
Generating and solving the LIGHTS OUT! game in
first order logic

Borbála Fazakas1, Beáta Keresztes1 and Adrian Groza1

Abstract—We compare here declarative approaches to model
the LIGHTS OUT! game and its friends in First Order Logic
(FOL). First, we solve the game using: (i) planning in FOL
and (ii) a model finder for finite domains, for which we rely on
Prover9 and Mace4. Second, we show how LIGHTS OUT! puzzles
can be automatically generated by reasoning on finite models of
FOL theories. We designed three solutions: (i) using a LIGHTS
OUT! game solver in FOL, (ii) using linear algebra and a model
generator, and (iii) improving the linear algebra-based method
by decreasing the domain size. Third, we show how declarative
knowledge can be reused to solve and generate different exten-
sions of the LIGHTS OUT! game. We experimentally compare the
proposed declarative methods and we discuss some extensions of
theLIGHTS OUT! game.

Index Terms—Modelling in First Order Logic; Satisfiable
models; Planning in FOL; LIGHTS OUT! game;

I. INTRODUCTION

Logical games are an efficient instrument to engage students
in learning artificial intelligence from various perspectives
including pedagogical [1], [2], mind [3] or anthropological [4].
Modelling puzzles in First Order Logic (FOL) has been given
some attention in the literature, with two examples being the
138 puzzles from the Thousands of Problems for Theorem
Provers [5], and more recently the 144 puzzles from [6].

LIGHTS OUT! is a puzzle in which you are given a grid
of tiles (or lights), some of them lit up, others turned off.
The goal is to turn off all the lights in the grid by clicking
on the tiles, in as few moves as possible. Each click toggles
that light and its neighbours in a cross-like pattern. The player
can click on any tile, and as an effect, it will toggle not only
the state of the selected light but also that of its direct (non-
diagonal) neighbours. The 5×5 electronic version was released
by Tiger Electronics in 1995, following the 3×3 version called
Merlin in 1970. Formally, the game is an undirected graph
G = (V,E) with n nodes where each node v ∈ V has a state
Bv ∈ 0, 1. We say v is "off" if Bv = 0 and "on" if Bv = 1.

When developing an interactive application, based on the
LIGHTS OUT! game, two tasks are (1) to find solutions for
the puzzles, in order to provide useful hints (tips) for the next
move of the user, and (2) to generate solvable puzzles, for
selecting a new game (board) layout. Thus, the paper not only
addresses the solution finding of the game but also makes use
of solution generation models to further create game instances.
The quantitative evaluation is given to show the effectiveness
of the models.

1Computer Science Department, Technical Univer-
sity of Cluj-Napoca, 28 Memorandumului, Cluj-Napoca,
Romania keresztesbeata00@yahoo.com,
fazakasbori@gmail.com, adrian.groza@cs.utcluj.ro

II. MODELLING THE LIGHTS OUT! GAME IN FOL

We present ways to solve the LIGHTS OUT! game, as well
as generate solvable instances of the puzzle. Two approaches
are described next in terms of solving a given puzzle, de-
scribing it as a planning task, or a model finding task in
FOL. The planning-based approach utilizes production rules
to construct sequences of steps that lead to the winning
state. The model-finding approach, on the other hand, relies
on three important observations regarding the game, which
are subsequently translated into a task that attempts to find
sets of light bulb selections to switch. A direct comparison
between the two shows how model-finding scales better with
the parameter values required to solve a given instance. Both
approaches were formalised in Prover9 theorem prover and its
Mace4 model finder [7].

A. Planning in First Order Logic

The game can be approached as a planning task in first order
logic. Given a game position represented by the state of each
light bulb in the 5x5 grid, to goal is to find a sequence of steps
which lead to the winning state. The solution is a sequence
of (xi, yi) steps, meaning that the ith step of the solution is
switching the light bulb in position (xi, yi) of the grid, and
by applying all steps from 0 to n− 1, where n is the solution
length, we get to the winning state. The shortest solution is
of interest to assist users by providing hints for solving the
puzzle.

For planning in FOL, we use state-based reasoning to find a
sequence of steps that lead to the winning state. As a planning
task, we need to formalise in first order logic (i) the initial
state, (2) the goal state, and (3) allowed steps and their effects.

