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Abstract: This paper proposes a workflow for polarimetric SAR (PolSAR) image classification based on statistical texture 
descriptors. The methodology presented in this paper involves spatial interdependence between neighboring pixels as well as 
multiscale texture representation using wavelet decomposition. The collected features are modeled by zero-mean Multivariate 
Gaussian Distributions (MGDs). Then, their estimated covariance matrix acts as the texture descriptor and is employed in a k-
nearest neighbors (kNN) classifier. Experiments using real PolSAR data validate the proposed approaches' accuracy in land 
cover categorization, showing their potential for reliable class identification.  
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I. INTRODUCTION 
Polarimetric Synthetic Aperture Radar (PolSAR) images 
are radar images captured by Synthetic Aperture Radar 
(SAR) systems equipped with polarimetric sensors. Unlike 
conventional SAR, which employs a single polarization 
(often HH or VV), PolSAR systems can transmit and 
receive signals in many polarization combinations such as 
HH, VV, HV, and VH, capturing extensive information on 
the scattering behavior of different targets in a scene [1]. 
 Numerous relevant characteristics pertaining to 
vegetation, surface roughness, moisture content, and target 
type can be extracted due to this comprehensive 
polarimetric data. Consequently, PolSAR data has been 
extensively used in a variety of domains, including military 
surveillance, forestry, agriculture, environmental 
monitoring and disaster management [2, 3, 4]. 
 Because PolSAR sensors can operate in any weather or 
at any time of day, they are very useful for continuous 
monitoring. They are also effective for subsurface and 
landscape examinations because of their capacity to pierce 
vegetation layers and expose concealed characteristics 
beneath the protective canopy. 
 One of the most important aspects of a PolSAR image 
is the texture contained in its polarization channels (HH, 
HV, VV, VH). This texture is an essential component of 
classification tasks as it offers important spatial and 
structural information about the scene, being an integral 
part in differentiating between various forms of land cover. 
In this paper, textural information is used for land cover 
classification. 
 For machine learning algorithms, textural feature 
extraction can be achieved by means of descriptive 
statistics-based methods (like gray level co-occurrence 
matrices, LBPs, etc.) or stochastic based methods, 
implying the analysis and the statistical characterization of 
the texture.  
 Inspired by the work in [5] this paper presents a 

classification workflow considering statistical approaches. 
The analysis stage is performed by taking into 
consideration either the spatial dependency between 
neighboring pixels, or the multiscale representation of the 
image. The extracted values are then modeled by 
Multivariate Gaussian Distributions (MGDs) of zero mean. 
In the end, the covariance matrix characterizing the 
distribution is estimated and used as the final texture 
descriptor for land cover classification. 
 The paper is organized as follows: in the context of 
polarimetric SAR remote sensing, Section II introduces our 
proposed methodology. With an emphasis on experimental 
validation, Section III presents the classification results 
derived from actual PolSAR imagery, where textural 
information is extracted from several polarimetric 
channels. Finally, Section IV summarizes the important 
findings and considers possible future research topics.
  

II. PROPOSED METHOD 
The proposed workflow for this study, which focuses on 
polarimetric SAR image classification, is shown in 
Figure 1. The polarization channels HH, HV and VV are 
independently pre-processed and used as inputs for texture 
analysis and statistical modelization by means of a zero-
mean Multivariate Gaussian Distribution. Starting from 
this probabilistic model, its parameter represented by the 
covariance matrix is estimated and employed as the final 
feature vector for classification. 
 
A. Data structure and pre-processing 
 Polarization in Polarimetric Synthetic Aperture Radar 
imaging refers to the orientation of electromagnetic waves 
emitted and received by the radar system with respect to 
the Earth's surface. PolSAR systems are equipped with 
antennas that can operate in several polarization modes, 
allowing them to send and receive signals in a variety of 
configurations, including horizontal-horizontal (HH), 
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horizontal-vertical (HV), vertical-horizontal (VH), and  

 
Figure 1. Polarimetric Synthetic Aperture Radar image classification workflow. 

vertical-vertical (VV). When electromagnetic pulses are 
transmitted toward the Earth's surface during acquisition, 
they disperse when they come into contact with objects in 
the scene. The backscattered signals are captured by the 
radar revealing details on the structural and physical 
characteristics of the target [3]. In polarimetric SAR 
imaging, the interaction between the incident and scattered 
electromagnetic waves can be represented using the 
scattering matrix 𝑆, as illustrated in equation (1):  
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 The incident waves, polarized in the horizontal (𝐸ℎ

