a thorough examination of
the retinal zones’ integrity is conducted. The same elements should be checked for the rest
of the acquired B-scans. The next step would be looking at the retinal thickness (adjusted
for age and gender) corresponding to the nine zones contained in the Early Treatment
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Diabetic Retinopathy Study (ETDRS) macular grid. Increases or decreases could indicate
pathological changes.

While measuring the total retinal thickness using automatically generated thickness
maps provided by the OCT gives us a good overall impression over the health of the retinal
structures, measuring each layer separately has its own advantages.

It can help us see which layer is affected, thus pointing towards a possible diagnosis.
The retinal nerve fiber layer (RNFL) and ganglion cell layer suffer in glaucoma and multiple
sclerosis, the inner retinal layers can become thinner after retinal artery occlusions, the inner
nuclear layer can become thicker after microcystic macular edema, portraying evidence
of CNS inflammation, and the outer retinal layers show signs of alterations in conditions
affecting the retinal pigment epithiulium (RPE) like age-related macular degeneration
(AMD) or central serous corioretinopathy (CSCR).

Looking solely at the overall thickness, we might overlook changes, such as in the
case of drusen—the hallmark of the age-related macular degeneration non-exudative type.
While drusen increase, the outer retinal structures (outer nuclear layer, photoreceptor
layer and retinal pigment epithelium) get thinner in a manner that is proportional to
the drusen; hence, the total thickness remains unchanged. Besides showing increased
thickness, automated segmentation may show alterations of the profile of these layers.

The automatic segmentation of retinal layers can play a role in computer-aided clas-
sification. While training a classifier to distinguish between macular changes associated
with age-related macular degeneration and those with diabetic macular edema, we can
choose certain layers as boundaries. Thickness increases beneath or above this layer can
help strengthens the classifiers’ accuracy.

Finally, advances in segmentation can help diagnose incipient changes in the course of
retinal conditions.

The standard software of OCT devices includes algorithms for the automatic segmen-
tation of layers, which are, e.g., based on: analysis of the image brightness, the technique of
active contours, pattern recognition, graph theory, or techniques of grouping. Automatic
layer segmentation of the retina in the OCT images requires overcoming many challenges,
such as noise, an uneven reflection of light by the tissues, absorption of light through the
blood vessels, an unexpected movement of the patient, and the dependence of the proper
segmentation algorithm on the device. Particular difficulties are also introduced due to the
presence of lesions.

Our approach relies on graph theory and geodesic distance. Since each retina layer
is characterised by different features, we interleave various gradients during detection,
such as horizontal and vertical gradients or open-closed gradients. Our target is a support
tool for the human agent. Hence, we focus on allowing the user to intervene after each
automatic step. Human intervention includes validation or fine tuning of the automatic
segmentation. In line with design criteria advocated by explainable AI (XAI), this ap-
proach gives more control and transparency as well as more of a global perspective on the
segmentation process.

2. Diagnosing Incipient Changes

Diabetic macular edema (DME) is the primary reason for vision loss associated with
diabetic retinopathy (DR). It is generated by abnormal vascular permeability. The diagnosis
is made through binocular slit-lamp biomicroscopy, identification of leakage on fluorescein
angiograms (FA) or by examining the retinal structures and thickness provided by OCT.
Compared to OCT, the first two methods are deemed to be subjective and may overlook
small changes in retinal thickness [4]. Increased thickness of the macular region for a
patient with DR usually indicates DME, and this can be quantified by measuring the entire
retinal thickness with OCT-generated maps.

Advances in retinal layer segmentation has shown changes less obvious that seem
to precede increased macular thickness. For example, patients with diabetes without DR
or with initial DR show decreased retinal nerve fiber layer (RNFL) and increased inner
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nuclear layer (INL)/outer plexiform layer (OPL) thickness versus controls [5]; similarly,
patients with type 2 diabetes with minimal DR show thinner inner retinal layers of the
macula compared with healthy controls [6].

Measuring each layer separately can help us see more subtle changes and implement
the necessary treatment faster.

