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Abstract—We target here the interpretation of natural lan-
guage by means of Equational First Order Logic (FOL). The
communicative acts of the human agent are automatically con-
verted into a First Order Logic theory. The models of the FOL
theory are analysed by Mace4 model finder. To goal of the chatbot
is to reduce the number of interpretation models. With a single
interpretation model, the chatbot is sure about the human agent
preferences. To reduce the number of models, the agent asks
questions, while the corresponding answers are used to restrict
the models. The order in which these questions are asked is
extremely relevant to effectevely reduce the huge number of
interpretation models of a FOL theory. We apply here an entropy-
based method to improve the dialogues between a conversational
agent and a human agen. The new method computes the entropy
on the set of possible interpretation models. The experiments
indicated that with entropy-based chatbots it is easier to estimate
the budget of questions needed to elicit client preferences.

Index Terms—machine comprehension, discourse understand-
ing, chatbot, interpretation models, first order logic

I. INTERPRETATION MODELS IN FOL

Here is a puzzle for you: Assume the text ”Romeo and
Julieta are in love” is automatically translated by a ma-
chine learning-based translator into ”Romeo is in love” and
”Julieta is in love”. This is formalised in FOL with: A1:
∃x, love(romeo, x) and A2: ∃x, love(julieta, x). How many
interpretation models of this first order logic theory are there?

The human agent has a single interpretation model: there
are two individuals, Romeo (r) and Julieta (j), that love each
other (see Fig. 1). Here, r stands for romeo, j for julieta,

Instead, the logical agent has a huge number of interpre-
tation models, even for tiny theories like this. To answer
this question we used the Mace4 model finder [1]. Mace4
is able to compute interpretation models of first order logic
theories with finite domains. Here, we close the domain to
four individuals (i.e. we assume there are only four objects in
the domain). Axiom A1 says that romeo loves an individual
x, while axiom A2 says that julieta loves an individual x,
that is not necessarily the same, since each variable has its
own existential quantifier. Mace4 solves the puzzle for you:
there are 278,528 models.

Since this number of models might been unexpected (recall
that the domain was restricted to four individuals only), we
analysed the generated models. A sample of these models is
illustrated in Fig. 2. Here c1 and c2 are the Skolem constants
generated for the existential quantifiers in A1 and A2. As the
domain is closed to four individuals we work only with the
set of integers {0, 1, 2, 3}. The first model (first row, left) is
consistent with the human interpretation: romeo and julieta
do love each other. Note also that all four individuals are
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Fig. 1: The unique interpretation model of the human agent.
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Fig. 2: Sample of interpretation models for the software agent.

distinct: r → 0, j → 1, c1 → 2, c2 → 3. In the second model
(first row, center), romeo loves an individual c1, while julieta
loves a distinct individual c2. In the third model (second row,
left), both romeo and julieta love the same individual c1.
Moreover, no one sad that the love relation is not reflexive.
One such model is the fourth one (second row, right), where
both romeo and julieta love each other. The variety of the
models is also increased by different possible love relations
involving c1 and c2. For instance in the fourth model, c1 loves
heloise and c2 loves c1. Similarly, no one sad that someone
can love only one person at the same time. Therefore, the
fifth model (third row, left) is possible. Here, romeo loves
both julieta and c1. The largest influence is given by the
fact that the logical agent can interpret that some individuals
are not distinct. In the sixth model (third row, right), romeo
and julieta are interpreted by Mace4 as the same individual
(r → 0, j → 0) referred by two distinct names.

The above analysis explains how the logical agent has
indeed 278,528 interpretation models for the simple sentence
Romeo and Julieta are in love. Moreover, all these models
are equally plausible for the software agent. Given this gap
(278,528 models vs. one model of the human agent), the
natural question is How the two agents understand each other?

The task is to reduce the number of interpretation models for
the software agent. We consider dialogues between a logical
agent (i.e. a chatbot) and the human agent in the context of
customer service [2]. We illustrate the proposed conceptual
and technical instrumentation on the pizza-ordering scenario.