First, for the initial state, the 5×5 boolean matrix is repre-
sented with a 1×25 list V , with V [i] = 0 meaning the light
bulb in row i/5 and column i%5 is off, and V [i] = 1 for light
on. For example, the initial state of the game G0 is:

s([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0])

Second, the goal state with all lights turned off represents the
theorem to prove, formalised with:

s([0, 0])

Third, for modelling the possible moves, we need to formalise
the neighboring pattern. In the classical version of the game,
this pattern represents a cross (Fig. 1). The nCross(x, y)
predicate is true only if the light bulb x is the neighbor of

Fig. 1: The three cases for the cross neighboring pattern

light bulb y. For a n × n grid, the cross neighboring pattern
is formalised for the corresponding list of length n× n with:

nCross(x, y)↔
(x 6= n ∧ x 6= 2n ∧ ∧ x 6= n2 ∧ x+ 1 == y) ∨
(y 6= n ∧ y 6= 2n ∧ ... ∧ y 6= n2 ∧ y + 1 == x) ∨

x == y ∨ x+ n == y ∨ y + n == x

Next, we formalise the effect of toggling a light bulb with a
given state with the function toggle(0) = 1 and toggle(1) = 0.
Since, each action affects maximum 5 cells, we define the
predicate toggleV ector([F :R], S, C) with three variables : (i)
the list [F :R] containing the current state of the light bulbs,
(ii) the identifier of the step S to be taken, 1 ≤ S ≤ 25, and
(iii) C, the index of F in the original vector describing the
current state of the game, 1 ≤ C ≤ 25 (note that the function is
implemented recursively, and at each recursive step, 1 element
is cut from the beginning of the list. This is why, for example,
after 10 recursive steps, the F corresponds to the 10th element
of the 25-element list describing the current state of the game).

toggleV ector([], S, C) = [].

toggleV ector([F : R], S, C) = if(n(S,C),

[toggle(F) : toggleV ector(R,S,C + 1)],

[F : toggleV ector(R,S,C + 1)]). (1)

The predicate toggleV ector switches the state of the neigh-
bors of the light C. The predicate n(S,C) is the current
neighboring pattern, e.g. n(S,C) ↔ nCross(S,C). When
playing the game with a different neighboring pattern (e.g. di-
agonal), this generic definition for the predicate toggleV ector
works only by stating the current pattern, e.g., n(S,C) ↔
nDiagonal(S,C). Also note that the Prover9 provides the if
construct on top of first order logic.

At each step there are n× n possible actions, one for each
button. For 5 × 5 grid, we used 25 production rules to move
from one state to another. For instance, the rule activating
when pressing the bulb in (0,0) is:

state([F : R])→ state(toggleV ector([F : R], 1, 1)) (2)

While this code seems simple enough at the first sight, if we
take into account that all Prover9 can do based on it is to apply
a backtracking directly, with 25 options at each step and no
clues for detecting earlier that from a given state S the goal
state cannot be reached in the desired number of steps, it is
clear, that this solution is highly inefficient. As an experiment,

for the G1 game on 5 × 5 grid below, the shortest solution
consists of 5 steps: (0,0), (0,4), (2,2), (4,3), (4,4).

G1 =


1 1 0 1 1
1 0 1 0 1
0 1 1 1 0
0 0 1 1 1
0 0 1 0 0

 ,


0 0 0 1 1
0 0 1 0 1
0 1 1 1 0
0 0 1 1 1
0 0 1 0 0

 ,


0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 0 0

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 1

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Prover9 takes around 8 seconds to find a solution, and

uses 56 MBs of memory. This is not so surprising, given
that Prover9 needs to try at least all the 254 > 216 potential
solutions of length 4 before finding the shortest solution of
length 5. Moreover, for solving game G2 below, with the
shortest solution of 6 steps ((0,0), (0,1), (0,3), (0,4), (4,1),
(4,4)), Prover9 takes around 59.6 seconds and 315MBs. These
experiments were run on a virtual machine having an Intel(R)
Core(TM) i7-8750H CPU of 2.20GHz max frequency, with
8.0GB RAM, hosting a 64-bit operating system, Ubuntu 20.04.

G2 =


0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1

 ,


1 1 0 0 0
0 1 0 1 1
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1

 ,


0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1

 ,


0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 1


We observed that this solution cannot be applied for any

5 × 5 grid with 7 or more steps in the shortest solution: the
amount of memory required will be too large. Since, there are
plenty of configurations with the shortest path having more
than 8 steps, it is desirable to find an improved game solver
algorithm. Such an improvement is by finding finite models
of the LIGHTS OUT! formalisation in FOL.