𝑖 ) and 
vertical (𝐸𝑣

𝑖 ) directions, illuminate the target, which then 
reflects the energy back toward the radar as scattered 
waves (𝐸ℎ

𝑠 and 𝐸𝑣
𝑠 ). This scattering process is influenced 

by the target’s physical characteristics and occurs over a 
distance 𝑟 between the radar and the target in the scene. 
The scattered field is expressed as a linear combination of 
the incident field components, weighted by the complex-
valued elements of the scattering matrix 𝑆, which includes 
𝑆ℎℎ, 𝑆ℎ𝑣 , 𝑆𝑣ℎ and 𝑆𝑣𝑣. These matrix elements describe how 
the target reflects energy between different polarization 
combinations. The relationship is scaled by a complex 
exponential factor 𝑒−𝑗𝑘𝑟, accounting for wave propagation 
over distance and phase shift [2].  
 The diagonal elements of the scattering matrix are 
typically thought to be comparable when the transmitter 
and receiver are placed together, suggesting that the 
information carried by the HV and VH polarization 
channels is the same. PolSAR imaging provides more 
comprehensive knowledge of surface scattering 
mechanisms and structural features by combining data 
from several polarization states. The accuracy of 
classification tasks can be influenced by this multi-
polarization study. The diagonal and vertical scattering 
coefficients, HH, VH, and VV channels, are subjected to a 
logarithmic transformation, as indicated by the equation 
(2): 
 

𝐼ℎℎ = 10𝑙𝑜𝑔[𝑅𝑒2(𝑆ℎℎ) + 𝐼𝑚2(𝑆ℎℎ)] 
 

 

𝐼ℎ𝑣 = 10𝑙𝑜𝑔[𝑅𝑒2(𝑆ℎ𝑣) + 𝐼𝑚2(𝑆ℎ𝑣)] 
 

(2) 

𝐼𝑣𝑣 = 10𝑙𝑜𝑔[𝑅𝑒2(𝑆𝑣𝑣) + 𝐼𝑚2(𝑆𝑣𝑣)]  
 
B. Feature extraction 
 In this paper, the feature considered for land cover 
classification based on PolSAR images is the texture. The 

characteristics of different surfaces are described by means 
of covariance matrices, which have proven their power of 
discrimination in various applications, including PolSAR 
image classification [5]. 
 Covariance matrix extraction consists in two steps, as 
suggested in [5], namely texture analysis and texture 
statistical modeling, that are detailed further. 
 
i. Texture analysis 
 Starting from real-valued individual polarimetric 
channels, texture analysis is performed by two methods: 
first, the spatial dependence between neighboring pixels is 
considered, and second, the multiscale decomposition is 
taken into account. 
 Let consider a single polarization image 𝐼, of size 
𝑊 × 𝐻, containing 𝑁 pixels, with 𝑁 = 𝑊 × 𝐻. 
 In the case of spatial dependence modelization, for each 
pixel in the image, an 𝑤 × 𝑤 sliding window is applied, 
capturing the spatial information. Next, the window’s 
elements are concatenated into a vector and the set of all 
vectors obtained from the entire image will describe its 
textural content.  
 For the second approach, textural information is 
captured by multiscale analysis. The input image is 
decomposed using wavelet filters, resulting in a set of 𝐵 
subbands. For each pixel, the decomposition coefficients in 
the 𝐵 subbands are organized in a vector and the set of all 
vectors will characterize the image. 
 In the end, for both methods, an image is represented by 
a set of 𝑁 𝑚-dimensional vectors, defined in equation (3): 
 

𝑿 = {𝒙1, ⋯ , 𝒙𝑁}, (3) 
 
where 𝑚 is the number of pixels in the considered 
neighborhood, or the number of subbands used for the 
wavelet decomposition, and 𝑁 the number of pixels in the 
input image 𝐼.  
  
ii. Texture statistical modeling 
 Once extracted, the 𝑚-dimensional vectors are modeled 
by means of statistical tools. In this work, they are 
considered to be independent and identically distributed 
random vectors issued from a zero-mean Multivariate 
Gaussian Distribution, described by the probability density 
function in equation (4): 
 

𝑝(𝒙|𝑴) =
1

√(2𝜋)𝑚|𝑴|
exp (−

1

2
𝒙𝑇𝑴−1𝒙), (4) 

 
where 𝑴 is the covariance matrix.  
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 The final descriptor of each image will be represented 
by the 𝑚 × 𝑚 estimated covariance matrix, denoted by �̂�. 
Based on the previously extracted vectors, the estimation 
will be performed by using the sample covariance 
estimator, as defined in equation (5): 
 

�̂� =
1

𝑁
∑ 𝒙𝑖𝒙𝑖

𝑇
𝑁

𝑖=1
, 

(5) 

 
where (∙)𝑇 denotes the transpose operator.  
 
