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Abstract: This paper proposes a lightweight method for detecting visual degradation in road signs, based on a Threshold-Based
Color Quantization algorithm. HSV color space was chosen for its strong alignment with human visual perception.. The method
extracts dominant color clusters from the region of interest and matches them between an undegraded reference sign and a poten-
tially degraded one using centroid distance and relative pixel-proportion similarity. The method exhibits several advantages, in-
cluding high processing speed, independence from a predefined number of clusters, algorithmic simplicity, and effective feature
representation. A normalized degradation scoreis obtained by combining the number of unmatched clusters, the Euclidean distance
between centroids, and the proportional difference between corresponding clusters. The approach was evaluated on a synthetic
dataset of approximately 377 road signs with eight types of simulated degradation, achieving an RMSE of 0.12 when predicting
degradation severity, which corresponds to an approximate prediction accuracy of 88%. The study discusses these limitations and
outlines potential improvements, including the integration of multimodal features and learning-based approaches to enhance per-
formance in real life environments.
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I. INTRODUCTION through cognitive and perceptual modeling approaches.
Self-driving cars are currently among the most discussed =~ While this confirms the practical relevance of visually de-
topics in modern technology, representing a rapidly evolv-  graded signs in real-world environments, such methods fo-
ing field driven by continuous research and development.  cus on maintainingrecognition performance rather than es-
Accordingto [1], autonomous driving relies on four major ~ timating or quantifying the degradation itself.
technological pillars: real-time and embedded systems, Other research directions rely on machine-learning-
machine learning, edge computing, and cloud computing.  based solutions. Paper [4] classify degraded signs usinga
The primary objective of autonomous vehiclesis toreduce  flexible mixture model and transfer learning, while paper
traffic accidents caused by human error, thereby increasing  [5] employ ensemble YOLOvVS models with test-time aug-
overall road safety. mentation to detect visually corrupted signs. These ap-
This work is also connected to the broader concept of  proaches use supervised learning and deep architectures,
Smart Cities. As industrial and technological advance-  differing fundamentally from the classical computer vision
ments accelerate, expectations regarding quality of life,ef-  techniquestargeted in this work. An earlier classical con-
ficient resource usage, and the automation of labor-inten-  tribution is provided by [6], who introduced a small real-
sive tasks increasingly shape the way urban environments ~ world database of degraded signs and proposed a detection
are designed. Accordingto [2], a smart city operatesasa  baseline using RGB color segmentation, shape detection,
dynamic and coherent metabolicsysteminteractingwithits  and heuristics, achieving an F-score 0f 0.91. While valua-
built and social environment. Key components include ble as evidence that degraded signs require specialized
smart buildings, mobility, energy, healthcare, and govern-  treatment, their system focuses on detection rather than
ance. quantifying the degree of visual deterioration.
Although extensiveresearchexistson traffic sign detec- Despite these contributions, existing approaches pre-
tion and recognition, only a limited number of studiesad-  dominantly address detection, classification, or structural
dress the degradation of traffic signs as a visual and func-  similarity assessment, whereas few methods focus on esti-
tional problem. In [3], it is proposed a method for measur- mating color-based visual degradation through light-
ing damage using SSIM, providing a perceptual metric of ~ weight, classical,and computationally efficient techniques.
structural degradation. However, SSIM primarily captures ~ This gap motivates the approach proposed in this study.
changes in luminance, contrast,and local structure, making The core objective of this work is to develop a method
it highly sensitive to illumination variations, exposure,and  capable of estimating the degradation of a road sign over
viewpoint changes. Moreover, SSIM does not explicitly  time using classical computer vision techniques. A combi-
model chromatic information, limiting its ability to quan-  nation ofedge detection, corner detection, and color-based
tify color-based degradation such as fading, discoloration,  analysis is employed to extract features relevant to visual
or pigment loss: phenomena that are central to traffic sign ~ deterioration. The resulting prototype produces a normal-
deterioration. Additional studies examine robustness to  ized degradation score, which could be integrated into a
degradation from a recognition perspective. For example,  video perception module (for example, in an autonomous
the work in [7] demonstrates that signs affected by occlu-  vehicle) to enable real-time map updates via cloud-con-
sion, vandalism, or discoloration can still be recognized nected systems.
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The remainder of this paper is organized as follows:
Section II reviews related work and theoretical back-
ground, Section Il describes the proposed method, Section
IV presents the experimental results and Section V con-
cludes the paper and outlines directions for future research.

