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Abstract: Audio denoising is a pivotal task in audio signal processing. This paper presents a machine learning approach using a U-
Net architecture to denoise musical audio signals affected by four distinct noise types: white noise, urban noise, reverberation, and 
noise cancellation artifacts. The model was evaluated on datasets derived from IRMAS and UrbanSound8K. Objective and subjective 
evaluation metrics were used, which show the model's effectiveness in filtering white and urban noise. However, performance on 
reverberation and noise cancellation artifacts is limited, indicating areas for future architectural and methodological improvements. 
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I. INTRODUCTION  
Noise reduction plays a critical role in audio signal 
processing, significantly enhancing the quality and 
intelligibility of signals in applications such as speech signal 
processing [1], [2], [3], music production and restoration [4], 
and biology [5]. Traditional denoising methods, including 
spectral subtraction and Wiener filtering, have limitations 
when dealing with complex noise patterns, even though are 
considered fundamental tools in denoising tasks [6], [7]. With 
advancements in deep learning, convolutional neural 
networks (CNNs) have been successfully applied to denoising 
tasks, particularly in the form of encoder-decoder 
architectures such as U-Net [8]. 

This paper investigates the effectiveness of a rather simple 
U-Net-based machine learning model for denoising musical 
audio signals, using spectrogram transformations for input 
representation. The model was trained separately with 
different noise types, thus demonstrating its strengths and 
weaknesses in real-world scenarios (for example, music 
restoration, homemade music recording etc.). 

This paper is organized as follows. Section II reviews the 
state-of-the-art in audio denoising. Section III describes the 
datasets and noise types used for training and evaluation. 
Section IV details the U-Net model architecture and its 
mathematical foundations. Section V outlines the training 
procedure, while Section VI presents the evaluation 
methodology and discusses the quantitative and qualitative 
results. Finally, Section VII concludes the paper and suggests 
directions for future work. 

 
II. STATE-OF-THE-ART 

Audio denoising, even though a thoroughly researched subject 
in signal processing, has been primarily discussed in speech 
enhancement circumstances, therefore most of the 
breakthroughs and ideas come from papers discussing voice 
signal denoising. The most used methods are mainly LSTM-
based systems [2], auto-encoders [9] and CNN-related 
methods [1], [10].  More recently, new approaches has been 
investigated, based on state-of-the-art technologies, which 
include transformer-based architectures like DPT-FSNet [11] 

and generative adversarial networks (GANs) such as CMGAN 
[12], which improve time-frequency processing capabilities. 

As mentioned above, most studies focus on speech signal 
denoising, with limited emphasis on musical audio. This paper 
adapts the U-Net model to denoise musical signals, addressing 
a research gap in the application of CNNs for this purpose. 

 
III. DATASETS AND NOISE TYPES 

Selecting an adequate dataset is fundamental in designing the 
denoising model, since the process depends on how well the 
dataset’s samples are illustrating the real-life scenarios 
presented in the first section of the current paper, and how the 
chosen noise types interact with the diverse elements from 
each musical sound used for training. A well-balanced, 
preferably large enough dataset with audio files having 
standardized length and sample rate benefits the preprocessing 
part of the model training.  

Additionally, the noise introduced should be realistic and 
varied, capturing both synthetic and natural disturbances that 
can be usually found in affected audio signals. 

A. Clean dataset 
The chosen dataset which was used as ‘clean dataset’ in 

the presented study, is the IRMAS dataset [13], which 
contains 6705 audio files being 2s long and which were 
extracted from recordings sampled at 44.1kHz.  

The samples are all musical audio files and present a great 
variation of sounds: from single instrument recordings to 
orchestras or pop-music bands.  

B. Noise types 
For a comprehensive simulation of real-life sound 

alterations, the following noise types were implemented and 
added to the clean musical samples: white noise, urban noise, 
reverberation, and noise cancellation artifacts, each 
discussed below. 

The white noise was manually added to the IRMAS 
samples, by generation of Gaussian noise and adding it to the 
clean audio. 