C. Classification 
 In order to perform the classification task using the k-
nearest neighbor algorithm (kNN), a similarity measure 
between two images is needed. The final descriptor of an 
image being the estimated covariance matrix, the similarity 
measure has to take into account the properties of these 
matrices. Therefore, the Kullback-Leibler divergence has 
been considered. For two covariance matrices, denoted by 
�̂�1 and �̂�2, the divergence is defined in equation (6) [6]: 
 

𝐾𝐿(�̂�1, �̂�2) =
1

2
[𝑡𝑟(�̂�2

−1�̂�1) − 𝑚 − ln
|�̂�1|

|�̂�2|
], (6) 

 
where 𝑡𝑟(∙) is the trace operator and 𝑚 is the dimension of 
the vector space. In practice, the symmetrical Kullback-
Leibler divergence is employed, which is given in equation 
(7): 

𝑆𝐾𝐿(�̂�1, �̂�2) = 𝐾𝐿(�̂�1, �̂�2) + 𝐾𝐿(�̂�2, �̂�1). (7) 

 
III. EXPERIMENTAL RESULTS 

A. Dataset 
 To test the proposed algorithms, the L-band 
Oberpfaffenhofen PolSAR image was considered [7]. The 
image was acquired in the Oberpfaffenhofen region in 
Germany. The image has a spatial resolution of 3 meters 
and contains three major land cover classes: built-up areas, 
forest lands and open areas. The three polarimetric 
channels, HH, HV, and VV, employed in this paper, are 
shown in Figure 2.(a-c). Based on the information given in 
[8], the manually labeled ground truth map illustrated in 
Figure 2.d was obtained. A set of 196 nonoverlapping 
images of 64 × 64 pixels were extracted and divided, as 
follows: 21 images for the built-up areas class, 125 images 
for the forest lands class and 50 images for the open areas 
class. The labeled database was further used for land cover 
classification, to validate the proposed algorithms. 
 
B. Results  
 The performed tests have multiple purposes. First, the 
most appropriate approach for land cover classification 
needs to be identified, which in this case is either the spatial 
dependence between neighboring pixels, or the multiscale 
decomposition. Second, the polarization channel that 
contains the relevant textural information for classification 
has to be detected. Third, the information extracted from 
the three polarimetric channels is merged, and the decision 
level fusion based classification algorithm introduced in 
[3] is analyzed. In this case, the classification is performed 
on all the available polarization channels and the final 
result, for each image, is given by the class which occurs 
more often among the studied polarizations. To perform 
the classification using the kNN algorithm, the dataset has 
been randomly split 100 times into testing and training 

sets, each of them containing 50% of the images in each 
class. Different values for 𝑘, the number of neighbors 
involved in the classifier, have been evaluated and the 
classification results have been quantified using the overall 
accuracy. Its mean value and standard deviation computed 
for the 100 iterations are reported further.  

 

 
a. HH b. HV 

 
c. VV d. Ground truth 

Figure 2. Oberpfaffenhofen PolSAR image for HH, HV 
and VV polarizations, with the corresponding ground-

truth class labels. 
  The algorithms have been implemented in MATLAB 
R2021a, and the tests have been carried out on a computer 
with an Intel 11th Gen Core i7-1165G7 Processor running 
at 2.8MHz using 16GB of RAM. 
 
i. Texture analysis by spatial dependence modelization 
 For the first experiment, the correlation between 
neighboring pixels has been evaluated. Therefore, the 
content of the input images has been analyzed by using a 
sliding window of variable size. Tests have been performed 
to study the importance of the window size, 𝑤, for texture 
modelization and the results are presented in Table 1, for 
𝑤 equaling 3, 5 and 7. The values have been chosen with 
respect to the resolution and the size of the input images. 
 Even though the amount of information that is used to 
describe the texture depends on the number of neighboring 
pixels, the classification results are slightly influenced by 
this parameter, the accuracy being around 99%. On the 
other hand, the running time of the classification algorithm 
is strongly influenced by the window size, which gives the 
size of the vector space 𝑚 = 𝑤 × 𝑤, and therefore, the size 
𝑚 × 𝑚 of the covariance matrices. More precisely, for 𝑤 =
3, the running time was around 57s, while for 𝑤 = 7 it 
increases to 1100s. 
 In addition, it can be noticed that HH polarimetric 
channel is slightly better for texture characterization, while 
the majority voting strategy brings no improvement. The 
best classification accuracy (99.64% ± 0.52%) has been 
obtained on HH polarimetric channel, when sliding 
windows of 7 × 7 pixels have been employed. 
 
ii. Texture analysis by multiscale decomposition 
 For the second experiment, the texture has been 
analyzed in the time-frequency domain, by means of 
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Table 1. Influence on the classification accuracy of the sliding window size for spatial dependence modelization. 
 