II. FORMALISING THE ORDERING PIZZA SCENARIO

The pizza seller chatbot aims to support clients choosing a
pizza according to some available ingredients. There are two
technical objectives: (1) reducing the interpretation models to
a single one; and (2) empowering the chatbot with a queering
strategy with the smallest number of questions to reach the
single interpretation model.

We formalise in FOL the following domain knowledge. As-
sume that pizza is the only product for sale: ∀x, x = Pizza↔
product(x). The available ingredients are sauce, fish, or
cheese. ∀x ingredient(x) ↔ x = Sauce ∨ x = Fish ∨
x = Cheese. Let also three locations for the ingredients:
∀x location(x)↔ x = AtlanticOcean ∨x = BlackSea ∨
x = PacificOcean. Products, ingredients and locations are
disjoint: ∀x product(x) → ¬ingredient(x) ∧ ¬location(x),
∀x ingredient(x) → ¬location(x) ∧ ¬product(x),
∀x location(x)→ ¬ingredient(x) ∧ ¬product(x).

Next, we introduce the binary relation "from", between
an ingredient and a location: ∀x forally from(x, y) →
ingredient(x) ∧ location(y). Assume that fish
is the unique ingredient from the Atlantic Ocean:
∀x from(x,AtlanticOcean) → x = Fish. Similarly,
fish is the single ingredient from the Black Sea:
∀x from(x,BlackSea) → x = Fish. Next we
specify that there are no available ingredients from the
Pacific Ocean: ¬∃x from(x, PacificOcean). Hence, fish
origins only from the locations: ∀x from(Fish, x) →
x = BlackSea ∨ x = AtlanticOcean. The relation
contains has domain a product and has range an ingredient:
∀x∀y contains(x, y) → product(x) ∧ ingredient(y). Let
two types of sauce: sweet or spicy. To represent the fact
that the sauce can be of several kinds, we introduce
the relation varied: varied(Sauce). The relation is
valid only for the types of sauce, not having several
types of cheese or fish: ∀x varied(x) ↔ x = Sauce.
We also formalise the fact that something that is in
many ways is varied: ∀x ∀y is(x, y) → varied(x).
Next, we state the only two types of sauce available:
∀x is(Sauce, x) → x = Spicy ∨ x = Sweet. The pizza
domain can be extended with new locations (e.g. Jiu River
and Yellow Sea), with new kinds of cheese (e.g. white, yellow
and blue cheese), or other sauces (e.g. Taiwanese):

is(Sauce, Taiwanese)↔ from(Fish, Y ellowSea) (1)
is(Cheese,Blue)→ ¬from(Fish, Jiu) (2)
is(Sauce, Spicy)→ ¬is(Cheese, Y ellow) (3)
is(Cheese,White)→ ¬is(Sauce, Sweet) (4)

Our task is to match this FOL theory against the client
preferences. Since these preferences are conveyed in natural
language, we need to automatically translate into FOL.

III. CONVERTING NATURAL LANGUAGE TO FOL

To convert natural language sentences into FOL, we rely
on the NLTK library. First, we use the classical pipeline of
tokenisation, stop words removing, lemmatisation to obtain

a list of words consisting of lowercase letters. Second, we
use the NLTK library to retrieve the part of speech for each
token. Starting from a list of words that are represented as
strings: [’pizza’,’with’,’fish’] we get a list of
word pairs and the part of speech associated with them:
[(’pizza’,’NN’),(’with’,’IN’),(’fish’,’NN’)].
Third, we create a grammar based on the parts of speech.
A grammar for ”pizza with fish” can be used to identify a
structure such as: {<NN.*><IN><NN.*>}. This expression
identifies structures that are made up of a noun, followed by
a preposition, followed by another noun.