Instead of planning, a FOL theory can be used to solve the
game by finding interpretation models.

B. Finding models for the LIGHTS OUT!

Developing a LIGHTS OUT! solver based on interpretation
models is based on the following observations:

1) Redundant steps: it is redundant to switch a light bulb
twice, because that would cause its state to be set back
to the original one. Hence, if a solution for a puzzle
exists, then there must be a solution in which any light
bulb should be switched maximum once.

2) The final state of a light bulb is given by the parity of the
total number of switches applied on it or on its adjacent
light bulbs: the state of a light bulb is toggled exactly
when it or an adjacent light bulb is switched. Overall, if
the light bulb is toggled an even number of times, then
its final state is the same as its original state. If it is
toggled an odd number of times, then its final state is
different from its original state.

3) The order of the steps is irrelevant: based on observation
2, it follows naturally that for the final state of the light
bulb only the number of the switches applied on it and
on its neighbors matters, but not the order in which these
switches were applied.

Based on observations 1 and 3, instead of searching for a
solution represented by a sequence of steps, we may search for
just a set of steps. Thus, the task reduces to finding a sequence
X of nodes, called the activation set, such that activating all
nodes in X will turn off all nodes in G. Remark that, toggling
a light an even number of times would be redundant as it will
end up in the same state as initially.

Whereas searching for a sequence of length n may require
evaluating up to 25 ∗ 24 ∗ ...(26− n) options, for set of steps
out of 25 possible steps there are 225 options overall (not
considering the size of the set). Based on this simplification,
we can avoid using Prover9 in production mode to generate a
sequence of steps, and we can instead use Mace4 to generate
a solution model. To this aim, we introduce the predicate
switch(x, y) being true iff switching the light bulb on position
(x, y) is a step of the solution. We use also the function
on(x, y) = 1 iff the light bulb on position x and y is "on"
and on(x, y) = 0 if it is off. Note that on(x, y) is a function
instead of predicate, aiming to apply some functions on it.
The predicate oddToggles(x, y) marks that the number of
toggles applied to a light bulb (i.e. the number of switches
applied to that light bulb and its neighbors) is odd. We
can define the predicate oddToggles by computing the Xor-
Sum of switch(x, y), switch(x − 1, y), switch(x + 1, y),
switch(x, y−1), and switch(x, y+1), because the Xor-Sum
of some binary numbers gives the modulo 2 value of their
sum.

oddToggles(X,Y) ⇐⇒
Xor(Xor(Xor(Switch(X + 1, Y), Switch(X − 1, Y)),

Xor(Switch(X,Y − 1), Switch(X,Y + 1))), Switch(X,Y))

Now, based on Observation 2, we can say that we want a
light bulb to be toggled an odd number of times if initially
it’s turned on, and an even number of times if initially it’s

turned off, so that, in the end, all light bulbs will be turned
off. Thus, oddToggles(X,Y) ⇐⇒ On(X,Y). The above
described relations are enough to find a solution to an initial
game state, provided as an assumption to Mace4 using the
on(x, y) function.

One point that was missed in the above train of thought is
that some light bulbs do not have an adjacent light bulb in
all 4 directions, so the definition of oddToggles cannot be
applied directly. To overcome this issue, all the matrices were
extended with one additional row and one column in all sides,
so that all cells of the original matrices had neighbors in all
directions. It was fixed though, that the "light bulbs" in the
extended rows/columns cannot be turned on or switched, so
they didn’t actually have an effect on the other light bulbs.

C. Comparing planning with model based approach

For comparing the planning with the model based approach,
consider the five LIGHTS OUT! games G1-G5 in Table I. Each
corresponding solution appears below the game. For instance,
the game G1 is solved by pressing two buttons: (0,0) and
(0,4). The game G5 is solved by pressing 15 buttons, as listed
in bottom-right of Table I.

By asking for all the solutions, Mace4 returns 4 models for
game G1 (Table II). Here, values of one represent which bulb
to press. Recall, the order has no relevance. By summing each
matrix, we obtain the minim solution.