Window size (𝒘) HH HV VV Majority Voting 

𝟑 × 𝟑 99.07 ± 0.77 98.46 ± 0.84 98.41 ± 0.90 98.89 ± 0.70 

𝟓 × 𝟓 99.54 ± 0.56 99.46 ± 0.58 99.04 ± 0.93 99.55 ± 0.55 
𝟕 × 𝟕 𝟗𝟗. 𝟔𝟒 ± 𝟎. 𝟓𝟐 99.66 ± 0.36 98.88 ± 0.98 𝟗𝟗. 𝟔𝟖 ± 𝟎. 𝟒𝟖 

Table 2. Influence on classification accuracy of the number of decomposition levels and wavelet subbands for 
multiscale decompositions. 

 

Number of scales Subbands HH HV VV Majority Voting 

1 
H/V/D 64.80 ± 3.86 55.74 ± 4.20 62.94 ± 3.64 65.68 ± 3.21 

A/H/V/D 93.66 ± 1.53 93.23 ± 2.33 93.48 ± 1.99 94.68 ± 1.56 

2 
H/V/D 86.07 ± 2.86 77.64 ± 3.30 79.61 ± 2.64 86.57 ± 2.76 

A/H/V/D 𝟗𝟖. 𝟓𝟓 ± 𝟎. 𝟗𝟐 98.38 ± 0.91 97.88 ± 1.04 𝟗𝟖. 𝟕𝟎 ± 𝟎. 𝟖𝟏 

 
wavelet filtering. To compute the covariance matrix among 
wavelet subbands, the Daubechies db4 stationary wavelet 
transform has been considered, which discards the 
downsampling and upsampling operations from wavelet 
filter banks. The filtering process has been iteratively 
repeated to extract the textural information available at 
different scales. In this paper one and two levels of 
decomposition have been used, and the results are 
presented in Table 2.  
 Moreover, the influence of the employed wavelet 
subbands is discussed. First, tests have been conducted for 
covariance matrices computed based on horizontal (H), 
vertical (V) and diagonal (D) details, denoted further by 
H/V/D. Next, they have been combined with the 
approximation (A) coefficients, approach identified as 
A/H/V/D. In practice, the number of decomposition levels 
and subbands influence the size of the vector space 𝑚, thus 
the size of the covariance matrix. The obtained 
classification results are also given in Table 2. 
 The tests have shown that by expending the depth of the 
multiscale decomposition, in this case the number of 
decomposition levels from one to two levels, the 
classification accuracy increases by 16% up to 21%, when 
H/V/D subbands have been considered. For the A/H/V/D 
approach, when the approximation coefficients have been 
added, the accuracy increases by 5%.  
 If the number of decomposition levels is fixed, the 
classification accuracy growth is even more important 
(between 12.5% and 37.5% ) when comparing A/H/V/D 
with H/V/D approach. The results emphasize that textural 
information is well described by the approximation 
coefficients.  
 The best classification accuracy (98.55% ± 0.92%) 
has been obtained on HH polarimetric channel, when four 
subbands (A/H/V/D) and two decomposition levels have 
been used. Depending on the combined parameters, 
majority voting strategy brings minor improvements 
(about 0.5%) with respect to the classification accuracy 
obtained on HH polarimetric channel. 
 Overall, by analyzing the entire set of results, it can be 
noticed that spatial modelisation gives the highest 
accuracy, providing enough information for classification. 
  
 
 
 
 
 
 

IV. CONCLUSIONS 
This paper introduces a classification workflow for 
PolSAR image classification using texture features. Two 
descriptors based on covariance matrices have been 
proposed and integrated into the kNN classifier along with 
the symmetrical Kullback-Leibler divergence. First, the 
spatial dependency between neighboring pixels has been 
modeled and then, the wavelet decomposition has been 
employed, for multiscale characterization of texture. The 
methods have been evaluated for land cover classification, 
showing their importance for class identification. 
 Further works will concern the generalization of the 
proposed algorithm for pixel-based classification used for 
image segmentation.   
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