II. RELATED WORK and THEORETICAL

BACKGROUND
In the context of SLAM (Simultaneous Localization and
Mapping), landmarks are visual features used as reference
points for localization and map construction [3]. Traffic
signs serve as stable landmarks in many urban environ-
ments, but their visual appearance can change over time
due to environmental exposure, vandalism, dirt, or partial
occlusion. Such changes may alter the landmark’s signa-
ture,leadingto incorrect associations in SLAM or recogni-
tion modules.

For this reason, a quantitative degradation score is
valuable. Values close to zero indicate that the current sign
closely matches the reference (no aging), moderate in-
creases correspond to progressive chromatic deterioration,
and large values suggest that the observed sign differs sig-
nificantly from the reference and may represent a different
landmark.

Road signs can suffer fromseveral types of degradation,
including, as it can be seen:

Graffiti or stickers applied to their surface
Accumulation of dirt, mud, or dust
Obstructions such as vegetation or other objects
Scratched or faded paint.

> Graffiti/stickers
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-> Mud & dust ":‘\% r

-> Vegetation covering the sign

a -> Broken safety traffic mirrors
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R -> Bent/oblique

Figure 1. Landmark degradation scenarios.

-> Faded/scratched paint
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Since these forms of degradation primarily affect the
chromatic characteristics ofthe sign, color information is a
key indicator of deterioration. Geometric distortions (e.g.,
bent or tilted signs) may also occur but fall outside the pri-
mary scope of this work.

Selecting a suitable colorspace is essential for evaluat-
ing chromatic changes. Prior comparative studies demon-
strate that HSV offers advantages over RGB and CIELAB
for color-based segmentation because it more effectively
decouples chromaticity from brightness [10-12]. RGB
mixes luminance and chrominance, causing visually simi-
larshades to appear artificially distant under Euclidean dis-
tance, while CIELAB, although perceptually uniform, is
more sensitiveto noise in low-saturation regions and can
amplify small illumination fluctuations. By contrast, HSV
allows the chromatic components (Hue and Saturation) to
be analyzed independently of brightness, which is particu-
larly important when assessing degradation such as fading
or discoloration. Focusing on these chromatic channels re-
duces sensitivity to illumination variations and yields more
stable and meaningful color quantization, making HSV a
more suitable and less restrictive choice for detecting

color-based deterioration in traffic signs.

Existing research confirms the relevance of degraded
signs but does not provide a lightweight, color-based deg-
radation classical method for quantification. In paper [3] it
is measured the damage using SSIM, a structural similarity
metric sensitive to illumination changes and poorly suited
for capturingchromatic fadingor discoloration. Studies [6]
and [7] are based on classical approaches, but do not quan-
tify degradation.

While papers [4], [5] and [8] propose machine and
transfer learning approaches, not classical ones.

These studies demonstrate the importance of handling
visual degradation, yet they pursue different goals: SSIM-
based approaches focus on structural similarity, ML-based
approaches target classification or detection, and classical
baselines focus on robust sign detection. None of these
works explicitly measure color-based degradation using a
simple clustering mechanism, which forms the central ob-
jective of this paper.

Because color degradation is the primary cue, the seg-
mentation step in this work is limited to isolating the sign
region and quantizingthe colorswithinit. General segmen-
tation categories such as thresholding, region-based, edge-
based, or clustering methods are well documented; how-
ever, only clustering-based color quantization is directly
relevant to our method.

Classical clustering algorithms such as K-means were
initially evaluated due to their simplicity and widespread
use in color quantization. However, K-means requires
specifying the number of clusters in advance [8], which is
unsuitable fortraffic signs whose number of perceptually
distinct colors varies with fading, dirt coverage, or external
occlusions. If is set too low, distinct colors merge and
meaningful degradations are masked; if set too high, noise
orillumination variations createartificial clusters, exagger-
ating degradation. These limitations make fixed-clustering
unstable and highly sensitive to parameter tuning. None-
theless, K-means served as a natural baseline and con-
firmed that chromatic clusteringis an effective direction,
motivating the shift toward a more flexible alternative.

To overcome the need for a predefined, this work em-
ploys a threshold-based color quantization method
(TBCQ), conceptually related to online or sequential clus-
teringtechniques. In this approach, new clusters are created
only when a pixel is sufficiently distant from all existing
centroids; thus, the final number of clusters emerges natu-
rally from the true chromatic variability of the sign. Each
clusteris represented by its centroid and pixel proportion,
forminga compact descriptor of the sign’s color composi-
tion. By comparing the descriptor of a reference sign with
that of a current observation, a normalized degradation
score is computed that reflects both chromatic displace-
ment and changes in color proportions.