To simulate real-world recording conditions, urban noise 
was sourced from the UrbanSound8K dataset [14]. Ten 
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representative 2-second samples, sampled at 44.1kHz to 
match the IRMAS dataset, were selected. These samples 
include sounds such as dog barking, traffic, human speech, 
and construction noise, and were combined with the clean 
musical samples. 

The reverberation effect, common in rooms with poor 
acoustics, was simulated using the Pedalboard Python module 
[15] from Spotify. Specifically, the Reverb effect was applied 
with the following parameters to create a consistent and 
significant reverberant field: room_size=0.9, damping=0.9, 
and wet_level=0.33. 

Lastly, noise cancellation effects were simulated by 
applying partial attenuation and frequency suppression to 
clean signals. This type of noise commonly appears in low-
budget headsets and microphones, whose noise-cancellation 
systems filter useful sounds as well as noise, from time to 
time. 

In Table 1, a conclusive description of the different noise 
types can be seen for retrospective purposes. 

Table 1: Used noise types 

Noise 

type 
Implementation Purpose 

White Generation Gaussian White 
noise and adding it to the 

clean sample 

Simulating white noise 

Urban 

noise 

UrbanSound8K Dataset 

used; clean sample 
combined with noise sample 

Illustrate real life recording 

situations 

Reverb

eration 
Using Pedalboard module’s 

functionalities 
Illustrate low-budget 

recording circumstances 

Noise 

cancell

ation 

Adding partial 

attenuations/frequency 
suppressions to the clean 

sample 

Simulate use of low-quality 
microphone  

 

C. Training data 

The training process used each clean data with its 4 different 
noise types for the different training run (one for each noise 
type). The training data consists of spectrogram 
representations using the Short-Time Fourier Transform 
(STFT), transformed into NumPy array objects for a lower 
computational effort during the training.  

IV. MODEL ARCHITECTURE 

A. U-NET 

The implemented model is based on the U-Net architecture, a 
convolutional encoder-decoder network designed for image-
to-image tasks, first created for biomedical uses [16]. 

 U-Nets are a type of convolutional neural networks 
(CNN) primarily designed for image-to-image tasks, such as 
segmentation. It follows an encoder-decoder structure, where 
the encoder downsamples the input to capture high-level 
features, while the decoder upsamples the representation to 
restore the spatial resolution, this can be seen in Figure 1. A 
key characteristic of U-Net is its skip connections, which 
allow information to be transferred directly from 
corresponding encoder layers to decoder layers [16], [17]. 
These connections help preserve fine details lost during 
downsampling, making U-Net effective in applications 

requiring accurate reconstruction, such as medical image 
segmentation and audio spectrogram processing. Initially 
developed for biomedical applications, U-Net has since been 
adopted in numerous fields ranging from remote sensing to 
speech enhancement. 

When applied to audio denoising, U-Net operates on 
spectrograms, which are treated as images, allowing the model 
to use 2D convolutions for feature extraction. By learning the 
spectral patterns of clean audio, U-Net can effectively 
suppress unwanted noise while maintaining the integrity of the 
original signal.  

Despite their performance, the U-Net-based models have 
limitations, particularly when facing long-range dependencies 
in audio, where transformer-based models or recurrent 
architectures may provide complementary benefits [11]. 

B. Mathematical Model 

The U-Net architecture is constructed from several 

fundamental operations. The input to the proposed model is a 

2D spectrogram �̅�  ∈  ℝ𝐹𝑥𝑇 , where F is the number of 

frequency bins and T is the number of time frames. 

 

The encoder path consists of repeated blocks of two 2D 

convolutional layers, each followed by a Rectified Linear 

Unit (ReLU) activation function, and then a max pooling 

layer. A 2D convolution is defined as Equation (1) presents 

below. 

