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Abstract: This paper proposes a lightweight method for detecting visual degradation in road signs, based on a Threshold-Based 
Color Quantization algorithm. HSV color space was chosen for its strong alignment with human visual perception.. The method 
extracts dominant color clusters from the region of interest and matches them between an undegraded reference sign and a poten-
tially degraded one using centroid distance and relative pixel-proportion similarity. The method exhibits several advantages, in-
cluding high processing speed, independence from a predefined number of clusters, algorithmic simplicity, and effective feature 
representation. A normalized degradation score is obtained by combining the number of unmatched clusters, the Euclidean distance 
between centroids, and the proportional difference between corresponding clusters. The approach was evaluated on a synthetic 
dataset of approximately 377 road signs with eight types of simulated degradation, achieving an RMSE of 0.12 when predicting 
degradation severity, which corresponds to an approximate prediction accuracy of 88%. The study discusses these limitations and 
outlines potential improvements, including the integration of multimodal features and learning-based approaches to enhance per-
formance in real life environments. 
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I. INTRODUCTION 
Self-driving cars are currently among the most discussed 
topics in modern technology, representing a rapidly evolv-
ing field driven by continuous research and development. 
According to [1], autonomous driving relies on four major 
technological pillars: real-time and embedded systems, 
machine learning, edge computing, and cloud computing. 
The primary objective of autonomous vehicles is to reduce 
traffic accidents caused by human error, thereby increasing 
overall road safety. 
 This work is also connected to the broader concept of 
Smart Cities. As industrial and technological advance-
ments accelerate, expectations regarding quality of life, ef-
ficient resource usage, and the automation of labor-inten-
sive tasks increasingly shape the way urban environments 
are designed. According to [2], a smart city operates as a 
dynamic and coherent metabolic system interacting with its 
built and social environment. Key components include 
smart buildings, mobility, energy, healthcare, and govern-
ance. 
 Although extensive research exists on traffic sign detec-
tion and recognition, only a limited number of studies ad-
dress the degradation of traffic signs as a visual and func-
tional problem. In [3], it is proposed a method for measur-
ing damage using SSIM, providing a perceptual metric of 
structural degradation. However, SSIM primarily captures 
changes in luminance, contrast, and local structure, making 
it highly sensitive to illumination variations, exposure, and 
viewpoint changes. Moreover, SSIM does not explicitly 
model chromatic information, limiting its ability to quan-
tify color-based degradation such as fading, discoloration, 
or pigment loss: phenomena that are central to traffic sign 
deterioration. Additional studies examine robustness to 
degradation from a recognition perspective. For example, 
the work in [7] demonstrates that signs affected by occlu-
sion, vandalism, or discoloration can still be recognized 

through cognitive and perceptual modeling approaches. 
While this confirms the practical relevance of visually de-
graded signs in real-world environments, such methods fo-
cus on maintaining recognition performance rather than es-
timating or quantifying the degradation itself. 
 Other research directions rely on machine-learning-
based solutions. Paper  [4] classify degraded signs using a 
flexible mixture model and transfer learning, while paper 
[5] employ ensemble YOLOv5 models with test-time aug-
mentation to detect visually corrupted signs. These ap-
proaches use supervised learning and deep architectures, 
differing fundamentally from the classical computer vision 
techniques targeted in this work. An earlier classical con-
tribution is provided by [6], who introduced a small real-
world database of degraded signs and proposed a detection 
baseline using RGB color segmentation, shape detection, 
and heuristics, achieving an F-score of 0.91. While valua-
ble as evidence that degraded signs require specialized 
treatment, their system focuses on detection rather than 
quantifying the degree of visual deterioration. 
 Despite these contributions, existing approaches pre-
dominantly address detection, classification, or structural 
similarity assessment, whereas few methods focus on esti-
mating color-based visual degradation through light-
weight, classical, and computationally efficient techniques. 
This gap motivates the approach proposed in this study. 
 The core objective of this work is to develop a method 
capable of estimating the degradation of a road sign over 
time using classical computer vision techniques. A combi-
nation of edge detection, corner detection, and color-based 
analysis is employed to extract features relevant to visual 
deterioration. The resulting prototype produces a normal-
ized degradation score, which could be integrated into a 
video perception module (for example, in an autonomous 
vehicle) to enable real-time map updates via cloud-con-
nected systems. 
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 The remainder of this paper is organized as follows: 
Section II reviews related work and theoretical back-
ground, Section III describes the proposed method, Section 
IV presents the experimental results and Section V con-
cludes the paper and outlines directions for future research. 
 