Age-related macular degeneration (AMD) is one of the most common causes of vision
loss worldwide. In Europe, in 2040, the number of individuals with early AMD is expected
to range between 14.9 and 21.5 million, and the number of individuals with late AMD is
expected to range between 3.9 and 4.8 million. Low vision severely impacts the quality of
life among populations and poses an enormous global financial burden.

Increased thickness of the retina (after adjusting for age and gender) usually indicates
changes that come with the exudative type. Following the growth of the new vessels
from the underlying choroid (type 1 or type 2) or from the retinal deep capillary plexus
(type 3), the retinal architecture is changed and retinal thickness increases. The changes
account for the growth of the vessels, the fluid that leaks from the weak vessel walls and
the fibrovascular scar that is formed over time.

Decreased thickness of the retina (after adjusting for age and gender) appears in the
late stages of the non-exudative type, with the loss of RPE, the internal segment ellipsoid
and the photoreceptor layer. The changes are named non-geographic atrophy or geographic
atrophy depending on whether the loss is localized or if it covers a contiguous area.

The before-mentioned changes that increase or decrease the overall thickness of the
retina occur in the last stage of the disease when the visual impairment has already settled.
More fine changes appear earlier in the course of the disease, but these may become clear
only after segmentation and measurement of the individual retinal layers. When comparing
patients with no AMD to those with moderate and severe early AMD, we can see changes
in retinal layer thickness: in the latter, the RPE/Bruch’s membrane (BM) complex thickness
is increased, while the photoreceptor inner/outer segments, interdigitation zone and outer
nuclear layer (ONL) thickness are decreased [7].

Catching these early changes can help us more closely monitor these patients and
could play a role in observing the response to the newly developed treatments in various
clinical trials.

3. Segmentation of Retinal Layers

We build here on the work of Duan et al. [8], whose method for OCT image segmen-
tation is based on graph theory and geodesic distance. The geodesic distance between
two vertices is the number of edges of the shortest path between the vertices. In our
case, the geodesic distance is computed based on an exponential function weighted by the
gradient.

Differently from most segmentation methods, we use here both the vertical and
horizontal gradient. The rationale is to improve segmentation, especially in cases with
retina conditions. In case of retina conditions, the layers may have a weaker contour,
the curves are larger (e.g., caused by inter-retinal fluid), or the layers can even be interrupted
(e.g., caused by drusens).

Our segmentation strategy is to firstly detect the most visible layer, the seventh layer
IS-OS (see Table 1). Then, we determine a region of interest for each of the remaining eight
layers. Each region is relative to the IS-OS layer firstly detected. We subsequently compute
the geodesic distance within each region by following two steps. First, we compute the
weighted geodesic distance (WGD) by employing a fast sweeping method [9]. Second,
we use the WGD value to determine the layers by solving a differential equation using
a descendant gradient. These steps are used to detect the nine layers in the retina (see
Figure 1). By splitting the image into eight areas of interest, we avoid detecting the same
most visible layer (i.e., IS-OS or ILM; recall Table 1).
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Figure 1. Retina segmentation from an OCT B-Scan image.

Table 1. Nine layers in the retina.

# Layer Name Abreviation

B1 Internal limiting membrane ILM
B2 Outer boundary of the retinal nerve fibre layer RNFL
B3 Inner plexiform layer-inner nuclear layer IPL-INL
B4 Inner nuclear layer-outer plexiform layer INL-OPL
B5 Outer plexiform layer-outer nuclear layer OPL-ONL
B6 Outer nuclear layer-inner segments of photoreceptors ONL-IS
B7 Inner segments of photoreceptors-outer segments of photoreceptors IS-OS
B8 Outer segments of of photoreceptors-retinal pigment epithelium OS-RPE
B9 Retinal pigment epithelium-choroid RPE-CH

3.1. Detecting the IS-OS Layer

To detect the IS-OS layer (i.e., B7), we use a local algorithm for adaptive binarisation.
The algorithm is based on the formula:

p =

{
0, ls(I, ws)− I > C
1, otherwise

(1)

where I is the given OCT image and ls(I, ws) is the image after a median filter of size
ws is applied to I. The filter aims to prepare the image for binarisation by applying the
Split–Bregman algorithm [10]. The parameter C controls the increase of image variations
based on which binarisation takes place. We used a median filter of size ws = 100, while
C = 0.01.

