
Generating and solving the LIGHTS OUT! game in first
order logic

Borbála Fazakas, Beáta Keresztes, Adrian Groza

Technical University of Cluj-Napoca
Department of Computer Science

September, 2022

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 1 / 18

The Lights Out! Game - Rules

Figure: Sample Game Configuration S0

State: grid of tiles, some of them lit up, the others are turned off

Goal: turn all lights off

Actions: clicking on one tile, which toggles the state of the clicked tile and
its neighbors

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 2 / 18

Sample Action, considering a cross neighboring pattern

(a) S0 (b) State after
clicking (3, 1)

Our goal: desktop application for the LightsOut! game, which can

generate solvable LightsOut puzzles

solve the puzzles, in order to give hints to the user

Tools for FOL:

Prover9: theorem prover

Mace4: finite model finder

Two approaches to model the game:

as a planning-task

as a model-finding task

Solving the LightsOut! Game as a Planning Task

Given the initial state, find a sequence of actions that leads to the goal state.

state representation: for an n × n grid, use a 1 × n2 boolean list V, with
V [i] = 0 meaning the light bulb in row i/n and column i%n is off, and
V [i] = 1 for light on.

for example, for the previously presented game configuration S0

V = s([1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0])

in particular, the goal state for a 5 × 5 grid is represented by

V = s([0, 0])

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 4 / 18

Solving the LightsOut! Game as a Planning Task
Actions - Neighboring Patterns

action representation: neighboring pattern + the effect of toggling

neighboring pattern: n(X, Y) is true ⇔ if X gets clicked, then Y’s state
is toggled

sample neighboring pattern: the cross-like pattern

nCross(x , y) ↔
(x ̸= n ∧ x ̸= 2n ∧ ∧ x ̸= n2 ∧ x + 1 == y) ∨
(y ̸= n ∧ y ̸= 2n ∧ ... ∧ y ̸= n2 ∧ y + 1 == x) ∨

x == y ∨ x + n == y ∨ y + n == x

Figure: nCross

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 5 / 18

Solving the LightsOut! Game as a Planning Task
Actions - Toggling Effect

action representation: neighboring pattern + the effect of toggling

toggling effect: a function that describes what the next state is if tile S
gets clicked in the state [S:R]

toggleVector([],S ,C) = [].

toggleVector([F : R],S ,C) = if (n(S ,C),

[toggle(F) : toggleVector(R,S ,C + 1)],

[F : toggleVector(R,S ,C + 1)]). (1)

[F : R] = the current state
S = the clicked tile’s number
C = the index of F in the original state array

The production rule describing the action of clicking tile k:

state([F : R]) → state(toggleVector([F : R], k, 1)) (2)

(n2 such production rules needed)
Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 6 / 18

Solving the LightsOut! Game as a Planning Task

The neighboring predicate, toggleVector functions and the production rules fully
describe the game and allow Prover9 to find the solutions, theoretically

In practice, this game description leads to a breadth-first search solution, with, for
an n × n grid, n2 options to try at each step

For an initial state with the shortest solution longer than 6 steps, Prover9 fails to
find a solution with a memory limit of 1000MB →
Redundant steps: it is redundant to switch a light bulb twice → if a solution for a
puzzle exists, then there must be a solution in which any light bulb should be
switched maximum once

The final state of a light bulb is given by the parity of the total number of switches
applied on it or on its adjacent light bulbs. If the light bulb is toggled an even
number of times, then its final state is the same as its original state. If it is toggled
an odd number of times, then its final state is different from its original state.

The order of the steps is irrelevant.

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 7 / 18

Solving the LightsOut! Game as a Model Finding task
Starting point

Instead of looking for a sequence of steps that leads to the goal state, we
can search for a set of steps.

The task reduces to finding a sequence X of nodes (activation set), such
that activating all nodes in X will turn off all nodes in G.

Given to Mace4: the initial State, on(X, Y) = 1 ↔ the light bulb on row X
and column Y is on originally

Found by Mace4: the set of steps, switch(X, Y) = 1 ↔ clicking on the light
bulb in row X and column Y is part of the solution

The key: any light bulb (X, Y) for which on(X, Y) = 0 must be toggled an
even number of times, and the others an odd number of times

oddToggles(X ,Y) ⇐⇒
Xor(Xor(Xor(Switch(X + 1,Y),Switch(X − 1,Y)),

Xor(Switch(X ,Y − 1),Switch(X ,Y + 1))),Switch(X ,Y))

oddToggles(X ,Y) ⇐⇒ On(X ,Y)

note: to overcome the issue, that not all tiles have neighbors in all directions
(assuming nCross), the matrices were extended by 1-1 row and column on
each side, with on(X, Y) = 0 for all the extensions

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 8 / 18

Solving the LightsOut! Game
Comparison

Figure: The comparison of the planning-based and the model finder-based
solutions

Note that the negative User CPU(s) values show that the execution was unsuccessful with a memory limit of 1000MB.

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 9 / 18

Generating LightsOut! games using FOL

Goal: generate solvable game configurations.
Three approaches:

1 Using a puzzle-solving algorithm

2 Using linear algebra and a model generator

3 Using an improved linear algebra-based method

Key Idea: use the previous puzzle-solver to solve the reverse task: let the
puzzle-solver find game configurations that it can solve.
Modifications in the Mace4 implementation:

do not give values to the on(x, y) matrix

specify that on(x, y) is a boolean matrix

to avoid the trivial game, specify that on(x, y) has at least one true value:

∃x ∃y on(x , y) = 1 (3)

this solution does more than what we need

the same puzzle gets generated multiple times (once for each of its solutions)

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 10 / 18

A linear algebra-based model generator

The second solution is based on the work of Anderson and Feil.