II. RELATED WORK and THEORETICAL   
BACKGROUND 

In the context of SLAM (Simultaneous Localization and 
Mapping), landmarks are visual features used as reference 
points for localization and map construction [3]. Traffic 
signs serve as stable landmarks in many urban environ-
ments, but their visual appearance can change over time 
due to environmental exposure, vandalism, dirt, or partial 
occlusion. Such changes may alter the landmark’s signa-
ture, leading to incorrect associations in SLAM or recogni-
tion modules.  
 For this reason, a quantitative degradation score is 
valuable. Values close to zero indicate that the current sign 
closely matches the reference (no aging), moderate in-
creases correspond to progressive chromatic deterioration, 
and large values suggest that the observed sign differs sig-
nificantly from the reference and may represent a different 
landmark. 
 Road signs can suffer from several types of degradation, 
including, as it can be seen: 

• Graffiti or stickers applied to their surface 
• Accumulation of dirt, mud, or dust 
• Obstructions such as vegetation or other objects 
• Scratched or faded paint. 

 

 
Figure 1. Landmark degradation scenarios.  
 

 Since these forms of degradation primarily affect the 
chromatic characteristics of the sign, color information is a 
key indicator of deterioration. Geometric distortions (e.g., 
bent or tilted signs) may also occur but fall outside the pri-
mary scope of this work. 
 Selecting a suitable color space is essential for evaluat-
ing chromatic changes. Prior comparative studies demon-
strate that HSV offers advantages over RGB and CIELAB 
for color-based segmentation because it more effectively 
decouples chromaticity from brightness [10–12]. RGB 
mixes luminance and chrominance, causing visually simi-
lar shades to appear artificially distant under Euclidean dis-
tance, while CIELAB, although perceptually uniform, is 
more sensitive to noise in low-saturation regions and can 
amplify small illumination fluctuations. By contrast, HSV 
allows the chromatic components (Hue and Saturation) to 
be analyzed independently of brightness, which is particu-
larly important when assessing degradation such as fading 
or discoloration. Focusing on these chromatic channels re-
duces sensitivity to illumination variations and yields more 
stable and meaningful color quantization, making HSV a 
more suitable and less restrictive choice for detecting 

color-based deterioration in traffic signs. 
 Existing research confirms the relevance of degraded 
signs but does not provide a lightweight, color-based deg-
radation classical method for quantification. In paper [3] it 
is measured the damage using SSIM, a structural similarity 
metric sensitive to illumination changes and poorly suited 
for capturing chromatic fading or discoloration. Studies [6] 
and [7] are based on classical approaches, but do not quan-
tify degradation. 
 While papers [4], [5] and [8] propose machine and 
transfer learning approaches, not classical ones. 
 These studies demonstrate the importance of handling 
visual degradation, yet they pursue different goals: SSIM-
based approaches focus on structural similarity, ML-based 
approaches target classification or detection, and classical 
baselines focus on robust sign detection. None of these 
works explicitly measure color-based degradation using a 
simple clustering mechanism, which forms the central ob-
jective of this paper. 
 Because color degradation is the primary cue, the seg-
mentation step in this work is limited to isolating the sign 
region and quantizing the colors within it. General segmen-
tation categories such as thresholding, region-based, edge-
based, or clustering methods are well documented; how-
ever, only clustering-based color quantization is directly 
relevant to our method. 
 Classical clustering algorithms such as K-means were 
initially evaluated due to their simplicity and widespread 
use in color quantization. However, K-means requires 
specifying the number of clusters in advance [8], which is 
unsuitable for traffic signs whose number of perceptually 
distinct colors varies with fading, dirt coverage, or external 
occlusions. If is set too low, distinct colors merge and 
meaningful degradations are masked; if set too high, noise 
or illumination variations create artificial clusters, exagger-
ating degradation. These limitations make fixed-clustering 
unstable and highly sensitive to parameter tuning. None-
theless, K-means served as a natural baseline and con-
firmed that chromatic clustering is an effective direction, 
motivating the shift toward a more flexible alternative. 
 To overcome the need for a predefined, this work em-
ploys a threshold-based color quantization method 
(TBCQ), conceptually related to online or sequential clus-
tering techniques. In this approach, new clusters are created 
only when a pixel is sufficiently distant from all existing 
centroids; thus, the final number of clusters emerges natu-
rally from the true chromatic variability of the sign. Each 
cluster is represented by its centroid and pixel proportion, 
forming a compact descriptor of the sign’s color composi-
tion. By comparing the descriptor of a reference sign with 
that of a current observation, a normalized degradation 
score is computed that reflects both chromatic displace-
ment and changes in color proportions. 
 This method offers multiple key advantages and will be 
explained in more detail in the next section. 
 