Running experiments have shown (Fig. 2), that while for
the model based approach, the execution time remains constant
with respect to the number of steps in the solution, and it takes
a little less than 1s, the planning based approach execution
time grows exponentially with the number of steps, takes
almost 1 minute for a 6-step solution and fails to provide
a solution with the memory limit of 1000MB for a puzzle
with more than 6 steps in its shortest solution. Negative values
for the planning based approach mark that the program failed
to produce a solution with the memory limit of 1,000MB.
The redundant steps could be removed from the planning-
based game solver too, by maintaining a set of previously
applied steps and verifying that the new step to be added
was not applied before. However, this approach is not feasible
in practice, as it increases the memory requirements of the
program.

Note that the comparison in Fig. 2 is not entirely accurate:
while the planning-based approach finds just one solution, but
the shortest one, the model-based approach was set to find all
solutions, but cannot tell, which one is the shortest. Since we
learned from Anderson and Feil [8] that any solvable 5 × 5
puzzle has exactly 4 solutions, finding the shortest one based
on a model-based approach is a simple task.

III. GENERATING LIGHTS OUT! GAMES USING FIRST
ORDER LOGIC

Our goal here is to automatically generate puzzles that have
a solution by reasoning on finite models of first order logic
theories. We designed three solutions: (i) using a LIGHTS
OUT! game solver in FOL, (ii) using linear algebra and a

TABLE I: Five games with one solution for each

G1 G2 G3 G4 G5
1 1 0 1 1
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



1 1 0 1 1
1 0 1 0 1
0 1 1 1 0
0 0 1 1 1
0 0 1 0 0



0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 0 0 0 1
1 1 0 1 1



1 0 1 0 1
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1
0 1 1 1 0



1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1



[
(0, 0) (0, 4)

] (0, 0) (0, 4)
(2, 2) (4, 3)
(4, 4)

 (0, 0) (0, 1)
(0, 3) (0, 4)
(4, 0) (4, 4)


(0, 0) (0, 4)
(1, 1) (1, 2)
(1, 3) (2, 0)
(2, 4) (4, 2)


(0, 3) (0, 4) (1, 0) (1, 1)
(1, 3) (1, 4) (2, 1) (2, 2)
(2, 4) (3, 1) (3, 2) (3, 3)
(4, 0) (4, 2) (4, 3)


TABLE II: Finding the minimal number of moves

Model1 Model2 Model3 Model4
0 0 1 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 1



0 1 0 1 0
0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 1 0 1 1



1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



1 1 1 1 1
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 0


10 moves 10 moves 2 moves 18 moves

Fig. 2: Comparing the User CPU time for solving the game
Note that the negative User_CPU(s) values show that the

execution was unsuccessful with a memory limit of
1000MB.

model generator and (iii) improving the linear algebra-based
method by decreasing the domain size.

A. Using puzzle solving algorithm

First, one can generate LIGHTS OUT! games by using the
above model-based solving method. One change is to let initial
game state being unspecified. To do so, what we need to do is
only to remove the propositions about the on(x, y) function,
and specify only that there must be at least one light bulb
which is on in the initial state:

∃x ∃y on(x, y) = 1 (3)

Some observations follow. First, this method does unneces-
sary things: note that our goal was just to generate a solvable
puzzle, not that of solving it. Second, the same puzzle is
generated multiple times. The models generated by Mace4
include the solution to the puzzle also, and each solvable

puzzle has multiple (that is exactly 4) solutions [8]. Hence
for each n generated puzzles/models, we would get only n

4
different solvable puzzles, and it would be an additional task
to identify, which models represent the same puzzles.

B. Using linear algebra and model generator

The second solution is based on the work of Anderson and
Feil [8]. Anderson and Feil have introduced the following three
theorems on: (1) an equivalent criterion for the solvability of
a game state; (2) the number of solutions of a game state, and
(3) the format of the solutions. Let the initial state of the game
represented by the column vector B, where B[i] = 0 iff the
light bulb in row i/5 and column i%5 is off, and B[i] = 1 for
light on, with

~B = On(0), On(1), On(2), . . . On(24) (4)

Recall that the function On(n) states that the bulb n is turned
on, with On(x) = 1 ∨On(x) = 0.

Theorem 1: B is a solvable game state ⇐⇒ B ⊥ N1 &
B ⊥ N2 where

~N1 =
(
0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0

) (5)
~N2 =

(
1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1

) (6)

Theorem 2: Each solvable game state has exactly 4 solu-
tions.