Parsing rules are also defined for processing sentences such
as ”The sauce should be spicy.”: <NN.*><.*><VB><JJ>
The expression identifies sentences containing a noun, fol-
lowed by a verb and an adjective. We consider that the user
will often express his intention in the form of sentences that
contain structures such as ”pizza with fish”, for example.
Similar intentions may contain a negation that will slightly
change the user’s intention. Let for instance the sentence
”pizza with no cheese”, handled by the following expression:
{<NN.*><IN><DT><NN.*>}. The expression matches sen-
tences that start with a noun, followed by a preposition,
followed by a negation and that end with a noun.

In the previous case, the negation applies to the ingredient
put on pizza (e.g. cheese). The negation is addressed to
the second noun. However, the case occurs if the nega-
tion is addressed to the first noun (i.e.pizza). For this, the
agent needs to identify a structure similar to ”no pizza
with cheese”: {<DT><NN.*><IN><NN.*>}. The expression
identifies structures that begin with a negation, followed by a
noun, followed by a sentence, and that end with another noun.

Another less common case is that in which two nega-
tions are encountered: one on the first noun, and the other
on the second, e.g. ”I want no pizza with no cheese.”.
The structure ”no pizza with no cheese” is handled by
{<DT><NN.*><IN><DT><NN.*>}. The expression identi-
fies structures that begin with a negation, followed by a noun,
then a preposition, which is followed by a negation and a noun.

Another pattern is given by sentences like ”I
want a pizza with spicy sauce.”. Upon identifying
the intention to have a pizza with sauce, it must
also be spicy: {<NN.*><IN><NN.*><NN.*>} and
{<NN.*><IN><JJ><NN.*>}. Such expressions capture
structures consisting of a noun followed by a preposition,
which is followed by another noun or adjective, depending
on the ability of the NLTK library to correctly identify the
part of speech, and which ends with a noun. The grammar
created is as follows:

CASE1:{<NN.*><IN><NN.*>}
{<NN.*><.*><VB><JJ>}

CASE2:{<NN.*><IN><DT><NN.*>}
CASE3:{<DT><NN.*><IN><NN.*>}
CASE4:{<DT><NN.*><IN><DT><NN.*>}
CASE5:{<NN.*><IN><NN.*><NN.*>}

{<NN.*><IN><JJ><NN.*>}



Fourth, we identify the logical relationships received from
the user. We add the elements in the domain to which the user
refers, the context that the agent has following the dialogue
with the user. To find the known relations we added in the
logical formulas the relations x1 and x2:

∀x x1(x)↔ product(x) ∨ ingredient(x) (5)
∨location(x) ∨ varied(x)

∀x∀y x2(x, y)↔ is(x, y) ∨ contains(x, y) ∨ from(x, y) (6)

The formula 6 is a true relation for any element in the
domain with the property that one of the relations with arity
1 (i.e. (product, ingredient, location, varied) is true for that
element. That is, the relation is true when the element in the
domain is a product, an ingredient, a location, or if it can
be of several types (such as sauce can be sweet or spicy).
The formula 6 is similar to the formula 6, but it is valid for
relations with arity 2 (is, contains, from). The relationship is
true if the second element is a property of the first element,
or if the first element in the domain contains the second, or if
the first element in the domain has its origin in the element on
the second position. The formulas 6 and 6 therefore have an
auxiliary role, and are used to identify possible relationships
that may occur between user-transmitted syntax elements,
and initially identified using our grammar. The data received
from the user is therefore interpreted to identify the possible
relationships x1 and x2. The relationships will then be taken
into account when searching for models with Mace4.

IV. REDUCING INTERPRETATION MODELS THROUGH
QUESTIONS

With both the pizza domain knowledge and knowledge from
the dialogue formalised in FOL, Mace4 has the role to identify
all the interpretation models.

Given only the pizza domain, without the extensions from
the 1-4 equations, there are 48 models. As dialogue moves
are analysed and formalised these models are reduced or
expanded. The task of the chatbot is to select questions whose
answers reduce the number of models, hence the epistemic
uncertainty about the current order.