Initial game state = the column vector B, where B[i] = 0 iff the light bulb
in row i/n and column i%n is off, and B[i] = 1 for light on, with

B⃗ = On(0),On(1),On(2), . . .On(n × n) (4)

Recall that the function On(n) states that the bulb n is turned on, with
On(x) = 1 ∨ On(x) = 0.

Theorem
B is a solvable game state ⇐⇒ B ⊥ N1 & B ⊥ N2 where

N⃗1 =

0 1 1 1 0 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1
0 1 1 1 0

 (5)

N⃗2 =

1 0 1 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1
1 0 1 0 1

 (6)

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 11 / 18

A linear algebra-based model generator

Theorem
Each solvable game state has exactly 4 solutions.

Theorem

If X⃗ =
(
Switch(0) Switch(1) Switch(2) . . . Switch(24)

)
is a solution for

game state B, then the 4 solutions are

X⃗1 = X⃗

X⃗2 = X⃗ + N⃗1

X⃗3 = X⃗ + N⃗2

X⃗4 = X⃗ + N⃗1 + N⃗2

(7)

We ask Mace4 to find the boolean vector On (= the initial game state), such
that On ⊥ N1 & On ⊥ N2.

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 12 / 18

A linear algebra-based model generator
Applying the theorems

verify the perpendicularity by computing the dot products:

(x > 0 ∧ y + 1 = x ∧ Z = DotProd1(y) ∧ O = On(x) ∧ N = N1(x)) →
DotProd1(x) = Xor(Z ,And(O,N)). (8)

DotProd1(0) = 0. (9)

(x > 0 ∧ y + 1 = x ∧ Z = DotProd2(y) ∧ O = On(x) ∧ N = N2(x)) →
DotProd2(x) = Xor(Z ,And(O,N)). (10)

DotProd2(0) = 0. (11)

So the conditions for perpendicularity can be expressed as
DotProd1(n

2 + 1) = 0 and DotProd2(n
2 + 1) = 0 (array indexed from 1)

We ask Mace4 to find the boolean vector On (= the initial game state), such
that On ⊥ N1 & On ⊥ N2.

On(0) = 0 (recall that the arrays are indexed from 1)

∃x On(x) = 1, to avoid the trivial game

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 13 / 18

A a linear algebra-based model generator

Advantages:

we search only for a model for the initial state, not for the solution

Disadvantages:

for an n × n game, we need to use the arithmetic library with a domain size
of n2, to enable using the n× n-long vector On. The execution fails even for
a 5× 5 game, with a memory limit of 1000MB

Key Idea: by simply reorganizing the n2-long vectors into n × n matrices, we can
reduce the domain size of n2 to n.

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 14 / 18

Improving linear algebra-based model generator

The relations for computing the dot products become (for a 5× 5 game):

(y ≥ 1 ∧ yn + 1 = y ∧ d = DotProd1(x , yn) ∧
o = On(x , y) ∧ n = N1(x , y)) →

DotProd1(x , y) = Xor(d ,And(o, n)).

(x ≥ 1 ∧ xn + 1 = x ∧ d = DotProd1(xn, 4) ∧
o = On(x , 0) ∧ n = N1(x , 0)) →

DotProd1(x , 0) = Xor(d ,And(o, n)).

0 = On(0, 0) ∧ n = N1(0, 0) →
DotProd1(0, 0) = And(O,N).

(y ≥ 1 ∧ yn + 1 = y ∧ d = DotProd2(x , yn) ∧
o = On(x , y) ∧ n = N2(x , y)) →

DotProd2(x , y) = Xor(d ,And(o, n)).

(x ≥ 1 ∧ xn + 1 = x ∧ d = DotProd2(xn, 4) ∧
O = On(x , 0) ∧ n = N2(X , 0)) →

DotProd2(x , 0) = Xor(d ,And(o, n)).

O = On(0, 0) ∧ N = N2(0, 0) →
DotProduct2(0, 0) = And(O,N).

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 15 / 18

Improving linear algebra-based model generator
Implementation

Mace4 has to find the values of On(x , y) with three constraints:

On(x , y) = 1 ∨ On(x , y) = 0 (12)

∃x ∃y On(x , y) = 1 (13)

DotProd1(4, 4) = 0 ∧ DotProd2(4, 4) = 0 (14)

Figure: Performance Comparison

Note the linear scale

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 16 / 18

Generating LighsOut! games
Comparison

Figure: Performance Comparison

Note the logarithmic scale

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 17 / 18

Conclusions

LIGHTS OUT! games can be solved both by planning in FOL, with
Prover9’s production mode, and through model finding methods.

While Prover9’s production mode is a convenient way for solving puzzles, it
doesn’t allow us to exploit any redundancies and symmetries. Thus, Mace4
is more efficient as a game solver.

Solvable LIGHTS OUT! games can be generated based on game solvers and
based on model finders relying on linear algebra as well.

Game generators based on linear algebra are more efficient, because they are
based on an equivalent criterion for the existence of a solution, but do not
intend to find that solution.

Fifth, reducing the domain size in Mace4 can have a significant impact on
the performance of the program.

Fazakas, Keresztes, Groza (TUCN) Lights Out! September, 2022 18 / 18