( 𝑋 ∗ 𝐾)(𝑖, 𝑗) =  ∑ ∑ 𝑋(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑗

𝑛=0

𝑖

𝑚=0

           (1) 

In the Equation above, X is the input feature map from the 

previous layer, K is the learnable kernel, and the indices m 

and n iterate over the dimensions of the kernel. The ReLU 

activation, 𝑓(𝑥) = max (0, 𝑥) introduces non-linearity. The 

max pooling layer downsamples the feature maps, reducing 

spatial dimensions while retaining the most prominent 

features. 

The decoder path uses transposed convolutions to upsample 

the feature maps. These are concatenated with the 

corresponding feature maps from the encoder path via skip 

connections. This concatenation is followed by two standard 

convolutional layers with ReLU activations. 

 

The final layer is a 1x1 convolution that maps the feature 

channels back to a single channel, producing the final 

denoised spectrogram  �̂�. 

C. Network structure 
As this paper can be considered a PoC rather than a 

breakthrough, a rather simple U-Net architecture was chosen, 
which could be implemented and trained on a not particularly 
performant machine. The structure can be seen in Figure 1, 
and it is described below. 

1)  Encoder: 4 downsampling layers, each consisting of a 

double convolutional block followed by max pooling. 

2) Bottleneck: A double convolutional layer to extract 

deep representations. 
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3) Decoder: 4 upsampling layers with transposed 

convolutions and skip connections to retain spatial 

information. 

4) Final Output: A 1-channel spectrogram reconstruction 

representing the estimated clean audio. 

 

V. TRAINING PROCEDURE 

A. Data Preparation 
The configured dataset consisting of clean-noisy pairs was 
split into 90% training set and 10% validation set. Each 
audio file was converted into a spectrogram with STFT 
parameters: FFT size = 255, hop length = 63 (which were 
determined after a try-and-error iteration) and the resulted 
dataset was used in batches of 8, which increased training 
time, but significantly lowered processing power needs.  

B. Training Parameters 
The following training configuration was chosen: 

1) Loss function: Mean Square Error 

2) Optimizer: Adam (with learning rate = 3e-4) 

3) Epochs: 20 per noise type 

4) Device: GPU 

 
As mentioned, four different trained models will result 

after the training process, one for each noise type. This is 
allows targeted learning and better generalization, as well as a 
better understanding of advantages and limitations of U-Net 
models in denoising applications. 

 
VI. EVALUATION AND RESULTS 

The performance of the trained models was evaluated using 
both objective, quantitative metrics and subjective, qualitative 
analysis. Denoised spectrograms were first generated from the 
test set, then converted back into audio waveforms using the 
Griffin-Lim algorithm [18] for evaluation. 

A. Evaluation Metrics 

To provide a rigorous and standardized assessment, the 
following objective metrics were employed: 

- Signal-to-Noise Ration (SNR): This metric measures 
the ratio of the power of the clean signal to the power 
of the noise. It is expressed in decibels (dB). A higher 
SNR value indicates better denoising performance. 
We report both the input SNR (clean vs. noisy audio) 
and output SNR (clean vs. denoised audio). 

- Perceptual Evaluation of Speech Quality (PESQ): 
An objective metric standardized by ITU-T P.862 
[19] that predicts the subjective quality of a speech 
signal. It compares the clean reference signal to the 
degraded (denoised) signal and produces a score from 
-0.5 to 4.5, where higher scores indicate better quality. 

 
For subjective evaluation, a Mean Opinion Score (MOS) 

test was conducted, as recommended by ITU-T P.800 [20]. 
Ten listeners were asked to rate the quality of the denoised 
audio on a 5-point scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: 
Excellent). 

 

B. Quantitative Results 
To assess performance, the models were tested on noisy 

audio files generated with a target input SNR of 5 dB. Due to 
the varying characteristics of each noise type, the actual 
measured input SNR differs. Table 2 presents the average 
objective metrics for each noise type based on these test sets.  