Theorem 3: If ~X =(
Switch(0) Switch(1) Switch(2) . . . Switch(24)

)
is a solution for game state B, then the 4 solutions are

~X1 = ~X

~X2 = ~X + ~N1

~X3 = ~X + ~N2

~X4 = ~X + ~N1 + ~N2

(7)

To apply these theorems to the task, we ask Mace4 to
fill the vector On, representing the initial state of a solvable

game, with 0’s and 1’s (at least 1 value of 1), such that On
is perpendicular on N1 and N2. We can easily verify the
perpendicularity by computing the dot products:

~On ⊥ ~N1↔ ~On · ~N1 = 0 (8)
~On ⊥ ~N2↔ ~On · ~N2 = 0 (9)

In Mace4, using the arithmetic library with a domain size of
26, we can define N1 and N2 as functions, e.g., N1 : [0..25]→
{0, 1}, e.g. N1(0) = 1 ∧ N1(1) = 0 ∧ N1(2) = 1 ∧ . . . ∧
N1(25) = 0. Note that N1, N2 and On are indexed from 0,
to allow an easier description of the following relations, but
the game state is in fact represented by On : [1..25].

We also specify the relations for the dot products:

(x > 0 ∧ y + 1 = x ∧ Z = DotProd1(y) ∧
O = On(x) ∧N = N1(x))→

DotProd1(x) = Xor(Z,And(O,N)). (10)
DotProd1(0) = 0. (11)

(x > 0 ∧ y + 1 = x ∧ Z = DotProd2(y)

∧O = On(x) ∧N = N2(x))→
DotProd2(x) = Xor(Z,And(O,N)). (12)

DotProd2(0) = 0. (13)

so the conditions for perpendicularity can be expressed as
DotProd1(25) = 0 and DotProd2(25) = 0.

Finally, Mace4 has to search for the unknown values of the
function On, for which two conditions hold: (1) On(0) = 0
and (2) ∃x On(x) = 1.

The advantage of model based approach over planning is
that searching occurs only on the values representing the states
of the light bulbs in the initial state, and not for a sequential
solution of the puzzle, as the planning-based approach does.
However, the generator is slow because it needs to generate all
the models. If one tries to run the algebra-based code with a
smaller domain size and smaller vectors, then the program runs
fairly quickly and produces unique results. Also, if one takes
a look at the model generated by Mace4, it can be noticed that
because of using domain size 26, all the helper functions are
unnecessarily large (the binary relations And and Xor have
25*25 = 625 elements). Defining all the unnecessary values,
even if their value can be easily deduced and no backtracking
is needed, takes time for Mace4. This leads to a way for
improving the model based approach by reducing the domain
size.

C. Improving the linear-algebra based method

To reduce the domain size, we reorganize the vectors
On(x), N1(x), N2(x), DotProduct(x) with 1 ≤ X ≤
25 into 5 × 5 matrices On(x, y), N1(x, y), N2(x, y) and
DotProd(x, y) with 0 ≤ X , y ≤ 4. Thus, we can use a

domain size of 5 instead of 26. The vectors N1 and N2 will
be represented as binary functions:

N1(x, y) =


0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 0

N2(x, y) =


1 0 1 0 1
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 1


The relations for computing the dot products become

(y ≥ 1 ∧ yn+ 1 = y ∧ d = DotProd1(x, yn) ∧
o = On(x, y) ∧ n = N1(x, y))→

DotProd1(x, y) = Xor(d,And(o, n)).

(x ≥ 1 ∧ xn+ 1 = x ∧ d = DotProd1(xn, 4) ∧
o = On(x, 0) ∧ n = N1(x, 0))→

DotProd1(x, 0) = Xor(d,And(o, n)).

0 = On(0, 0) ∧ n = N1(0, 0)→
DotProd1(0, 0) = And(O,N).

(y ≥ 1 ∧ yn+ 1 = y ∧ d = DotProd2(x, yn) ∧
o = On(x, y) ∧ n = N2(x, y))→

DotProd2(x, y) = Xor(d,And(o, n)).

(x ≥ 1 ∧ xn+ 1 = x ∧ d = DotProd2(xn, 4) ∧
O = On(x, 0) ∧ n = N2(X, 0))→

DotProd2(x, 0) = Xor(d,And(o, n)).