A step by step example will illustrate how the logical
agents builds its FOL theory and interpretations. Let the
client starting the dialogue with I want a pizza with
fish. The new relationship added in to the FOL theory is
x2(Pizza, F ish). The answer matches CASE1 in the gram-
mar. Based on this, the objects pizza and fish are extracted and
included in the domain.

The agent must now identify the relationship that can be
established between the two elements in the field. The three
relationships that satisfy this property are is, contains and
from. The only relation between the two elements that is true,
according to the current FOL theory, is that of contains, but
this will not be replaced directly in the field.

The number of possible models computed by Mace4 is 24
(see Table I). Ignoring these patterns, omitting the determi-
nation of the relationship would bring the greatest gain of

TABLE I: Reducing the number of models through dialogue
(the case of the random agent)

Step FOL theory Models
0 Pizza domain 48
1 x2(pizza, fish) 24
2 ¬is(sauce, spicy) 18
3 ¬from(Fish,AtlanticOcean) 12
4 ¬x2(Pizza, Sauce) 4
5 contains(Pizza, Cheese) 2
6 from(Fish,BlackSea) 1

information if it were clarified whether this relationship is true
or false. However, such an approach is implemented in the case
of the agent that uses entropy. Without entropy, the chatbot
randomly chooses the relationship whose truth value needs
to be verified is(Sauce, Spicy). The corresponding question
is generated in natural language: Should the sauce be
spicy?

Assuming a ”no” answer, the relation that sauce should
not be spicy is added to the theory ¬is(sauce, spicy). For
the moment, the FOL theory has been extended with two
relations: x2(Pizza, F ish), ¬is(Sauce, Spicy). With these
two pieces of knowledge, Mace4 computes 18 interpretation
models. Based on these 18 models, the conversational agent
proceeds by randomly determining which logical equation
should be chosen in the current case. Let the selected relation:
from(Fish,AtlanticOcean). To obtain the truth value of
this relation, the following question is displayed: Should
the fish be from the Atlantic?

Assuming a negative answer, we have
¬from(Fish,AtlanticOcean) Since there are 12 models,
the chatbot continues the dialogue. The next considered
relation is(Sauce, Sweet) trigger the following question:
Should the sauce be sweet?

Assume the following answer I want pizza with
no sauce. The answer falls into the CASE2 of our
grammar. The predicate derived from the user’s statement
is:¬x2(Pizza, Sauce). Note that the predicates identified so
far (step 4 in Table I) restrict the interpretations to four models
only.

The next question chosen by the conversational agent cor-
responds to the contains(Pizza, Cheese) relation: Do you
want pizza with cheese? Given a positive answer, the
chatbots adds the fact: contains(Pizza, Cheese).

Mace4 outputs now two interpretation models. One of these
models claims that the fish is from the Black Sea. The
other claims that he is not from the Black Sea (recall that
the client has already specified that he does not want fish
from the Atlantic Ocean). Once again, the agent identifies
the relation that introduces non determination, and makes the
corresponding move: Should the fish be from the
Black Sea? The positive answer ”yes” triggers the fact:
from(Fish,BlackSea).

Since, there is a single interpretation model, the chatbot
has successfully found the pizza that the client wants with
six questions (six steps in Table I). Note that the grammar has
accommodated two complex answers and four yes/no answers.



TABLE II: Reducing the number of models through dialogue
(the case of an entropy based agent). The entropy is computed
after the new relation is added in the logic domain.

