

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

Manuscript received October 31, 2025; revised December 12, 2025
17

DESIGN AND IMPLEMENTATION OF A RO E-INVOICE PLATFORM
INTEGRATED WITH SPV ANAF

Orlando Sebastian BUHAIU, Raul MALUTAN

Communications Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Orlando.Buhaiu@campus.utcluj.ro, Raul.Malutan@com.utcluj.ro

Abstract: This paper proposes and evaluates an architecture and prototype implementation of a Romanian e-Invoice
platform integrated with the ANAF SPV. It describes the B2B obligations in 2024, the B2C obligations in 2025, the legal five-
day submission deadline, and the role of the receipt. The architecture uses Blazor and ASP.NET Core and Azure Blob
Storage, with idempotency, rate limiting, and retry with backoff. The paper details the OAuth 2.0 integration from
authorization to token exchange and token rotation, the data model from CSV or JSON to UBL XML, and the validation
pipeline. It analyzes work queues and scheduling, including formulas for throughput and latency. The evaluation reports P50
and P95 latency, success rate, UBL error rate, throughput, and cost per one thousand invoices. It also discusses limitations
and future work.

Keywords: Electronic invoice, RO e-Invoice, UBL 2.1, OAuth2, SPV ANAF.

I. INTRODUCTION
In the context of fiscal digitization, Romania operates the
national electronic invoicing system RO e-Factura,
aligned with the European standard EN 16931 (semantic
model of essential invoice elements) and the UBL 2.1
syntax (ISO/IEC 19845), with the national specifications
RO_CIUS. In practice, any invoice transmitted through
the system is an XML file that complies with both EN
16931 and RO_CIUS rules [1], [8], [11], [10]. MF Order
No. 1366/2021 establishes the compliance identifiers
(CustomizationID) for UBL 2.1/RO_CIUS, ensuring
interoperability and automatic processing at national and
European level [10]. EN 16931 defines the semantic
model and usage rules, and UBL 2.1 (published as
ISO/IEC 19845:2015) provides the XML messages for
invoice and credit memo used in compliant
implementations [1], [8], [11].
 The legal regime was introduced in stages. In B2G
(Business to Government) relations, the use of RO e-
Factura is mandatory starting with 1 July 2022, pursuant
to GEO 120/2021 approved by Law 139/2022 and
official ANAF communications [3]. In B2B (Business to
Business) relations, reporting via RO e-Factura has
become mandatory since 1 January 2024, according to
announcements by the Ministry of Finance/ANAF [9].
The extension to B2C (Business to Consumer) was
regulated by GEO 69/2024, with mandatory
implementation from 1 January 2025 and a specific
transitional regime; the Ministry of Finance has published
clarifications dedicated to this extension [3], [4]. Failure
to comply with these obligations will result in
administrative penalties, communicated publicly by
ANAF [3].
 A key constraint is the transmission deadline: issued
invoices must be uploaded to the system within a
maximum of 5 days from the date of issue. From 1 July

2024, the authorities have expressly clarified that the
deadline is 5 calendar days, calculated from the day
following the date of issue, regardless of whether the 5th
day is a working day or a non-working day. This
relatively short deadline requires robust error tolerance
mechanisms (retry with backoff), sending rate control,
and continuous monitoring of processing status [3].
 The operational flow in SPV includes the generation
of a unique identifier at the time of upload, called the
“upload index”. This is subsequently used to verify the
status of the file, indicating whether validation was
successful, whether there are errors, or whether
processing is in progress. According to the official
documentation, valid responses and files can be
downloaded for 60 days, after which they are archived
and can be reissued upon request. In practice, this
identifier acts as a receipt in the ANAF system and allows
for subsequent status tracking [3].
 Third-party applications accessing RO e-Factura
services exposed through SPV use OAuth 2.0 with digital
certificate-based authentication. The ANAF
documentation describes the Authorization Code
authorization flow, identifies the access points for
production at logincert.anaf.ro and specifies the
parameters required to obtain tokens. The validity is 90
days for the JWT access token and 365 days for the
refresh token, and rotation is performed through the
standard exchange defined by OAuth [5], [6].
 In practice, there are already several ways to work
with RO e-Factura. Some ERP systems come with
dedicated modules that directly issue XML UBL 2.1 in
accordance with EN 16931 and RO_CIUS rules and send
documents via connectors to SPV. Other solutions are
SaaS services that receive data in CSV or JSON, convert
it to UBL, and then track the status on behalf of the
taxpayer. In the technical area, tool chains based on UBL