O = On(0, 0) ∧N = N2(0, 0)→
DotProduct2(0, 0) = And(O,N).

where Mace4 has to find the values of On(x, y) with three
constraints:

On(x, y) = 1 ∨On(x, y) = 0 (14)
∃x ∃y On(x, y) = 1 (15)

DotProd1(4, 4) = 0 ∧DotProd2(4, 4) = 0 (16)

With this simple improvement, the decrease in execution
time is more than significant: generating one model takes
just a fraction of a second. Figures 3a and 3b bear out the
differences in the performance of the Mace4 based on the three
approaches, based on the User CPU time. Here Fig. 3b uses a
logarithmic scale. Note that for finding n solvable puzzles,
from Mace4 with the algebra-based approaches, n models
were requested, but with the approach based on a game solver,
4 ∗ n models were requested.

The improved algebra-based approach outperforms all the
other ones: it can generate 1000 solvable puzzles in 0.19
seconds, which makes it well-suited for being integrated in
a LIGHTS OUT! game with a graphical user interface. For
example, it can be used to generate, in real-time, a large
number of different puzzle configurations for each new game.

Maybe experiments with generating random bitstrings of
length 125, keeping the ones that satisfy the two checks for
perpendicularity. Each test succeeds with probability 0.5, so
this must be as fast as you could possibly want. Why would

(a) linear scale

(b) logarithmic scale

Fig. 3: Comparing puzzle generators based on UserCPU time

we use search as in Section 3, rather than a simple generate-
randomly-and-test? (I fill that is what exactly MAce4 does -
gnerates bitstrings of length 125 (5x5), keeping the ones that
satisfy the two checks for perpendicularity).

We introduced here two approaches in terms of generating
solvable instances of the LIGHTS OUT! puzzle. The first
relies on a modified version of the model-based algorithm
to solving an existing instance, while for the second one an
optimization is presented to an existing approach based on
linear algebra. Experimental results shown that the optimized
version of the algebra-based algorithm yields significantly
better performance compared to both its original counterpart
as well as the model-based approach.

IV. REUSING KNOWLEDGE FOR LIGHTS OUT! VARIANTS

There are many variations of the original LIGHTS
OUT! game, for example (i) changing the size of the board;
(ii) the pattern of the moves (diagonal, the neighbours are
affected but not the node itself); (iii) generalised to arbitrary
graphs instead of a grid; or (iv) the number of possible states
for each cell, i.e., instead of toggling between on and off, we
may consider a cycle on→ colori → on. We formalised these
variants by reusing parts of the FOL-theory for the LIGHTS
OUT! puzzle.

Consider the formalisation for patterns of moves other than
a vertical cross, e.g. the diagonal cross, torus, or the knight’s

move from chess, or even more difficult when changing lights
that are not adjacent but further away then light chasing. For
instance, the diagonal-pattern for a 5× 5 is formalised with:

5_diag(x, y)↔
(x 6= 5 ∧ x 6= 10 ∧ x 6= 15 ∧ x 6= 20 ∧ x 6= 25 ∧

x+ 1 == y) ∨
x == y ∨

x+ 5 == y ∨
(y 6= 5 ∧ y 6= 10 ∧ y 6= 15 ∧ y 6= 20 ∧ y 6= 25 ∧

y + 1 == x) ∨ (17)
y + 5 == x

For a general n × n grid the affected cells after a light is
toggled (using the diagonal pattern) would be given by:

n_diag(x, y)↔
(x 6= n ∧ x 6= 2n ∧x 6= n2 ∧ x+ 1 == y) ∨

x == y ∨
x+ n == y ∨

(y 6= n ∧ y 6= 2n ∧ ...y 6= n2 ∧ y + 1 == x) ∨
y + n == x

The number of states assigned to a cell could be extended
as well. In this line, the Lights Out 2000 variant came with 3
states assigned to each cell, which corresponded to 3 different
colors. On each button press, the cell changes from one state
(colour) to the next. The effect of changing the state of a light
affects not only the clicked light button but also its direct
neighbours, as defined by the current pattern (e.g. cross). The
total number of switches of a given button together with the
number of switches of its neighbours account to the final state
of the button, which should be 0, corresponding to the final
(off) state.