The Algorithm 1 formalises the method for computing the IS-OS frontier of the input
OCT image I. The output of the Compute7THLayer function is a vector of 512 elements, 1
for each column of the given OCT image. Each value represents the vertical position of the
frontier in the corresponding column. If the detection is not accurate enough, a human
agent can intervene by fine tuning the coefficients of the algorithm.

Algorithm 1 Computing the IS-OS frontier.

1: function COMPUTE7THLAYER(I, pars)
2: bwImg = Seg2(I, 100, pars.Enh, pars.Smooth)
3: img = bwImg

⊗
image

4: gradImg = getGradientMap(img,
5: darkToBright, params)
6: [B7, Y] = getSegBoundary(gradImg)
7: return[B7, Y]
8: end function

3.2. Double-Checking the Segmentation of the IS-OS Layer

Since identifying the frontier between IS and OS layers is the key element in our ap-
proach (as the other layers depend on it), we need to assure its correctness. Our assumption
is that following this adaptive thresholding algorithm, the highest intensity variation is on



Diagnostics 2022, 12, 22 5 of 14

the IS-OS layer. Figure 2 bears this out. The system displays to the ophthalmologist only
this layer (i.e., B7), in order for the human agent to check the validity of the segmentation
(see Figure 3).

Figure 2. Modifying the initial OCT image (left) with an adaptive thresholding algorithm based on
Equation (1) (center) aiming to accurately detect the easiest frontier between the IS and OS layers
(right).

Figure 3. Example of the segmentation of the IS-OS boundary before and after the correction of the
segmenting parameters.

3.3. Detecting the Remaining Layers

Detecting the rest of eight layers is relative to the identified frontier between IS-OS
(i.e., B7). The B7 layer is used to set two areas of interest around it. The benefit of such areas
of interest is that the method for computing geodesic distance avoids being kept in local
maxima. The layers below IS-OS (i.e., those on the external part of the retina) are detected
as follows.

We continue by considering the RPE-CH (i.e., B9), which is the lowest retinal layer.
To detect the B9 layer, we rely on the algorithm proposed by Duan [8], in which the
weighted function W(x) is given by:

W(x) =

{
1− exp (−λ(1− n(∇x I))n(|∇y I|)), c-o

exp (−λ(1− n(∇x I))n(|∇y I|)), o-c
(2)

Here, I is the current OCT image, n is a linear operator used for normalisation, and λ
is a user-defined parameter that gives that intensity level from the area of interest. Next,
∇x and ∇y are first-order gradient operators on the X and Y axes. n(|∇x I|) is the positive
horizontal gradient used to detect intensity variations on the horizontal direction, occurring
often when the retina suffers from a certain condition.
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We also consider the type of color difference between each layer. For instance, when
segmenting a layer that absorbs the light (that is darker), the intensity variations are more
visible in the magnitude of the open-close gradient (i.e., noted with o-c in Equation (2)).
Differently, when finding the frontier between a darker layer and a brighter one, we use
the close-open gradient (i.e., noted with o-c in Equation (2)). Since we are interested in the
RPE-CH (B9), we apply the open-close gradient on the area containing pixels below the
frontier between IS and OS.

Then, the remaining layers are computed as follows:

1. OS-RPE (B8) uses the open-close gradient in the area between B7 si B9;
2. ONL-IS (B6) is the frontier situated above the B7 layer. We use an area of interest

limited by B7 and a parallel line situated at a distance that can be adjusted by a human
expert;

3. ILM (B1) is a frontier with high variation of intensity, and hence, is more easily de-
tectable. To increase the accuracy, the B7 layer is also considered during the detection
of B1;

4. INL-OPL (B4) uses the close-open gradient applied to the region between ILM and
ONL-IS;

5. OPL-ONL (B5) is detected in the area situated between B4 and B6 by means of the
close-open gradient;

6. IPL-INL (B3) is detected in an area situated above B4 and below a parallel line of some
20 pixels. The open-closed gradient is applied.