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

18

libraries and Schematron rules are also used, which are
useful for validation and conversions in customized
flows. Existing approaches documented in the literature
on electronic invoicing and in national guidelines focus
mainly on standardization and integration models.
European and national documents describe reference
architectures in which ERP systems or service providers
act as intermediaries between taxpayers and the central
platform, relying on EN 16931, UBL 2.1, and national
CIUS rules to ensure interoperability. Commercial
solutions typically expose modules for XML document
generation and connectivity to the SPV but treat the
internal delivery pipeline as a black box. Issues such as
idempotent uploads, explicit retry policies, or quantitative
assessment of processing capacity and latency are rarely
discussed in detail. This paper complements these
approaches by detailing a concrete architecture that
includes an internal work queue layer, strict idempotency,
and request rate limiting, accompanied by an
experimental evaluation based on P50/P95 latency,
success rate, and cost per thousand invoices.
 The contribution of this paper is both practical and
methodological. On the technical side, an architectural
model is proposed for integration with the national RO e-
Factura and SPV systems, structured on three layers: a
web interface for users, an application-services layer, and
an integration layer with the ANAF infrastructure. Within
this model, the idempotence of operations, request-rate
limiting, and retry mechanisms are treated explicitly as
first-class design requirements. On the methodological
side, a set of measurable indicators is defined for this type
of platform.
 These indicators include end-to-end latency expressed
as median and 95th percentile, success rate without
human intervention, UBL validation error rate, and cost
per thousand invoices processed. A structured test
procedure is applied in an environment that approximates
production conditions. The experimental evaluation
shows how these mechanisms influence system
performance and reliability and can serve as a benchmark
for the design of other electronic tax-reporting solutions,
including a quantitative comparison with sequential
baseline implementation.
 This paper presents and evaluates the proposed
architecture and technical solutions for a platform that
issues, validates and transmits UBL 2.1/RO_CIUS
electronic invoices in RO e-Factura, with SPV integration
via OAuth 2.0, idempotency mechanisms, rate limiting
and retry with backoff, as well as real-time feedback to
the user [1], [5], [8], [10]. Section II describes the system
model and its integration with SPV, including diagrams
and code excerpts. Section III presents the methodology
and experimental results. Section IV summarizes the
conclusions and outlines future directions. Section V lists
the references.

II. IMPLEMENTATION
A. System model and architecture

 The platform is built on a layered architecture,
common in business web applications.
 From an architectural perspective, the proposed
solution is organized on three main levels, illustrated in
Figure 1. The first level consists of the interface layer,
implemented in Blazor WebAssembly and connected to a

SignalR hub for real-time notifications. The second level
comprises the application services layer, implemented in
ASP.NET Core Web API, which exposes invoice-specific
operations, manages the processing queue, and performs
UBL/RO_CIUS validations.