Step Max entropy FOL theory Models
0 not used Pizza domain 48
1 1 x2(Pizza, F ish) 24
2 0.92 contains(Pizza, Cheese) 12
3 1 ¬from(Fish,AtlanticOcean) 8
4 0.81 from(Fish,BlackSea) 4
5 0 ¬contains(Pizza, Sauce) 1

TABLE III: Entropy after the first exchange of lines

Relation Entropy
contains(Pizza, Cheese) 1.00
from(Fish,BlackSea) 0.92
from(Fish,AtlanticOcean) 0.92
contains(Pizza, Sauce) 0.81
is(Sauce, Sweet) 0.81
is(Sauce, Spicy) 0.81

V. USING ENTROPY ON RELATIONS FOR SHORTER
DIALOGUES

We propose here a method of selecting questions based on
entropy. The entropy can be used to find those predicates that
lead to the greatest gain of information. The more information
gain per answer, the shorter the dialogue. Thus, for each
relation and for each combination of objects that can be
associated using this relation, the goal is to identify the case
in which the resulting entropy becomes minimal.

Definition 1 (Entropy of a relation): Given a set M of
interpretation models, the entropy e of the relation ri having
the set of chosen objects o ∈ Oa(ri) is defined as:

e(M, ri, o) =− P (M, ri, o) log2 (P (M, ri, o))− (7)
(1− P (M, ri, o)) log2 (1− P (M, ri, o))

where the probability of a relation ri to be true for a set of
objects from the domain o in a model m ∈M is

P (M, ri, o) =

∑
m∈M

m(ri, o)

|M|
, o ∈ Oa(ri) (8)

Here a(ri) represents the arity of the relation ri, and O is the
set of all objects in the domain. m is a function that represents
the truth value of the relation ri for the set of objects o.

The relationship and the chosen objects in the domain are
determined by the function (r, o) = argmax(ri,o) e(M, ri, o),
where R represents all relationships in the domain, ri ∈ R,
o ∈ Oa(ri). Five questions are needed to identify the desired
pizza: a pizza that contains fish, that is from the Black Sea,
that contains cheese and sweet sauce, that is, pizza that is also
desired in the example with the conversational agent based
on random choice. After the first dialogue move I want a
pizza with fish, the agent (i) computes the interpreta-
tion models, (ii) checks the relationships that differ between
the possible models, (iii) determines which relationship is
expected to give the most information gain.

TABLE IV: Entropy after second exchange of lines

Relation Entropy
from(Fish,BlackSea) 0.92

from(Fish,AtlanticOcean) 0.92
contains(Pizza, Sauce) 0.81

is(Sauce, Sweet) 0.81
is(Sauce, Spicy) 0.81

TABLE V: Entropy after the third exchange of lines.

Relation Entropy
from(Fish,BlackSea) 1.00
contains(Pizza, Sauce) 0.81

is(Sauce, Sweet) 0.81
is(Sauce, Spicy) 0.81

In Table III, entropy is calculated using equation
8. There are 24 models: |M1|= 24. The r1 =
from(Fish,BlackSea) relation is true in 8 models:
e(M1, from, (Fish,BlackSea)) = − 8

24 · log2
8
24−(1− 8

24 ) ·
log2(1− 8

24 ) = 0.92.
After the first dialogue move, the relation with the largest

entropy (see Table III is contains(Pizza, Cheese) that trig-
gers the corresponding question: Do you want pizza
with cheese? Following a positive answer, there are 12
models remaining. The agent continues to analyse the models
and computes the entropy for the relationships that differ.
The relation chosen from the Table IV for verification is:
from(Fish,AtlanticOcean).

Similarly, the entropy computed for
from(Fish,BlackSea) using equation 8 is:
e(M2, from, (Fish,BlackSea)) = − 4

12 · log2
4
12 −

(1 − 4
12 ) · log2(1 − 4

12 ) = 0.92. The question asked
by the conversational agent is formulated according to
this relationship: Should the fish be from the
Atlantic?

Based on a negative answer, ¬from(Fish,BlackSea)
relation is added. The entropies calculated for the remaining
relationships are presented in Table V. The relationship
chosen for the following question is: from(Fish,BlackSea).
The generated question is: Should the fish be from
the Black Sea?