Table 2: Objective Evaluation Results for Noisy Audio 

Generated at a Target Input SNR of 5 dB 

Noise type 
Average Input 

SNR (dB) 

Average Output 

SNR (dB) 

Average 

PESQ 

White 

8.00 2.21 2.18 

Urban 

noise 
8.00 2.94 2.11 

Reverber

ation 
5.76 2.58 2.90 

Noise 

cancellati

on 
11.48 2.07 1.88 

 
The objective results in Table 2 provide a clear view 

regarding the model's performance. For every noise type, the 
Average Output SNR is significantly lower than the Average 
Input SNR. This indicates that while the model is altering the 
signal, it is doing so at the cost of damaging the original 
musical content, leading to a poorer signal-to-noise ratio in the 
final output. The low PESQ scores, which fall into the "poor" 
to "fair" range (on a scale of 1 to 4.5), further emphasize this 
finding, suggesting that the perceptual quality of the denoised 
audio is low. 

Consistent with findings in other domains such as image 
and speech processing, the shown results confirm that a 

Figure 1: Implemented U-Net architecture 
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standard U-Net architecture has limitations in high-fidelity 
musical audio denoising. While capable of handling simpler 
additive noise, it is less effective against complex, non-
additive noise types like reverberation and noise cancellation 
artifacts. The model appears to be too aggressive, removing 
useful signal components along with the noise, which 
highlights the need for more advanced model architectures 
and perceptually-based loss functions for this specific 
application. 

When compared with results from relevant literature, the 
proposed model demonstrates the limitations of a simple 
architecture. For instance, a key innovation in this area is the 
Wave-U-Net [21], a model that applies the U-Net architecture 
directly to the time-domain waveform. In the original Wave-
U-Net paper, the authors' proposed model achieved a median 
Signal-to-Distortion Ratio (SDR) of 3.49 dB, outperforming a 
comparable spectrogram-based U-Net which scored 2.74 dB. 
This highlights that architectural choices and operating 
domain (time vs. frequency) have a significant impact on 
performance. 

While direct comparison is challenging due to different 
evaluation metrics (SNR vs. SDR) and datasets, the results are 
promising, especially in perceptual aspects, presented in the 
following subsection of this paper. However, the performance 
of the Wave-U-Net highlights the potential benefits of time-
domain processing, and more advanced architectures like 
DPT-FSNet [11] show far better performance in complex 
scenarios, indicating clear directions for future work. 

C. Qualitative Results 
The reconstructed audio files were subjectively analyzed 

by the paper’s author, and the following observations were 
noted: 

a) White & Urban Noise: Denoising was effective with 

minimal artifacts. However, the urban denoised audios present 

a non-uniform filtering, meaning that towards the end of the 

audio segment, the urban noise seemed to have been slowly 

ignored. 

b) Reverberation: The model failed to fully recover 

clean signals due to phase distortions, and additional white 

noise was introduced; however, a sort of diminution can be 

sensed in the reverb’s effect. 

c) Noise cancellation: The model performed poorly, 

requiring more sophisticated techniques, since the 

cancellation artifacts remained intact. 

 
After the initial subjective analysis, 10 test subjects were 

chosen and asked to mark the denoised audio files on a 5-point 
MOS scale (1-5), where 1 means the result is poor and 5 means 
the result is excellent. The following average marks were 
obtained, as shown in Table 3. 

  

Table 3: Average marks after subjective evaluation 

Noise type Average MOS (1-5) 

White 
4.1 

Urban noise 
3.7 

Reverberation 
1.9 

Noise 

cancellation 2.0 

 
The MOS scores confirm the objective findings. Listeners 

rated the denoising for white and urban noise as "Good" to 
"Fair," while the results for reverberation and noise 
cancellation were rated as "Poor," indicating that the artifacts 
were highly perceptible and bothering. 

D.  Discussion of Limitations 

While the present study successfully demonstrates the U-
Net's capability for certain denoising tasks, it is important to 
acknowledge its limitations to provide context for the results 
and guide future research. 

a) Dataset and Generalization: The training and 

testing were performed on 2-second audio clips from the 

IRMAS and UrbanSound8K datasets. While diverse, these 

datasets may not fully represent the vast array of musical 

genres, instrumentation, and real-world recording conditions. 