Figure 1. Layered architecture of the e-Invoice web

platform

 The third level includes the integration and persistence
layer, which ensures integration with SPV ANAF through
OAuth 2.0, file storage in Azure Blob Storage, and the
persistence of metadata, tokens, and audit logs in the
database. Communication is unidirectional from the
interface to the API and then to external services,
allowing independent scaling of components and clear
isolation of performance aspects.
 The interface is developed in Blazor, so that the
presentation logic remains in C# and the components can
be easily reused. Blazor WebAssembly was chosen for
browser execution. SignalR, a WebSocket channel
through which the server immediately sends status
changes, is used for real time notifications to the user.
The server side runs on ASP.NET Core as a Web API
and exposes REST operations for uploading and viewing
invoices. Integration with ANAF systems is also handled
here, including OAuth2 authentication and calls to RO e-
Factura services. XML files and receipts persisted in
Azure Blob Storage, which offers inexpensive storage and
immediate availability.
 The three-layer structure described above is not tied to
the technologies used in the prototype (Blazor, ASP.NET
Core, or Azure). It can be viewed as an architectural
pattern for applications that must submit fiscal documents
to external services under strict time constraints. The web
interface layer manages user interaction and real-time
notifications, the application-services layer implements
business rules and orchestrates asynchronous work
queues, and the integration layer isolates SPV and RO e-
Factura specifics, including authentication mechanisms,
XML formats, and rate limits imposed by the external
APIs.
 Figure 2. describes the path of an invoiced on the
platform. Initially, it is “Pending”, meaning it only exists
in the internal system. Upon submission, the application
generates XML UBL, runs local validations, and
publishes the document via SPV. The ANAF server
responds with a receipt, and the invoice enters
“Processing”. The result is obtained through periodic

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

19

queries: “Accepted” when all checks pass, or “Error”
when problems arise. If errors occur, the invoice is
corrected and resubmitted, and the cycle begins again.

Figure 2. Invoice flow

 In terms of components, the Blazor interface and
SignalR hub keep the user up to date with the status of
each invoice. The ASP.NET Core backend receives
requests, runs business rules, manages the queue for
submissions, and communicates with ANAF services. A
dedicated SPV integration service handles tokens,
uploads, and status checks.
 Azure storage keeps files and receipts. There is also a
logging module with audit, errors, and response times,
useful for support and compliance. An internal work
queue is used for volume and reliability. Invoices enter
the queue and are processed asynchronously by a worker.
Scheduling is round robin or, if necessary, prioritized. For
example, documents close to the legal deadline can be
moved to the front of the queue. Basic queue operations,
such as adding and extracting, have O(1) complexity.
Processing an invoice involves XML generation and local
validations, with O(n) cost depending on the number of
lines, but in practice this time is much less than the
network latency and processing time in ANAF.
 Idempotence is handled explicitly to avoid duplicates.
Each upload has a unique identifier derived from the
invoice data. When writing to Azure Blob, the
conditional If-None-Match header with the value “*” is
used. The result is simple: if the file does not exist, it is
created. If it already exists, Azure responds with 412
Precondition Failed and the operation stops. For updates,
the If-Match condition with the current version's ETag
prevents accidental overwriting [7]. In code, these
responses translate into clear branches: duplicate detected,
or optimistic concurrency failed. This approach
guarantees that the request is sent only once, even in the
case of retries or repeated clicks.
 Rate limiting is also applied to protect both the
platform and ANAF services. The backend keeps a
counter and allows only a certain number of requests per
second, configurable depending on the runtime
environment. Status queries can be grouped into batches
so that multiple receipts can be checked in a single call.
This aggregation reduces the total number of requests,
decreases average latency, and increases the overall
throughput of the system.

B. SPV protocol and OAuth2 integration

 Integration with the ANAF system is achieved through
the SPV (Virtual Private Space) portal, which provides
secure web services that allow invoices to be uploaded
and receipts to be obtained. Access to these services is
protected by a standard OAuth 2.0 mechanism: third-
party developers must register an application on the
ANAF portal, obtaining a client_id and a secret. Then the
end user (usually the legal representative of the company
or an authorized representative with a digital certificate)
must authorize the application to access their SPV
account through an OAuth2 Authorization Code flow
[5], [6]. Specifically, the application redirects the user to
the ANAF authentication page, where they log in with
their digital certificate and grant access to the client
application. At the end of this process, the application
receives an authorization code that can exchange for an
access token (JWT) and a refresh token using the ANAF
OAuth2 endpoint.
 To implement this flow, the implementation uses a
dedicated controller, AnafController, which manages the
OAuth2 steps (see Figure 3.). The code snippet below
illustrates the essential parts: building the authorization
URL and handling the callback from ANAF to obtain the
tokens.