III. PROPOSED METHOD  
The proposed method estimates the visual degradation 
level of a traffic sign by comparing a reference image (un-
damaged sign) with a current observation (potentially de-
graded). The core of the method is a Threshold-Based 
Color Quantization (TBCQ) algorithm operating in the 
HSV color space. Unlike traditional clustering methods 
such as K-Means—where the number of clusters must be 
fixed in advance—TBCQ dynamically creates clusters 
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based solely on color variability in the image. This prop-
erty is essential for degradation assessment, since a faded 
or partially occluded sign may contain a different number 
of dominant color regions compared to its undamaged 
counterpart. 
 The method requires only the sign region itself. The da-
taset provided bounding-box detections and semantic class 
labels, allowing the approximate geometric shape of each 
sign (octagon, triangle, circle, etc.) to be inferred. A shape-
constrained crop was then applied to remove background 
pixels. No explicit edge- or corner-detection algorithms 
were used. 
 The pipeline consists of four stages: 
1. Preprocessing step: Sign extraction from bounding box 

and semantic shape. 
2. Color quantization using TBCQ in HSV space. 
3. Cluster matching between reference and observed sign. 
4. Computation of a normalized degradation score. 
 
3.1. Preproccessing step: sign extraction 
 
 The dataset was collected entirely in-house. Public da-
tasets were unsuitable due to mismatches in annotation for-
mat, inconsistent degradation levels, or the absence of 
bounding boxes compatible with the acquisition pipeline. 
Nonetheless, the proposed algorithm is compatible with 
any dataset that provides cropped sign regions. 
 The original input frame consisted exclusively of im-
ages captured in real driving conditions, with bounding 
boxes and class labels provided by the acquisition system. 
From the class label, the corresponding semantic shape 
(e.g., circle for speed limits, triangle for warnings) was in-
ferred. 
 The sign is then cropped from the bounding box to elim-
inate background pixels, based on its shape. This is an ap-
proximation rather than a precise contour extraction, but is 
sufficient for isolating the sign interior, which is the only 
region used for color degradation analysis. 
 The cropped region was then converted from RGB to 
HSV, where color tone (Hue) is decoupled from brightness 
(Value), providing a more perceptually meaningful repre-
sentation for degradation-based quantization. 
 
3.2. Threshold-Based Color Quantization (TBCQ) 
 
 While K-Means can be used for vector quantization, the 
proposed threshold-based method differs in how cluster in-
itialization and adaptation are handled, particularly regard-
ing the dynamic determination of the number of clusters.  
 For traffic signs, this is problematic: 
• the number of dominant colors changes when the sign 

fades, 
• dirt or graffiti introduce new colors, 
• illumination and aging modify the cluster distribution. 