This method offers multiple key advantages and will be
explained in more detail in the next section.

I11. PROPOSED METHOD
The proposed method estimates the visual degradation
level of a traffic sign by comparing a reference image (un-
damaged sign) with a currentobservation (potentially de-
graded). The core of the method is a Threshold-Based
Color Quantization (TBCQ) algorithm operating in the
HSV color space. Unlike traditional clustering methods
such as K-Means—where the number of clusters must be
fixed in advance—TBCQ dynamically creates clusters
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based solely on color variability in the image. This prop-
erty is essential for degradation assessment, since a faded
or partially occluded sign may contain a different number
of dominant color regions compared to its undamaged
counterpart.

The method requires only the sign region itself. The da-
taset provided bounding-box detections and semantic class
labels, allowing the approximate geometric shape of each
sign (octagon, triangle, circle, etc.) to be inferred. A shape-
constrained crop was then applied to remove background
pixels. No explicit edge- or corner-detection algorithms
were used.

The pipeline consists of four stages:
1.Preprocessing step: Sign extraction from bounding box

and semantic shape.
2. Color quantization using TBCQ in HSV space.
3. Cluster matching between reference and observed sign.
4. Computation of a normalized degradation score.

3.1. Preproccessing step: sign extraction

The dataset was collected entirely in-house. Public da-
tasets were unsuitable due to mismatches in annotation for-
mat, inconsistent degradation levels, or the absence of
bounding boxes compatible with the acquisition pipeline.
Nonetheless, the proposed algorithm is compatible with
any dataset that provides cropped sign regions.

The original input frame consisted exclusively of im-
ages captured in real driving conditions, with bounding
boxes and class labels provided by the acquisition system.
From the class label, the corresponding semantic shape
(e.g., circle for speed limits, triangle for warnings) was in-
ferred.

The signis then cropped fromtheboundingbox to elim-
inate background pixels, based on its shape. This is an ap-
proximation ratherthan a precise contour extraction, but is
sufficient for isolating the sign interior, which is the only
region used for color degradation analysis.

The croppedregion was then converted from RGB to
HSV, where colortone (Hue) is decoupled from brightness
(Value), providing a more perceptually meaningful repre-
sentation for degradation-based quantization.

3.2. Threshold-Based Color Quantization (TBCQ)

While K-Means can be used for vector quantization, the
proposed threshold-based method differs in how cluster in-
itialization and adaptation are handled, particularly regard-
ing the dynamic determination of the number of clusters.

For traffic signs, this is problematic:

o the number of dominant colors changes when the sign
fades,

e dirt or graffiti introduce new colors,

e illumination and aging modify the cluster distribution.

Fixing k£ would artificially force mismatches and hide
or exaggerate degradation. TBCQ avoids this by creating
clusters dynamically based on a predefined color distance
threshold.

Thus, the number of clusters reflects the actual chro-
matic variability, making it directly informative for degra-
dation assessment. The threshold value controls the granu-
larity ofthe color quantization. A small threshold produces
many clusters (over-segmentation), while a large threshold
merges distinct colors. To determine a stable value, exten-
sive experiments were performed on over 100 traffic signs,

across multiple degradation scenarios and camera condi-
tions. The threshold was varied and its impact on recon-
struction accuracy and cluster stability was evaluated. The
chosen value (=0.25) offered the best compromise between
accuracy and computational efficiency across nearly all
cases. This value was therefore fixed for all experiments.

The TBCQ algorithm operates as follows, pseudocode
was translated from [9]:

Given the training sequence, we set a priori an upper
bound (a threshold) ¢ for the radius of each “ball” that
constitutes a class C;.

e The first vector x,creates the first class Cy;
e Upon receiving each vector x;, a decision is made:

- if d(x]-, yi) > e for all existing classes C;, then
x; creates a new class;
- otherwise, x; is assigned to the class whose centroid
is the closest, and the position of the new centroid is
recalculated.

The algorithm s applied in the HSV space, following
five main steps:

Step 1: The algorithm takes as input an HSV image repre-
senting the cropped traffic sign region.

Step 2: A matrix, denoted as “centroid”, is initialized with
the first color cluster centroid, corresponding to the first
valid pixelin the input image. The pixel’s Hue, Saturation,
and Value components are stored, and the associated pixel
count is initialized to zero.