Goal: connect the application to ANAF and obtain
tokens.
When the user clicks “Connect to ANAF”:
 1. Build the sign-in link using:
 client id (from config)
 redirect url (from config)
 scope “efi:factura”
 2.Send the browser to that link.

When the application receives the callback with a
“code”:
 3.POST to ANAF /oauth2/token with:
 grant type = authorization_code
 the code we just received
 client id and client secret (from config)
 the same redirect url
 4.If tokens are returned:
 save access token, refresh token, and

expiry
 send the user to the Dashboard
 Else:
 show an error and let the user try again
Figure 3. Pseudocode “AnafController” OAuth2 Tokens

 In implementation, after obtaining the access token, it
is used in all subsequent calls to the e-Factura APIs,
adding it to the HTTP Authorization. The refresh token (a
secret with a longer lifetime, in the order of tens of days)
is stored in the application database, associated with the
user account. This refresh token allows us to obtain a new
access token without user intervention when the old one
expires, through an automatic flow (grant type = refresh
token).
 Token management is a sensitive area. The application
keeps the credentials received from the SPV safe and
never exposes them to the user interface. Refresh tokens
are stored encrypted in the database and remain accessible
only to backend components. The access token has a short

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

20

duration, approximately 30 minutes, and the refresh token
is valid for a much longer period of 90 days. As long as
the user's digital certificate remains valid, authorization
can be renewed automatically. When the access token
expires, the backend uses the refresh token and obtains a
new one, without any action on the part of the user. If the
provider issues a new refresh token along with the access
token, the application immediately saves it and
invalidates the old one.
 This maintains rotation and limits the impact of a
potential security incident. From a security perspective,
the main vulnerabilities identified are the interception of
the authorization code on the redirect channel, the theft of
the refresh token from local storage, and the unauthorized
use of client credentials stored on the server. In the
developed prototype, all OAuth2 exchanges are
performed via TLS, redirect URIs are restricted to a pre-
approved list, and no tokens are stored in the browser.
Refresh tokens and client secrets are stored exclusively on
the server, encrypted in the database and accessible only
through restrictive application roles. In addition, the
identity of the application used for calls to the SPV is
separate from end-user accounts, and all token-related
operations are recorded in audit logs. These measures
reduce the impact of a potential database compromise or
credential leak, keeping the attack surface in line with the
recommendations in the OAuth 2.0 and PKCE
specifications. As future directions for strengthening
security, secrets can be migrated to a dedicated key
management service, automatic periodic rotation can be
implemented, and in infrastructures that allow it, mutual
TLS based on certificates can be enabled.

C. Data model and invoice validation

 The platform accepts invoices entered manually into
the interface or imported from CSV and JSON files
exported from other systems. Regardless of the source,
the data arrives in a unified invoice model in C#, with
objects for header, supplier, customer, lines, taxes, and
totals. The UBL converter starts with this model and
produces XML according to UBL 2.1 and RO_CIUS
rules. Serialization is used for fields that match directly,
and where special codes or conditional attributes are
required, the XML nodes are explicitly filled in.
Mappings for VAT, units of measure, and other official
nomenclatures are applied before generation, so that the
document is already consistent when it goes for
validation.
 The verification begins with the XSD (XML Schema
Definition) schema. Each XML is validated against UBL
2.1 extended with CIUS Romania, so that the correct
structure and presence of mandatory elements are
confirmed. If schema errors occur, the invoice cannot be
finalized. The system marks the document as invalid and
immediately displays the explanation in the interface,
with reference to the element that caused the problem.
 After passing the XSD, the business rules follow.
RO_CIUS introduces requirements that cannot be
verified by the schema alone. For invoices to public
institutions, the existence of CPV codes is verified. For
certain types of transactions, additional fields become
mandatory, such as the buyer's address or the reverse
charge mention. The arithmetic consistency of the
amounts is also checked so that the totals and rounding