3.4. Checking the Areas of Interest

Since we target a support tool for the human agent, we allow the user to intervene
after each automatic step. The human intervention includes validation or fine tuning of the
automatic segmentation. This approach gives more control and transparency as well as
more global views of the segmentation process. Note that no black box machine learning
has been used.

After detecting the IS-OS layer, it is important to limit the search for boundaries for
the remaining layers to only be in the areas of interest for each specific boundary. Therefore,
a human agent is able to preview the regions of interest of these new frontiers, which are
sequentially calculated based on the previously segmented layers (see Figure 4). Then,
the human-in-control can assess if the regions are correctly overlapping the layer which
needs to be segmented.

Various interactive features have been developed to present to the human agent the
regions of interest of each frontier and to allow him to interact with the segmentation
algorithm. In this line, the user can change the thickness of a region of interest and also
the distance from that region to the nearest neighboring frontiers. An example of such
an interactive function appears in Algorithm 2. Since we are interested here in deter-
mining the frontier B2 (RNFL), we compute the region of interest with respect to B1 and
B3. The functions removeRegionAboveSegLine(B,Y,img,bandwidth) and removeRegionBelowSeg-
Line(B,Y,img,bandwidth) are used to remove the area with the thickness of bandwidth pixels
situated under, respectively above, the frontier B. The benefit is that the parameters within
the structure par can be modified by the human agent from the tool’s interface. The outputs
of these functions represent binary masks with the same size with the given OCT image.
Once computed, each binary mask is added to a data structure that is used to flexibly
display each region of interest to the human agent.
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Figure 4. Computing the areas of interest for each layer: B2, B4, B6 and B7 (left) and B1, B3, B5 and
B8 (right).

Algorithm 2 RNFL segmentation by firstly computing its region of interest.

1: function RNFL(gradImg, B1, par)
2: BW1 = rmvRegAboveLine(B1, par.AbvWidth)
3: BW0 = rmvRegBelowLine(B1, par.BlwWidth)
4: BW = BW0

⊗
BW1

5: gradImg = getGradientMap(imgPad, brightToDark)
6: ROI = gradImg

⊗
BW

7: [B2, Y] = getSegBoundary(ROI)
8: return [B2, BW]
9: end function

If the areas of interest do not match the corresponding layer, the human agent can
modify the parameters and call the function again on the adjusted parameters. The fron-
tiers are obtained with the function getSegBoundary applied on the image computed by
multiplying the gradient map with the binary mask of the area of interest of the current
edge. The results of the algorithm are illustrated in Figure 5.

Figure 5. Retinal segmentation on a healthy retina on the left side, while segmentation of a pathologi-
cal retina is presented on the right.

4. Exemplifying Frontier Detection

Next, we exemplify the process of segmenting a single layer, since the method of
extracting the boundaries is similar for the remaining layers.

The first step in segmenting the retinal layers in our solution is detecting the IS-OS
boundary. To ensure that B7 will be the most prominent boundary, we enhance the pixels



Diagnostics 2022, 12, 22 8 of 14

around the specified layer using a method described by Algorithm 3. The idea behind
this method is to apply a mean filter with a high window size on the original image and
to subtract the image from the result of the filter. The output of this subtraction will be
a matrix with the same size as the image containing negative values in the pixels which
were originally below the average intensity. Those pixels are then ignored by computing a
binary mask by applying a threshold of 0.

Algorithm 3 Enhacing the IS-OS layer.

1: function SEG2(IM, ws, enh, smooth)
2: IM = denoise(IM, smooth)
3: mIM = average− f ilter(IM, ws)
4: sIM = mIM− IM− enh
5: bw = threshold(sIM, 0);
6: bw = complement(bw)
7: return[bw]
8: end function

After applying the binary mask on the original image, thus enhancing it and ensuring
the fact that IS-OS will be the first segmented boundary, the next step is to apply Algorithm 2
on the enhanced image. This algorithm consists of three steps.

First, we compute the region of interest for the current boundary. Each region of
interest needs to be narrowed based on their adjacent layers to avoid reaching a local
maxima problem.