Step 3: The algorithm iteratively processes each pixel in
the image by performing the following operations:

¢ Distance Calculation: Compute the distance between
the current pixel and each existing cluster center. The
formula used for this computation is provided below,
along with additional supporting equations.

e Minimum Distance Selection: Identify the minimum
distance among all computed distances.

e Threshold Comparison: Compare the minimum dis-
tance to a predefined threshold:

e If the distance exceeds the threshold, a new cluster is

created with the current pixel as its center.

o If the distance is within the threshold, the pixel is as-
signed to the closest cluster, the cluster's pixel count is
incremented, and the centroid isupdated as the centroid
(gravity center) of all assigned pixels.

Step 4: After all pixels have been clustered, the image is
reconstructed by assigning to each pixel the HSV values of
its corresponding cluster center.

Step 5: The proportion of each clusteris computed as the
percentage of pixels relative to the total number of pixels
in the cropped image.

The reconstructed HSV image is subsequently con-
verted back to the RGB color space. Finally, the results are
visualized using multiple output representations for analy-
sis and validation. The output consists of dominant color
clusters, each characterized by a centroid (representing the
dominant color) and the proportion of pixels belonging to
that cluster.

To achieve perceptually meaningful distances, the Hue
channel (circular variable) was embedded into a 2-D rep-
resentation. This transforms the HSV pixel (H, S, V) into a
4-dimensional vector:

new HSV pixel=(cos(H),sin(H),S,V) (D

Euclidean distance is then computed in this space to
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preserve the circularity of Hue and ensures more stable
clustering under gradual fading:

distance ((H1,51,V1),(H2,82,V2)) = sqrt((cos(Hi)-cos(Hz))?
+ ((sin(H1)-sin(H2))? + (S1-S2)?+(Vi-V3)? ) (2)

3.3. Cluster Matching Between Reference and
Degraded

TBCQ algorithm is applied to both the original and de-
graded images, the resulting feature sets (defined as clus-
ters of dominant colors) are forwarded to a matching mod-
ule in order to determine if there is a degradation.

This method attempts to pair clusters of similar color
characteristics across the two input frames, based on prox-
imity in the HSV color space and pixel distribution.

Subsequently, a comparisonis performed between the
matched cluster pairs, as well as unmatched clusters from
each image. The differences in color composition, cluster
size, and presence or absence of corresponding features
contribute to thecomputation of a degradationscore, which
uantifies the level of visual deterioration.

The input to the next stage of the algorithm consists of
a list of matched cluster pairs, each pair representing simi-
lar color clusters identified in the original and degraded im-
ages. The output generated includes the computed dis-
tances between the centers of these matched clusters.

fill = original & *= damaged matching cluster (b=original, red=damaged
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— 0

Figure 2.-Matching clusters output step.

To compute the final degradation score, four key met-
rics were defined, encompassing both paired and unpaired
clusters:

Number of non-paired clusters,

Distance between the centers of matched clusters,

e Difference in color proportion between paired clusters,
e Total percentage of non-paired cluster pixels.

To derivea scalar degradation score in the range [0, 1],
we evaluated four candidate formulations based on the nor-
malized quantities extracted from the cluster comparison
module. Let M denote the set of matched cluster pairs, U -
the set of unmatched clusters, D - the mean centroid dis-
tance across matched pairs, P - the mean absolute propor-
tion difference formatched clusters,and U - the normalized
proportion of pixels belonging to unmatched clusters. All
quantities were normalized to [0, 1] prior to combination.
The four candidate scoring formulas aredefined as follows.

Variant 1: Non-Paired Cluster Count
This formulation uses only the normalized count of non-
paired clusters:

S; = K = [n. — ng/ / max(n, ng) 3)
This metric penalizes discrepancies in the number of

color clusters; however, it frequently overestimates dam-
age when small spurious clusters arise due to noise or mi-
nor graffiti marks.

Variant 2: Distance-based pair metric
This formulation combines centroid displacement and pro-
portion deviation for matched clusters:

S :(Dnorm+P)/2 (4)
where Dporm = D/dmax and dyax is a conservative
upper bound for the feature-space distance. Although this
captures structural changes within matched colors, it fails
when few or no matched clusters exist and remains insen-
sitive to newly introduced colors.