 Fixing k would artificially force mismatches and hide 
or exaggerate degradation. TBCQ avoids this by creating 
clusters dynamically based on a predefined color distance 
threshold.  
 Thus, the number of clusters reflects the actual chro-
matic variability, making it directly informative for degra-
dation assessment. The threshold value controls the granu-
larity of the color quantization. A small threshold produces 
many clusters (over-segmentation), while a large threshold 
merges distinct colors. To determine a stable value, exten-
sive experiments were performed on over 100 traffic signs, 

across multiple degradation scenarios and camera condi-
tions. The threshold was varied and its impact on recon-
struction accuracy and cluster stability was evaluated. The 
chosen value (=0.25) offered the best compromise between 
accuracy and computational efficiency across nearly all 
cases. This value was therefore fixed for all experiments. 
 The TBCQ algorithm operates as follows, pseudocode 
was translated from [9]: 
 Given the training sequence, we set a priori an upper 
bound (a threshold) ε for the radius of each “ball” that 
constitutes a class 𝐶𝐶𝑖𝑖. 
• The first vector 𝑥𝑥1creates the first class 𝐶𝐶1; 
• Upon receiving each vector 𝑥𝑥𝑗𝑗, a decision is made: 

- if 𝑑𝑑�𝑥𝑥𝑗𝑗, 𝑦𝑦𝑖𝑖� > 𝜀𝜀 for all existing classes 𝐶𝐶𝑖𝑖, then 
𝑥𝑥𝑗𝑗  creates a new class; 
- otherwise, 𝑥𝑥𝑗𝑗  is assigned to the class whose centroid 
is the closest, and the position of the new centroid is 
recalculated. 

 The algorithm is applied in the HSV space, following 
five main steps: 
Step 1: The algorithm takes as input an HSV image repre-
senting the cropped traffic sign region. 
Step 2: A matrix, denoted as “centroid”, is initialized with 
the first color cluster centroid, corresponding to the first 
valid pixel in the input image. The pixel’s Hue, Saturation, 
and Value components are stored, and the associated pixel 
count is initialized to zero. 
Step 3: The algorithm iteratively processes each pixel in 
the image by performing the following operations: 
• Distance Calculation: Compute the distance between 

the current pixel and each existing cluster center. The 
formula used for this computation is provided below, 
along with additional supporting equations. 

• Minimum Distance Selection: Identify the minimum 
distance among all computed distances. 

• Threshold Comparison: Compare the minimum dis-
tance to a predefined threshold: 

• If the distance exceeds the threshold, a new cluster is 
created with the current pixel as its center. 
• If the distance is within the threshold, the pixel is as-

signed to the closest cluster, the cluster's pixel count is 
incremented, and the centroid is updated as the centroid 
(gravity center) of all assigned pixels. 

Step 4: After all pixels have been clustered, the image is 
reconstructed by assigning to each pixel the HSV values of 
its corresponding cluster center. 
Step 5: The proportion of each cluster is computed as the 
percentage of pixels relative to the total number of pixels 
in the cropped image.  
 The reconstructed HSV image is subsequently con-
verted back to the RGB color space. Finally, the results are 
visualized using multiple output representations for analy-
sis and validation. The output consists of dominant color 
clusters, each characterized by a centroid (representing the 
dominant color) and the proportion of pixels belonging to 
that cluster.  
 To achieve perceptually meaningful distances, the Hue 
channel (circular variable) was embedded into a 2-D rep-
resentation. This transforms the HSV pixel (H, S, V) into a 
4-dimensional vector: 
 

new HSV_pixel=(cos(H),sin(H),S,V)  (1) 
 

 Euclidean distance is then computed in this space to 
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preserve the circularity of Hue and ensures more stable 
clustering under gradual fading:  
distance ((H1,S1,V1),(H2,S2,V2)) = sqrt((cos(H1)-cos(H2))2 

+ ((sin(H1)-sin(H2))2 + (S1-S2)2+(V1-V2)2  )     (2)  
3.3. Cluster Matching Between Reference and          
Degraded  
 
 TBCQ algorithm is applied to both the original and de-
graded images, the resulting feature sets (defined as clus-
ters of dominant colors) are forwarded to a matching mod-
ule in order to determine if there is a degradation.  
 This method attempts to pair clusters of similar color 
characteristics across the two input frames, based on prox-
imity in the HSV color space and pixel distribution.  
 Subsequently, a comparison is performed between the 
matched cluster pairs, as well as unmatched clusters from 
each image. The differences in color composition, cluster 
size, and presence or absence of corresponding features 
contribute to the computation of a degradation score, which 
uantifies the level of visual deterioration.  
 The input to the next stage of the algorithm consists of 
a list of matched cluster pairs, each pair representing simi-
lar color clusters identified in the original and degraded im-
ages. The output generated includes the computed dis-
tances between the centers of these matched clusters.  