Second, we compute the gradient of the image. Algorithm 4 applies Equation (2) to
denoise the image using the SplitBregmanROF algorithm. Then, the algorithm calculates
and normalizes both gradients and applies them in the exponential function from the
Equation (2).

Algorithm 4 Computing the gradient of the OCT image.

1: function GETGRADIENTMAP(img, f lag, ws, smooth)
2: IM = denoise(IM, ws, smooth)
3: [gradImgX, gradImgY] = gradient(IM)
4: if f lag == 0 then
5: gradImgY = −gradImgY
6: end if
7: gradImgY = normalise(gradImgY, [0, 1])
8: gradImgX = abs(gradImgX)
9: gradImgX = normalise(gradImgX, [0, 1])

10: gradImg = 1− (1− gradImgY)
⊗

gradImgX
11: gradImg = normalise(gradImg, [0, 1])
12: return [gradImg]
13: end function

The function getSegBoundary(gradImg) presented in Algorithm 5 is used to segment
the current boundary based on the gradient map previously calculated. In this example,
the function consists of transforming the digital image into a weighted graph and applying
Dijkstra’s shortest path algorithm to obtain the desired boundary. The same result can be
reached using a fast sweeping approach.

Once the IS-OS is extracted, the other boundaries can be segmented using the same
process. The only difference is that the function getSegBoundary is now applied only on
the region of interest of the current layer.
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Algorithm 5 Computing layers boundaries by extracting the most prominent bound-
ary available.

1: function GETSEGBOUNDARY(gradImg)
2: adjMatrix = getAdjMatrix(gradImg)
3: [X, Y] = Dijkstra(adjMatrix)
4: return [X, Y]
5: end function

5. Running Experiments
5.1. Dataset Description

First, we used a dataset of 750 OCT B-Scan Spectralis obtained from the Ophthalmology
Department of the County Emergency Hospital Cluj-Napoca. Second, we used the dataset
of Chiu et al. [11] to compare our method with the existing one. The Chiu dataset contains
images from both healthy retinas and retinas with conditions. Each image was manually
segmented by two specialists. Third, we used a 40-image dataset to validate frontier
extraction. Since Chiu et al. detect only eight layers, to compare the results, we did not
consider the segmentation for ONL-IS (i.e., B6).

5.2. Evaluation Metrics

We used both signed error (SE) with SE (Bi, B′i) = 1
n ∑n

j=1(Bij − B′ij) and the mean

absolute error given by MAE (Bi, B′i) =
1
n ∑n

j=1(|Bij − B′ij|). Here Bi represents the frontiers
detected by automatic segmentation, while B′i are the manually annotated frontiers. A
smaller SE indicates smaller differences between frontiers. The signs of SE indicates if the
detected frontier is above or below the true frontier.

We analysed the segmentation results with distinct OCT-sets: one containing normal
retinas, and the other retinas with conditions. For the normal retina, the mean and standard
deviation are listed in Table 2. Our method has smaller SE errors on layers B1, B7 and B8.
The highest value is 0.43 pixels. SE has values around 2 px for the layers B2, B3, B5’ and B8.
The standard deviation is similarly distributed with maximum values of 0.5 pixels for the
layers B1, B7 and B9, respectively, and 1.52 px for B2, B3, B5 and B8. The average value of
SE on all layers is −1.99± 1.14 px. The average value for AE is 2.60± 0.95 px. These results
are also depicted in Figure 6. To compare our method with the one proposed by Chiu et al.,
we list here their values for SE (−1.20± 0.54 px) and AE (2.09± 0.59 px).

Table 2. Assessing the segmentation of healthy retinas.

Boundary
Signed Error (SE) Absolute Error (AE)

µ σ2 µ σ2

ILM (B1) −0.29 0.50 1.26 0.17
RNFL (B2) −1.75 2.33 2.89 0.92

IPL-INL (B3) −1.83 1.19 3.09 1.35
INL-OPL (B4) 0.50 1.35 2.47 1.75
OPL-ONL (B5) 3.21 1.14 4.84 1.36

IS-OS (B7) 0.43 0.47 1.29 0.28
OS-RPE (B8) −2.04 1.90 3.76 0.88
RPE-CH (B9) −0.22 0.28 1.22 0.89

Total −1.99 1.14 2.60 0.95
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Figure 6. Mean (top) and standard deviations (bottom) for SE (signed error) and AE (absolute error)
for healthy retinas.