Variant 3: Mean of first three parameters
This formulation integrates discrepancies in cluster count,
centroid position, and proportional mass:

S3 = (K+Dnorm+P)/3 (5)

While more comprehensive, this metric often underes-
timates damage in cases of minor but visually noticeable
surface alterations, because centroid shifts and proportion
differences remain small even when new colors appear.

Variant 4: Unmatched-clusters proportion
The fourth formulation computes the fraction of pixel mass
corresponding to unmatched clusters:

R D
n! +Z nE
Zie’uR L jeub

S,=U = .

(6)

where N is the total number of pixels in the sign region.
This quantity directly represents the visible area that
does not match the reference sign's chromatic structure.

3.4. Selection of the Final Formula (Based on Human
Perception Study)

To determine which formulation aligns most closely
with human perception, subjective degradationscores were
collected through a survey involving licensed drivers. Par-
ticipants evaluated the visual deterioration of each de-
graded sign on a normalized scale, providing a perceptual
reference for comparison. Among the four candidates, the
unmatched-pixel formulationS, exhibited the highest con-
sistency with human judgments. Specifically, it achieved
the lowest average deviation from the subjective scores
across a range of degradation types, including fading, graf-
fiti, dirt accumulation, and partial occlusions. The measure
implicitly reflects the proportion of the sign’s surface that
appears altered—an attribute strongly correlated with hu-
man perception of damage. As a result, the final degrada-
tion score adopted in this work is: S=U.

This formulation offers strong perceptual alignment, ro-
bustness to matching variability, and computational sim-
plicity, rendering it suitable for real-time embedded appli-
cations in automotive environments.

The final result represents a normalized damage level
ranging from 0 to 1, where 0 indicates no degradation and
1 corresponds to complete deterioration, implying no vis-
ual similarity betweenthe two representations of the traffic
sign. When the damage level reaches 0.5 or higher (typi-
cally meaning that more than half of the traffic sign is cov-
ered or deteriorated), it indicates significant degradation,
and the precise calculation of the value becomes less relia-
ble.
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IV. EXPERIMENTS AND RESULTS
4.1. Experimental Setup

The evaluation dataset consists of traffic sign images
extracted from video sequencesrecorded with an in-vehi-
cle stereo camera operated under controlled geometry: the
camera remained fixed relative to the vehicle, ensuring ap-
proximately constant viewingangle duringacquisition. All
experiments, synthetic and real, were conducted under the
assumption that two images compared for degradation cor-
respond to the same traffic sign, captured under similar
illumination and similar viewpoint, reflecting the opera-
tional conditions of bus-mounted camera systems used for
infrastructure monitoring,

These preconditions are fundamental to the proposed
feature. When they are not satisfied, illumination shifts dis-
tort the HSV descriptors and directly affect the cluster-
matching pipeline, as discussed later.

Two complementary evaluation scenarios were consid-
ered:

1. Synthetic degradation, where controlled alterations
were added in MATLAB to simulate realistic deterio-
ration mechanisms.

2. Real degradation, where images of the same physical
sign taken one or two years apart were compared.

4.2. RMSE and Accuracy

The algorithm produces a numerical degradation
score, and accuracy is quantified by:

RMSE = \/% 2, (d5t = d)y? (7)

where d§* is the estimated value and d;*" is the human
expected reference.

An RMSE of 0 indicates perfectagreement. An RMSE of
0.12 corresponds to approximately 88% agreement on a 0-
-1scale, sincethe average absolute deviation is below 0.12.

Thus, RMSE directly expresses how close the algo-
rithm’s scores are to human perception.

4.3. Synthetic Degradation

Eight types of synthetic deterioration were applied to a
datasetof 377 traffic signs, producing over 3000 (original,
degraded) image pairs. For each case, human observers
provided an expected degradation score in [0,1], where:
¢ 0 =no visible damage,

e 1 =extremely heavy degradation or severe occlusion
(= “unusable sign”).

These human judgements were used as ground-truth
targets for evaluating the proposed numerical damage met-
ric.

4.4. Synthetic Results Summary

Most degradation types produced low RMSE values
(<0.07), indicating strong agreement.

Only severe occlusions (>50%) produced high errors,
as the algorithm is not designed for cases where more than
half'the sign surface becomes invisible, a scenario where
even human observers often assign values close to 1.

Cases exceeding 50% occlusion produce discrepancies
because they break an implicitassumption of the method:
at least part ofthe original chromatic structure must remain
visible for a meaningful comparison.

When excluding these two extreme categories, the
global RMSE drops from 0.12 to 0.08, corresponding to
an accuracy above 92%.