Based on a positive answer, the fact
from(Fish,BlackSea) is added, resulting in four models.
The remaining relations for which the entropy is calculated
at this point are listed Table VI.

The relationship chosen based on entropy is
contains(Pizza, Sauce). Based on this is the conversational
agent formulates and asks the question Do you want

TABLE VI: Entropy after the fourth exchange of lines

Formula Entropy
contains(Pizza, Sauce) 0.81

is(Sauce, Sweet) 0.81
is(Sauce, Spicy) 0.81



Fig. 3: Distribution of questions for both agents. The order is
fish from the Atlantic Ocean and sauce which is not spicy.

pizza with sauce? Assuming a negative answer,
Mace4 computes a single interpretation model.

VI. RUNNING EXPERIMENTS

We compare the entropy-based method to select ques-
tions against the random strategy. For each strategy, and
for each scenario, 70 such dialogues were generated. The
first statistical value calculated is the arithmetic mean of
the questions needed to determine the necessary spices. We
used the formula average = total number of questions

total number of conversations ,
where the total number of conversations is 70. The second
statistical value that we consider is the standard deviation
σ of the number of questions needed to identify the exact

order: σ2 =
N∑
i=1

x2i /N − x̄2. The third value calculated is the

minimum number and maximum number of dialogs used in a
conversation. The results are in Table VII.

An example of distribution of questions appears in Figure 3.
It represents the number of questions needed to determine
the order. The user orders fish from the Atlantic Ocean and
sauce which is not spicy. The extended logical domain is used.
In this scenario, the means of the distributions for the two
agents are about the same. The standard deviation is smaller
for the agent using entropy. The agent with random choice
of questions has the conversations both the minimum and
maximum number of dialogues required. In another example
presented in Figure 4, it can be seen that the mean of the agent
which uses entropy requires on average a smaller number of
questions for determining the pizza the user wants, but it can
also require a bigger number of questions. In all the examples,
the standard deviation is smaller for the agent using entropy.

Table VII contains statistical computations run scenarios for
the extended logical domain. The minimum and maximum
values of the question parameter required to determine the
desired product, are represented with m and M. The average
number of dialogues used is represented with a and the
standard deviation is represented with d. The agent which uses

Fig. 4: A distribution of questions for both of the agents. Left:
The user orders pizza with fish from the Atlantic Ocean and
spicy sauce. Right: The user orders pizza with fish from the
Black Sea, sweet sauce and white cheese.

random selection is represented with R and the agent which
uses entropy is represented with E. It can be observed that the
agent using entropy obtains a lower standard deviation than
the selection agent random selection of questions. Experiments
suggest that when using the agent that uses entropy is easier
to estimate the number of questions required for determining
the product desired by the user.

VII. DISCUSSION AND RELATED WORK

Most text inference methods have low semantic accuracy,
but are highly robust. On the other hand, systems that rely
on logics are accurate, but they are also fragile. In line with
Garrete and Klein [3], our chatbot is based on NLTK toolkit [4]
and Mace4 model finder.

Another method for structuring knowledge from natural
language is abstract meaning representations. An abstract
meaning representation (AMR) is a rooted in labeled graph de-
signed to be easy-to-read for human agents, and easy-to-parse
for software agents. The leaves of AMRs are labeled with
concepts. The PropBank framesets are heavily used to abstract
away the English syntax. A possible disadvantage could be that