In the case of retinas with conditions, the results are depicted in Table 3 and Figure 7.
One observation is that errors are larger in the case of abnormal retinas. The frontiers B3
and B4 have larger errors, with values above 8 px. This result is given by the fact that in the
case of retinal conditions such as DME, the fluid is accumulated in these layers.

One advantage is that the mean error ME is small: its value is less than 1 px for
B1, B7 and B9. This low error is important for a correct segmentation of the retina. The
same case is with the absolute error: The frontiers B2–B4 have errors between 4.25 and
12.57 px, while the remaining frontiers have segmentation errors within 1− 2 px. The mean
value for ME is −2.64± 2.65, while for AE this value is 4.05± 2.06 (the tool is available at
https://github.com/BilcSergiu/OCT-Segmentation, accessed on 16 November 2021).

Table 3. Segmentation performance in the case of retinas with conditions.

Frontier
Signed Error (SE) Absolute Error (AE)

Mean Std. Dev. Mean Std. Dev.

ILM (B1) −0.27 0.51 1.02 0.11
RNFL (B2) −2.89 1.99 4.25 1.34

IPL-INL (B3) −8.12 5.59 12.67 3.49
INL-OPL (B4) −8.33 7.68 7.88 6.96
OPL-ONL (B5) −1.41 3.51 1.84 3.28

IS-OS (B7) 0.21 0.18 1.25 0.28
OS-RPE (B8) −1.15 0.97 2.31 0.74
RPE-CH (B9) 0.84 0.77 1.19 0.32

Total −2.64 2.65 4.05 2.06

https://github.com/BilcSergiu/OCT-Segmentation
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Figure 7. Mean (top) and standard deviations (bottom) for SE (signed error) and AE (absolute error) for
retinas with conditions.

Even though the OCT B-scan’s accuracy of correctly representing the individual retinal
layers is almost comparable to in vivo histopathology (Figure 8), manually delineating
these layers is a time consuming task that can’t be fitted in a regular clinical practice routine.

Figure 8. Comparing the results of manual segmentation (left) to automatic segmentation (right) on
a healthy retina (top) and on a retina with condition (bottom).

6. Discussion and Related Work

Dufour et al. have proposed in [12] a segmentation method of OCT retina images based
on graphs. This method takes into consideration weak constraints or knowledge obtained
from previous segmentations, and it is based on energy minimisation. The performance
is higher in the case of healthy retinas compared with those patients presenting drusen
within the retina’s layers. The mean of the absolute error was 3.05± 0.54 µm. The approach
of Dufour et al. targeted both healthy retinas and those with macular edema, but focused
on detecting only six frontiers: ILM, RNFL, IPL-INL, IS-OS, and RPE-CH.
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Chiu et al. [11] have detected retina layers from OCT images by computing the
minimum distance between two points from the graph G = (V, E), where V is the set of
pixels from the B-SCAN and E is the set of weights assigned to each pair of nodes from
the graph. Each pixel from the initial image is connected to its eight neighbours. The
weights for two nodes are given by the intensity variation of the image on the vertical
axis. The variation is given by the intensity of the vertical gradient. Based on these values,
the frontier with the highest intensity variation is identified. This is the same as finding
the minimum cost distance (i.e., rDijkstra algorithm) between the first and the last node in
the set V. The method developed by Chiu et al. detects seven frontiers: ILM, RNFL, IPL-
INL, INL-OPL, OPL-ONL, and IS-OS. The mean error of thickness of each layer between
automatic segmentation and human expert segmentation was 0.9± 0.82.

The Caserel project [13] aims at assisting the segmentation of retina layers from OCT
images. Similar to Chiu et al. [11], the segmentation method in Caserel uses graph theory,
the minimum cost algorithm, and gradients. Each layer is successively identified based on
the previous one until the following six frontiers are obtained: ILM, NFL-GCL, IPL-INL,
INL-OPL, OPL-ONL, IS-OS, and RPE.