For formalising the effect of these switches on each button’s
state in FOL, instead of using the xor operation, we use the
addition, for operands outside the range of modulo 2: Let
the functions b(x, y) representing the initial state of the cell,
and c(x, y) the number of times a cell’s state is changed.
Let ds = domain_size − 1 the size of the extended grid
and noStates = 3. After applying a number of moves (i.e.
switches) on the current and neighbour cells, the final state of
the current cell should be the state 0. That means, if the cell
b(x, y) is not in the correct state, it should be changed either
directly or through its neighbours:

(x > 0 ∧ x < ds ∧ y > 0 ∧ y < ds ∧ xp = x− 1 ∧
yp = y − 1 ∧ xs = x+ 1 ∧ ys = y + 1)→

(b(x, y) + c(x, y) + c(xp, y) + c(x, yp) + c(xs, y) + c(x, ys))

mod noStates = 0

Here xs and ys represent the successor of values x and y,
while xp and yp their predecessor values.

V. DISCUSSION AND RELATED WORK

The LIGHTS OUT! game can be seen as a recreational
exercise. Yet, there is more than recreation, since LIGHTS
OUT! can be used to illustrate logic concepts or theorems
on graph structures. The difficulty of solving such a LIGHTS
OUT! game increases by the dimensions of the given board
configuration, or the pattern of lights that can be toggled with
a single move. Even for the 5 × 5 grid, human agents face
difficulties to find a solution, especially an optimal one, which
does not contain redundant moves (switching the same light
an even number of times).

To solve the game, various algorithms can be applied,
including the Light chasing method [9]. Starting with an initial
state of cells and a set of rules about how these cells interact
with their neighbors, a simulation of the change in the cells
states can be run over time. The Light chasing method, similar
to Gaussian elimination, guarantees to solve the problem, if a
solution exists, but it might require many redundant steps. It
successively scans each row, starting with the second one, and
clicks on every cell which has a light above it, on the previous
row. The last row is handled separately, using a lookup table
with some predefined light patterns in order to identify which
lights should be toggled in the first row. After that the initial
algorithm is applied again starting from the second row, until
a solution is found. Instead of such procedural approach,
we described here various declarative approaches to solve
the game and also to automatically generate new LIGHTS
OUT! configurations.

Logic games and puzzles, such as the LIGHTS OUT!, can
be used to help visualize and better understand some logic
aspects, such as graph theory, planning, search algorithms, or
finding repetitive patterns which lead to a solution (even if not
an optimal one) as in case of the Light chasing method [10].

A similar game to the LIGHTS OUT!is the Khalou puzzle,
which consists of a 4×4 array of stones, each with a white and
a black side. During one move, the stones on a complete row
and column are flipped, instead of the cross-diagonal pattern
as in LIGHTS OUT!. For the 4×4 layout, the upper bound
for the number of moves in which the Khalou puzzle can be
solved is considered to be 5 steps. Hopkins has introduced
an additional constraint - a timer - which requires to find a
maximum 5-moves solution in the given time limit [11]. By
adding different edges to the n × n grid graph, Davis et al.
have listed some extensions including the cylindrical LIGHTS
OUT!, toroidal LIGHTS OUT!, Mobius strip LIGHTS OUT!,
Klein bottle LIGHTS OUT!, or real projective plane LIGHTS
OUT! [2]. These extensions can be solved by reusing FOL
axioms for the classical LIGHTS OUT!, and adding the new
constraints for each variant.

As argued by Meyer, such logic puzzles can be an im-
portant asset in the education as well, contributing to the
development of logic thinking, reasoning and exploring the
problem solving-process, all these in an interactive way [12],
[13]. From the mathematical perspective, various theorems and
properties can be derived when modeling the game using a

graph representation and in the domain of linear algebra (some
such theorems are listed by Davis et al. [2]), while taking
into consideration certain game invariants [14]. Using the
adjacency matrix for representing the graph and by applying
the rules of linear algebra [2], [14], one can determine,
for example if the given matrix is reflexive, symmetric or
invertible, which could help to derive theorems and proofs,
later used in finding more optimal solutions for the LIGHTS
OUT! game [15].

VI. CONCLUSION

The paper looks at the well-known LIGHTS OUT! game and
two associated computational problems: (1) how to solve an
instance (or determine that no solution is possible), and (2)
how to generate solvable instances.

We presented here various declarative methods to solve and
automatically generate LIGHTS OUT! games. The first method
is based on a plain implementation of a solver by modelling the
game as a planning task in FOL. The only advantage here is the
user have access to the proof used to build the plan. The second
method incorporates clever observations such as: (i) lights that
are on must be toggled an odd number of times to be turned
off; (ii) lights that are off must be toggled an even number of
times for them to remain off; (iii) given a solution, the order in
which the lights are pressed does not matter. The declarative
solutions above allow the software engineer to easily extend
the solvers to various variations of the LIGHTS OUT!-game.