The short duration of the clips also limits the model's ability 

to learn long-term temporal dependencies in music, which 

may be crucial for understanding more complex noise 

structures. 

b) Architectural Constraints: As noted, a standard U-

Net architecture was intentionally chosen for this proof-of-

concept approach. This architecture, while effective for 

image-like representations, does not have the capability to 

model long-range dependencies or handle phase information. 

The poor performance on reverberation is a direct 

consequence of this, as reverberation is a complex 

phenomenon involving both magnitude and phase distortions 

over time. The model's failure directly shows that simply 

treating a spectrogram as an image is insufficient for phase-

sensitive problems. 

c) Phase Reconstruction Artifacts: The use of the 

Griffin-Lim algorithm for waveform reconstruction is 

another limitation. This algorithm estimates the phase from 

the magnitude spectrogram and is known to introduce audible 

artifacts, especially after a low number of iterations. 

Therefore, the final audio quality is influenced not only by 

the U-Net model’s denoising performance but also by the 

imperfections of the reconstruction algorithm. This could 

potentially confound the evaluation, as it is difficult to 

separate artifacts introduced by the model from those 

introduced by Griffin-Lim. 
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VII. CONCLUSION AND FUTURE WORK 
This study successfully demonstrated the benefits of using a 
U-Net-based deep learning model for audio denoising, serving 
as a proof of concept (PoC) for filtering noise from musical 
signals. The results, evaluated using standard objective (SNR, 
PESQ) and subjective (MOS) metrics, indicate that the model 
performs acceptably on additive noise types like white and 
urban noise. 

However, the model struggled with reverberation and 
noise cancellation artifacts, which present additional 
complexities due to phase distortions and spectral 
modifications. These limitations suggest that a trivial U-Net 
architecture may not be adequate for handling all types of real-
world noise, in special those that introduce non-trivial spectral 
characteristics. 

To improve performance, several future enhancements can 
be implemented as follows.  

a) Advanced Architectures: Future work should 

explore more sophisticated architectures. Integrating residual 

connections (ResNet blocks ) could allow for the training of 

much deeper networks without suffering from vanishing 

gradients or exploding gradients, potentially helping the 

model to learn more complex features. Furthermore, 

investigating generative adversarial networks (GANs [22]) is 

a promising direction. A GAN-based model could use a 

discriminator network to learn a loss function that pushes the 

denoised audio to be perceptually indistinguishable from 

clean audio, potentially yielding more natural-sounding 

results than MSE-based training. 

b) Hybrid Loss Functions: The use of a simple Mean 

Squared Error loss function is a major area for improvement. 

Future research should focus on hybrid loss functions that 

combine MSE with perceptually-based metrics. For example, 

a loss function could incorporate an approximation of PESQ 

or STOI, directly optimizing the network for metrics that 

better correlate with human hearing and sound quality 

assessment better than the numerical-only approach tested 

and presented before, which have resulted in different 

performances, as Chapter VI described. 

c) Explicit Phase Estimation: To overcome the 

limitations of the Griffin-Lim algorithm and better handle the 

reverberation effect, models that estimate both the magnitude 

and phase of the clean signal should be investigated. This 

could mean using a two-branch network where one branch 

predicts the spectrogram magnitude and the other predicts the 

phase or a complex-valued network that operates on the 

complex STFT directly. 

d) Larger and More Realistic Datasets: To improve 

generalization, the model should be trained and evaluated on 

a larger and more varied dataset, including longer audio clips 

and a wider range of musical styles. Simulating more realistic 

noise cancellation artifacts and reverberation using varied 

Room Impulse Responses (RIRs) would also be crucial for 

enhancing the model's robustness in real-world applications. 

In conclusion, the implemented model has shown 
significant potential in filtering several noise types, and by 
addressing the mentioned areas, future research can build 

upon this foundation to develop more effective and adaptive 
audio denoising solutions. 
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