 
Figure 2. Matching clusters output step.  

 To compute the final degradation score, four key met-
rics were defined, encompassing both paired and unpaired 
clusters: 
• Number of non-paired clusters, 
• Distance between the centers of matched clusters, 
• Difference in color proportion between paired clusters, 
• Total percentage of non-paired cluster pixels. 
 To derive a scalar degradation score in the range [0, 1], 
we evaluated four candidate formulations based on the nor-
malized quantities extracted from the cluster comparison 
module. Let M denote the set of matched cluster pairs, U - 
the set of unmatched clusters, D - the mean centroid dis-
tance across matched pairs, P - the mean absolute propor-
tion difference for matched clusters, and U - the normalized 
proportion of pixels belonging to unmatched clusters. All 
quantities were normalized to [0, 1] prior to combination. 
The four candidate scoring formulas are defined as follows. 
 
Variant 1: Non-Paired Cluster Count 
This formulation uses only the normalized count of non-
paired clusters:  
           S₁ = K = |nᵣ − nd| / max(nᵣ, nd)   (3) 
 This metric penalizes discrepancies in the number of 

color clusters; however, it frequently overestimates dam-
age when small spurious clusters arise due to noise or mi-
nor graffiti marks.  
Variant 2: Distance-based pair metric 
This formulation combines centroid displacement and pro-
portion deviation for matched clusters:  
  S2 = (Dnorm + P) / 2   (4) 
where 𝐷𝐷norm = 𝐷𝐷/𝑑𝑑max and 𝑑𝑑max  is a conservative 
upper bound for the feature-space distance. Although this 
captures structural changes within matched colors, it fails 
when few or no matched clusters exist and remains insen-
sitive to newly introduced colors. 
 
Variant 3: Mean of first three parameters 
This formulation integrates discrepancies in cluster count, 
centroid position, and proportional mass:  

S3  = (K+Dnorm+P)/3    (5)  
 While more comprehensive, this metric often underes-
timates damage in cases of minor but visually noticeable 
surface alterations, because centroid shifts and proportion 
differences remain small even when new colors appear.  
Variant 4: Unmatched-clusters proportion 
The fourth formulation computes the fraction of pixel mass 
corresponding to unmatched clusters:  

𝑆𝑆4 = 𝑈𝑈 =
� 𝑛𝑛𝑖𝑖

𝑅𝑅
𝑖𝑖∈𝒰𝒰𝑅𝑅

+� 𝑛𝑛𝑗𝑗
𝐷𝐷

𝑗𝑗∈𝒰𝒰𝐷𝐷

𝑁𝑁
   (6) 

 
where 𝑁𝑁 is the total number of pixels in the sign region. 
This quantity directly represents the visible area that 
does not match the reference sign's chromatic structure.  