Expectsd VS estimated
T

as os
exprcad vakin

Figure 3. Figure representing Statistics of Expected vs.
Estimated Damage Value on synthetic degradation.

Synthetic RMSE Comments
degradation value
Writing < 30% 0.003 Good agreement
Noise 0.037 Good agreement
Grafitti <30% 0.002 Good agreement
Grafitti = 50% 0.064 Good agreement
Rust <30% 0.011 Good agreement
Rust > 50% 0.12 Large deviation
Vegetation<30% 0.045 Good agreement
Vegetation>50% 0.155 Large deviation
Table 1: RMSE values for each category from Fig.4
4.5. Real Degradation

Real traffic sign acquisition proved challenging: only
12 valid (original, aged) pairs were obtained, and none ex-
hibited strong physical degradation. Furthermore, these
images violated the required preconditions:

» The signs were photographed in different seasons,

* Under different lighting conditions (direct sunlight vs.
overcast sky),

» With non-identical camera orientation due to vehicle
stopping position.

Under these deviations, the algorithm often failed to
match clusters between the two images, producing degra-
dation values close to 1 (notbecause thesign was damaged,
butbecause the color distributions were fundamentally dif-
ferent after illumination changes).

For real images with no visible degradation, the human
expected value is naturally close to 0.

This result is not an indicator that the feature is funda-
mentally flaweed, rather it confirms that the method is not
illumination invariant and requires controlled acquisition
conditions.

This is consistent with its intended deployment:

* Bus-mounted cameras reviewing the same street at the
same time of day,

* Same viewpoint, same weather and lighting context,
* Frames captured from consistent angles duringroutine in-
frastructure monitoring.

Under such operational constraints, illumination varia-
tion is minimal, and the method is expected to behave sim-
ilarly to the synthetic case.
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Figure 4. Figure representing Statistics of Expected vs.
Estimated Damage Value on real degradation.

V. CONCLUSIONS AND FUTURE WORK
The proposed method relies on a classical, threshold-based
vector quantization algorithm adapted to the HSV color
space to estimate traffic sign degradation. This choice was
motivated by its compatibility with resource-constrained
embedded environments and its ability to operate without
a predefined number of clusters. Its key advantages in-
clude:
* High Processing Speed: Enables real-time execution on
hardware with limited computational capacity.
* No Need for a Predefined Number of Clusters: Dynami-
cally adjusts to the number of distinct colours present in
each input image.
« Simplicity and Flexibility: Straightforward to implement
and adapt to specific application constraints.
* Effective Feature Extraction: Identifies dominant color
clusters that form a compact descriptor of the sign’s ap-
pearance.

Experimental results show that the method performs re-
liably underthe predefined operating conditions and cap-
tures perceptually meaningful degradation levels. How-
ever, accuracy decreases in scenarios involving complex
real-world alterations, as the method relies exclusively on
chromatic cues that cannot fully describe all types of visual
deterioration.

Future work will therefore continue to emphasize clas-
sical, computationally lightweight techniques. Several re-
alistic extensions are envisioned.

First, additional non-deep-learning features, such as lo-
cal texture descriptors or simple gradient- and edge-based
statistics, may help capture structural degradation phenom-
ena that are not purely chromatic, while preserving ex-
plainability and low computational cost.

Second, cluster post-processing strategies (e.g., cen-
troid-based merging or noise suppression) could reduce
over-segmentation and improve robustness across varying
input resolutions.

Third, evaluatingthe systemon a broader real-world da-
taset, ideally containing time-spaced captures of the same
signs, would provide a more accurate assessment of long-
term degradation patterns.

In addition, machine learning approaches may be ex-
plored asacomplementary direction. Ratherthan replacing
the proposed classical framework, future work may inves-
tigate learning-based models that operate on top of the ex-
tracted color-texture descriptors. Such models could learn
to predictdegradation levels froma compact feature vector
rather than raw images, allowing ML to enhance robust-
ness while preserving computational efficiency. This

incremental integration would enable the use of data-
driven without abandoning the interpretability and re-
source efficiency of the current system. In summary, this
work demonstrates that classical vector quantization, com-
bined with perceptually oriented color representation, pro-
vides a viable and efficient foundation for estimating traf-
fic sign degradation. The proposed method highlights the
continued relevance of lightweight, interpretable algo-
rithms in an era increasingly dominated by deep learning,
offeringa complementary solution suitable for embedded
perception systems where computational budget and trans-
parency remain essential.
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