TABLE VII: Statistical computations on running experiments

# Simulated order mR mE MR ME aR aE dR dE
1 fish from Jiu and spicy sauce 5 5 12 10 7.94 7.4 1.73 1.22
2 fish from Jiu and sauce which is not spicy 3 5 12 10 6.95 7.65 2.08 1.25
3 fish from the Atlantic Ocean and sauce which is not spicy 3 5 12 10 7.22 7.21 1.92 1.20
4 fish from the Atlantic Ocean and spicy sauce 4 5 13 10 8.65 7.34 1.99 1.28
5 fish from the Atlantic Ocean or the Black Sea and spicy sauce 4 5 11 8 7.07 6.51 1.63 0.89
6 fish from the Atlantic Ocean or the Black Sea and sweet sauce 4 5 11 9 7.52 6.97 1.61 1.09
7 fish from the Black Sea, sweet sauce and blue cheese 4 7 13 10 8.12 8.5 1.84 0.99
8 fish from the Black Sea, sweet sauce and white cheese 5 7 12 10 8.52 9.28 1.83 1.25
9 fish from Jiu, sweet sauce and white cheese 5 7 12 11 7.97 9.01 1.48 1.18
10 fish from Jiu or the Black sea, sweet sauce and white or blue cheese 4 7 10 10 6.94 8.44 1.39 0.98
11 fish from Jiu or the Atlantic Ocean, sweet sauce and blue cheese 5 7 12 10 7.54 8.57 1.70 0.87
12 fish from Jiu or the Atlantic Ocean, spicy sauce and blue cheese 5 7 12 10 7.32 8.54 1.57 0.98
13 fish from Jiu or the Atlantic Ocean, taiwaneese sauce and blue cheese 3 9 12 12 7.10 10.10 2.05 1.17
14 fish from Jiu or the Atlantic Ocean, taiwaneese sauce and yellow cheese 3 7 11 10 6.04 7.91 1.85 0.93
15 fish from Jiu or the Atlantic Ocean, taiwaneese sauce and white cheese 4 7 12 10 7.55 8.01 1.71 0.76

AMRs are biased towards English. Another disadvantage is the
lack of support for the inflectional morphology for tense and
number. AMRs do not have the universal quantifier, so we
cannot distinguish between real and hypothetical events [5].
Instead of AMR, we used here FOL theories. We relied on
Mace4 to find the relation between the objects identified by
the grammars.

Discourse representation theory also aims at dynamic in-
terpretation of natural language. Each sentence is interpreted
according to its influence over the discourse. Let the following
example: Bob saw a red bike in a show-window. He bought it.
The system should be able to conclude that he is referring to
Bob and it is referring to the bike, which was red. Anaphoric
pronouns can be represented as free variables linked to the
corresponding antecedent variables [6] A similar problem we
had was to identify the meaning of the yes/no answers from
the user. For this, we used the NLP grammar rules.

There are several tools aiming to automatically translate
natural language to some formal representation [7], [8], [9].
AllenNLP framework built on top of PyTorch is used for de-
signing deep learning models [8]. The text is firstly represented
as vector sequences. The sequences are then modified by
being passed through a recurrent network to encode contextual
information. Finally, the sequences are merged into a single
vector using a recurrent network with averaging or pooling,
or using a convolutional network. Instead of relying on deep
learning, our agent rely mostly on symbolic computation. That
is, instead of using the black box models learned from artificial
neural networks, our agent looks into finite interpretation
models generated by Mace4, that are white box.

VIII. CONCLUSION

We deal here with interpretable models of natural language
through first order logic. We propose a new method for
reducing the number of questions required to clarify the intent
of a natural language. The method uses the entropy of a
relation, given a set of current interpretation models. The aim
is quickly obtain a single interpretation model of dialogue.

Our experiments showed the agent using entropy obtains
a smaller standard deviation than the agent with random
selection of the questions. When using the agent that uses

entropy, it is thus easier to estimate the budget of questions
needed to elicit all preferences of client agents.

We are currently extending the the number of axioms in the
pizza domain in order to run experiments on larger number
of interpretation models. We are also working on generalising
the entropy formulas for isomorphic models [10].

One can extend our work in several directions. First, since
most bots follow pre-designed scripts, a possible extension
would consider interleaving model reduction based on entropy
with questions selected from scripts. Second, the seller bot can
be augmented with argumentation and explanatory capabilities
aiming at more trustful [11] conversations.
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