3.4. Selection of the Final Formula (Based on Human 
Perception Study) 
 To determine which formulation aligns most closely 
with human perception, subjective degradation scores were 
collected through a survey involving licensed drivers. Par-
ticipants evaluated the visual deterioration of each de-
graded sign on a normalized scale, providing a perceptual 
reference for comparison. Among the four candidates, the 
unmatched-pixel formulation 𝑆𝑆4 exhibited the highest con-
sistency with human judgments. Specifically, it achieved 
the lowest average deviation from the subjective scores 
across a range of degradation types, including fading, graf-
fiti, dirt accumulation, and partial occlusions. The measure 
implicitly reflects the proportion of the sign’s surface that 
appears altered—an attribute strongly correlated with hu-
man perception of damage. As a result, the final degrada-
tion score adopted in this work is: S = U. 
 This formulation offers strong perceptual alignment, ro-
bustness to matching variability, and computational sim-
plicity, rendering it suitable for real-time embedded appli-
cations in automotive environments. 
 The final result represents a normalized damage level 
ranging from 0 to 1, where 0 indicates no degradation and 
1 corresponds to complete deterioration, implying no vis-
ual similarity between the two representations of the traffic 
sign. When the damage level reaches 0.5 or higher (typi-
cally meaning that more than half of the traffic sign is cov-
ered or deteriorated), it indicates significant degradation, 
and the precise calculation of the value becomes less relia-
ble. 
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IV.  EXPERIMENTS AND RESULTS  
4.1. Experimental Setup  
 The evaluation dataset consists of traffic sign images 
extracted from video sequences recorded with an in-vehi-
cle stereo camera operated under controlled geometry: the 
camera remained fixed relative to the vehicle, ensuring ap-
proximately constant viewing angle during acquisition. All 
experiments, synthetic and real, were conducted under the 
assumption that two images compared for degradation cor-
respond to the same traffic sign, captured under similar 
illumination and similar viewpoint, reflecting the opera-
tional conditions of bus-mounted camera systems used for 
infrastructure monitoring. 
 These preconditions are fundamental to the proposed 
feature. When they are not satisfied, illumination shifts dis-
tort the HSV descriptors and directly affect the cluster-
matching pipeline, as discussed later. 
 Two complementary evaluation scenarios were consid-
ered: 
1. Synthetic degradation, where controlled alterations 

were added in MATLAB to simulate realistic deterio-
ration mechanisms. 

2. Real degradation, where images of the same physical 
sign taken one or two years apart were compared. 

 
4.2. RMSE and Accuracy  
 The algorithm produces a numerical degradation 
score, and accuracy is quantified by: 

RMSE = �1
N

� (i di
est − di

exp)2   (7) 
where di

est is the estimated value and di
exp is the human        

expected reference. 
 
An RMSE of 0 indicates perfect agreement. An RMSE of 
0.12 corresponds to approximately 88% agreement on a 0-
-1 scale, since the average absolute deviation is below 0.12. 
 Thus, RMSE directly expresses how close the algo-
rithm’s scores are to human perception. 
 
4.3. Synthetic Degradation  
 Eight types of synthetic deterioration were applied to a 
dataset of 377 traffic signs, producing over 3000 (original, 
degraded) image pairs. For each case, human observers 
provided an expected degradation score in [0,1], where: 
• 0 = no visible damage, 
• 1 = extremely heavy degradation or severe occlusion 

(≈ “unusable sign”). 
 These human judgements were used as ground-truth 
targets for evaluating the proposed numerical damage met-
ric. 
 
4.4. Synthetic Results Summary 
 
 Most degradation types produced low RMSE values 
(<0.07), indicating strong agreement. 
 Only severe occlusions (>50%) produced high errors, 
as the algorithm is not designed for cases where more than 
half the sign surface becomes invisible, a scenario where 
even human observers often assign values close to 1. 
 Cases exceeding 50% occlusion produce discrepancies 
because they break an implicit assumption of the method: 
at least part of the original chromatic structure must remain 
visible for a meaningful comparison. 

 When excluding these two extreme categories, the 
global RMSE drops from 0.12 to 0.08, corresponding to 
an accuracy above 92%. 
 

 
Figure 3. Figure representing Statistics of Expected vs. 

 Estimated Damage Value on synthetic degradation. 
 