Based on the running experiments, we could draw the
following conclusions: First, LIGHTS OUT! games can be
solved both by planning in FOL, with Prover9’s production
mode, and through model finding methods. Second, while
Prover9’s production rules can be used to generate plans by
proving theorem in FOL, if the order of the steps is irrelevant,
using model finders is more efficient. The difference in solving
efficiency between the "planner approach" and the "model
approach" is expected, since the former does not exploit the
various redundancies and symmetries (e.g. duplicate moves
never being part of an optimal solution, or order of moves
being irrelevant for the outcome). Third, solvable LIGHTS
OUT! games can be generated based on game solvers and
based on model finders relying on linear algebra as well.
Fourth, game generators based on linear algebra are more
efficient, because they are based on an equivalent criterion
for the existence of a solution, but do not intend to find that
solution. Fifth, reducing the domain size in Mace4 can have a
significant impact on the performance of the program. Using
n×n matrices instead of 1× (n2) array reduces the execution
time.

One line is to translate the problem into propositional logic,
since it will generate formulas that make heavy use of xor and
conjunction. It would be good to know how a state-of-the art
SAT solver performs as a solver for this problem, or perhaps a
solver like CryptoMiniSat, which will take xor form as input.
Knowing that the order of steps in a solution is irrelevant and
this problem is all about parity, one just need to identify the
relevant set of bulbs.

REFERENCES

[1] E. F. Meyer, N. Falkner, R. Sooriamurthi, and Z. Michalewicz, Guide
to teaching puzzle-based learning. Springer, 2014.

[2] T. Davis, L. Grimley, K. Ince, G. Karaali, B. Kostadinov, and R. Soto,
“From puzzles to proof-writing: Exploring rich mathematical ideas
through mechanical puzzles,” Teaching Mathematics Through Games,
vol. 65, p. 97, 2021.

[3] M. Danesi, Ahmes’ legacy: Puzzles and the mathematical mind.
Springer, 2018.

[4] ——, An Anthropology of Puzzles: The Role of Puzzles in the Origins
and Evolution of Mind and Culture. Routledge, 2020.

[5] G. Sutcliffe, “The TPTP problem library and associated infrastructure:
from CNF to TH0, TPTP v6. 4.0,” Journal of Automated Reasoning, pp.
1–20, 2017.

[6] A. Groza, Modelling Puzzles in First Order Logic. Springer Cham,
2021.

[7] W. McCune, “Prover9 and Mace4,” 2005.
[8] M. Anderson and T. Feil, “Turning lights out with linear algebra,”

Mathematics Magazine, vol. 71, no. 4, pp. 300–303, 1998.
[9] C. D. Leach, “Chasing the lights in lights out,” Mathematics

Magazine, vol. 90, no. 2, pp. 126–133, 2017. [Online]. Available:
https://doi.org/10.4169/math.mag.90.2.126

[10] M. A. Madsen, “Lights out: Solutions using linear algebra,” Summation,
vol. 3, pp. 36–40, 2010.

[11] B. Hopkins, “Can You Win Khalou in Five Moves?” in The Mathematics
of Various Entertaining Subjects. Princeton University Press, 2019, pp.
204–212.

[12] R. S. Meyer, “The game of Lights out,” 2013.
[13] A. Lisitsa, “Revisiting mu-puzzle. a case study in finite countermodels

verification,” in International Conference on Reachability Problems.
Springer, 2018, pp. 75–86.

[14] A. Berman, F. Borer, and N. Hungerbühler, “Lights out on graphs,”
Mathematische Semesterberichte, pp. 1–19, 2021.

[15] R. Fleischer and J. Yu, “A survey of the game “Lights Out!”,” in Space-
efficient data structures, streams, and algorithms. Springer, 2013, pp.
176–198.

https://doi.org/10.4169/math.mag.90.2.126

	Introduction
	Modelling the Lights Out! game in FOL
	Planning in First Order Logic
	Finding models for the Lights Out!
	Comparing planning with model based approach

	Generating Lights Out! games using first order logic
	Using puzzle solving algorithm
	Using linear algebra and model generator
	Improving the linear-algebra based method

	Reusing knowledge for Lights Out! variants
	Discussion and related work
	Conclusion
	References