Duan et al. have also exploited the notion of geodesic distance [8]. The geodesic
distance is computed by using an exponential function based on both vertical and horizontal
gradients. During computation a fast sweeping algorithm is used. Similar to Chiu et al.,
the method relies on the maximum difference in intensity between two layers, which makes
both methods sensible to local maximum. In a method different than that employed by
Chiu et al., Duan et al. have used a different function to compute the weights between
two nodes. The method is able to segment nine layers in the retina: ILM, RNFL, IPL-INL,
INL-OPL, OPL-ONL, ONL-IS, IS-OS, OS-RPE and RPE-CH.

We tackle here the task of segmenting 2D OCT images, while some consideration has
been recently given to improving the segmentation of 3D retina layers. One such example
is the work of Stankiewicz, which applies graph theory to deal with low quality OCT
images [14].

Compared with the above approaches, the main difference is that we focus on the
interaction with the user. Since we target a support tool for the human agent, we allow
users to intervene after each automatic step. The human intervention includes validation
or fine tuning of the automatic segmentation. In line with the design criteria advocated
by explainable AI (XAI), this approach gives more control and transparency as well as
a more global perspective on the segmentation process. Note also that no black-box
machine learning has been used. Therefore, in the context of a plethora of deep-learning
segmentation approaches [15], we consider this interactivity with the human expert as a
distinctive feature.

In line with the Explainable AI principle, we analyse when the proposed solution
is not reliable. As far as we see, the utility of segmentation ranges from catching early
incipient changes and guiding the clinician in the direction of a certain diagnosis to helping
in the preprocessing step of a computer-aided classification or prediction task.

One of the limitations of our method is related to the patient’s retinal condition. The
intervention of the ophthalmologist might be necessary when the retinal structures undergo
important alterations due to the advanced stages of certain disorders or when vital layers
in the segmentation process suffer modifications. First, if a significant volume of retinal
fluid infiltrates between the retinal layers, our solution will have problems detecting the
IS-OS boundary, therefore affecting the segmentation of the remaining boundaries. These
changes can appear in advanced cases of diabetic macular edema or age-related macular
degeneration. Second, if changes related to the presence of drusen or fibrovascular scars
appear around the RPE layer, our solution will not be able to properly segment the OS-RPE
and RPE-CH boundaries because the segmentation is currently done in relation to the
IS-OS boundary. These changes take place mainly in age-related macular degeneration,
but they materialize in different stages of the disease. A final limitation where the human
intervention correction could improve the automatic segmentation would be in the case of
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a poor signal due to media opacities, where the automatic segmentation might fail due to
lack of clarity of the retinal layers.

In order to offer support for these limitations, the manual segmentation/correction of
the preliminary results was added. A human agent can intervene and correct the results,
both when the patient presents a high volume of fluid and when the patient presents drusen
and fibrovascular scars.

7. Conclusions

We developed here a support tool for the segmentation of retina layers. The proposed
method relies on graph theory and geodesic distance. As each retina layer is characterised
by different features, we interleave various gradients during detection, such as horizontal
and vertical gradients or open-closed gradients. The method was tested against two
datasets which were publicly available and a third dataset of 750 OCT B-Scan Spectralis
provided by the Ophthalmology Department of the County Emergency Hospital Cluj-
Napoca. The method has smaller signed error on layers B1, B7 and B8, with the highest
value of 0.43 pixels. The average value of the signed error on all layers is −1.99 ± 1.14 px.
Average value for mean absolute error is 2.60 ± 0.95 px.

Different from the end-to-end machine learning approaches, the proposed system
allows the human expert to intervene after each automatic step. Human intervention
includes validation or fine tuning of the automatic segmentation. In line with design criteria
advocated by explainable AI (XAI), this approach gives more control and transparency
as well as a more global perspective on the segmentation process. In the context of many
black box segmentation systems available, we consider this interactivity with the human
expert as the main selling point of the system.

We are currently working on extracting knowledge from cases in which the human
agent adjusts the parameters of our segmentation method. We plan to use such knowledge
for feeding our algorithms with the aim of better handling complicated cases of OCT images.
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