Synthetic  
degradation 

RMSE 
value 

Comments 

Writing < 30% 0.003 Good agreement 
Noise 0.037 Good agreement 

Grafitti < 30% 0.002 Good agreement 
Grafitti ≈ 50% 0.064 Good agreement 

Rust < 30% 0.011 Good agreement 
Rust > 50% 0.12 Large deviation 

Vegetation < 30% 0.045 Good agreement 
Vegetation>50% 0.155 Large deviation 
Table 1: RMSE values for each category from Fig.4  

4.5. Real Degradation  
 Real traffic sign acquisition proved challenging: only 
12 valid (original, aged) pairs were obtained, and none ex-
hibited strong physical degradation. Furthermore, these 
images violated the required preconditions: 
• The signs were photographed in different seasons, 
• Under different lighting conditions (direct sunlight vs. 
overcast sky), 
• With non-identical camera orientation due to vehicle 
stopping position. 
 Under these deviations, the algorithm often failed to 
match clusters between the two images, producing degra-
dation values close to 1 (not because the sign was damaged, 
but because the color distributions were fundamentally dif-
ferent after illumination changes). 
 For real images with no visible degradation, the human 
expected value is naturally close to 0. 
 This result is not an indicator that the feature is funda-
mentally flaweed, rather it confirms that the method is not 
illumination invariant and requires controlled acquisition 
conditions. 
 This is consistent with its intended deployment: 
• Bus-mounted cameras reviewing the same street at the 
same time of day, 
• Same viewpoint, same weather and lighting context, 
• Frames captured from consistent angles during routine in-
frastructure monitoring. 
 Under such operational constraints, illumination varia-
tion is minimal, and the method is expected to behave sim-
ilarly to the synthetic case. 
 



 
Volume 65, Number 2, 2025                                                     ACTA TECHNICA NAPOCENSIS 

Electronics and Telecommunications 
________________________________________________________________________________ 

 
 16 

 
Figure 4. Figure representing Statistics of Expected vs. 

Estimated Damage Value on real degradation.  
 

V. CONCLUSIONS AND FUTURE WORK 
The proposed method relies on a classical, threshold-based 
vector quantization algorithm adapted to the HSV color 
space to estimate traffic sign degradation. This choice was 
motivated by its compatibility with resource-constrained 
embedded environments and its ability to operate without 
a predefined number of clusters. Its key advantages in-
clude: 
• High Processing Speed: Enables real-time execution on 
hardware with limited computational capacity. 
• No Need for a Predefined Number of Clusters: Dynami-
cally adjusts to the number of distinct colours present in 
each input image. 
• Simplicity and Flexibility: Straightforward to implement 
and adapt to specific application constraints. 
• Effective Feature Extraction: Identifies dominant color 
clusters that form a compact descriptor of the sign’s ap-
pearance. 
 Experimental results show that the method performs re-
liably under the predefined operating conditions and cap-
tures perceptually meaningful degradation levels. How-
ever, accuracy decreases in scenarios involving complex 
real-world alterations, as the method relies exclusively on 
chromatic cues that cannot fully describe all types of visual 
deterioration. 
 Future work will therefore continue to emphasize clas-
sical, computationally lightweight techniques. Several re-
alistic extensions are envisioned.  
 First, additional non-deep-learning features, such as lo-
cal texture descriptors or simple gradient- and edge-based 
statistics, may help capture structural degradation phenom-
ena that are not purely chromatic, while preserving ex-
plainability and low computational cost.  
 Second, cluster post-processing strategies (e.g., cen-
troid-based merging or noise suppression) could reduce 
over-segmentation and improve robustness across varying 
input resolutions.  
 Third, evaluating the system on a broader real-world da-
taset, ideally containing time-spaced captures of the same 
signs, would provide a more accurate assessment of long-
term degradation patterns. 
 In addition, machine learning approaches may be ex-
plored as a complementary direction. Rather than replacing 
the proposed classical framework, future work may inves-
tigate learning-based models that operate on top of the ex-
tracted color–texture descriptors. Such models could learn 
to predict degradation levels from a compact feature vector 
rather than raw images, allowing ML to enhance robust-
ness while preserving computational efficiency. This 

incremental integration would enable the use of data-
driven without abandoning the interpretability and re-
source efficiency of the current system. In summary, this 
work demonstrates that classical vector quantization, com-
bined with perceptually oriented color representation, pro-
vides a viable and efficient foundation for estimating traf-
fic sign degradation. The proposed method highlights the 
continued relevance of lightweight, interpretable algo-
rithms in an era increasingly dominated by deep learning, 
offering a complementary solution suitable for embedded 
perception systems where computational budget and trans-
parency remain essential. 
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