are within the accepted limits. The value of the supplier's
and customer's CUI is checked at the format and check
digit level. Many minor non-conformities can be
corrected automatically. Diacritics or invalid characters
are replaced with valid equivalents in XML. Country
codes and units of measurement are normalized to the
standards used by CIUS. For major discrepancies, such as
incorrect totals, the application stops the flow and asks
the user to correct the information [1], [8], [10], [11].
 Official validation takes place on ANAF servers after
the document has been sent. The results can be viewed
based on the receipt. If ANAF rejects the invoice, the
returned message is taken as is and clearly displayed in
the application. The error may be serious, in which case
the document is not registered, or it may be just a
warning. When the status remains in processing for a long
time or temporary errors occur during the query, the
system continues to check at regular intervals without
involving the user.

D. Forwarding, throttling, and retry/backoff mechanisms

 Fault tolerance is not only about infrastructure, but
also about how the code is written. The goal is simple: an
invoice should be sent only once, so that external services
are not overloaded when volumes increase, and there
should be retries when the network or external service has
problems. An invoice receives a unique identifier and,
once it has received a loading index (receipt from
ANAF), it is marked as transmitted. At the HTTP level,
the transmission was exposed as an idempotent operation,
so that the same repeated request no longer produces any
effects. ETag is used for storage, so that two parallel
processes attempting to save the same XML file do not
create duplicates [7]. If a call accidentally reaches the
backend twice, the response indicates the existing status
and does not start a new upload.
 Limiting invoice transmission is necessary to avoid
problems with ANAF services, but also to protect the
application when many companies send simultaneously.
In practice, a configurable limit of requests per second
and a maximum number of concurrent calls have been set.
In the code, the request “waits in line” on an
asynchronous traffic light for a few milliseconds when the
system is below the limit, and during traffic peaks it may
wait a little longer.
Automatic retries only occur when external problems
arise. The strategy uses exponential backoff with jitter to
avoid multiple retries lining up at the same time. The first
pause is short, with subsequent pauses gradually
increasing to a reasonable limit. If the access token
expires, the refresh token is used transparently, and the
initial operation is automatically resumed after
refreshment. When the status remains “processing” for a
longer period, the query is rescheduled with a dynamic
interval. When a result appears, the loop stops.

E. Real time notifications and front-end integration

 The purpose of notification modules is to allow users
to immediately see what is happening with their invoices,
without having to manually refresh or check the SPV.
Every time a new receipt is available or when ANAF
changes the status of an invoice, the backend directly
notifies the interface. In practice, communication is done

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

21

via SignalR. The server application exposes a WebSocket
hub, and the Blazor client connects to this hub and listens
to relevant events.
 On the server, the services that process the upload and
status check send a signal to the hub immediately after
saving the upload index, receipt, or new status from
ANAF to the database. The message is directed to the
appropriate user based on their authentication identifier.
When the event leaves the backend, the already connected
client receives a short command to refresh the tax events
“inbox”, so that the bell badge and message list are
updated in sync with the change in the system.
 In the interface, the notification logic lives right in the
layout (FrontLayout). Upon initialization, the component
builds the SignalR connection to the hub exposed at
“/UserNotifications” and subscribes to the
“ReceiveRefreshInvoicePage” event. When the server
emits this event, the layout calls the method that reloads
the ANAF message list (LoadInvoiceAnafMessages), then
performs a StateHasChanged, so that the UI redraws
without losing the context of the page the user is on. In
the same step, the badge on the bell icon shows the
number of unread messages, and the notification panel
can be opened with a click to see details.
 Updating the list does not download the data but calls
the application services to bring only what is needed.
First, the ANAF messages filtered for the selected user
and company are requested (GetInvoiceAnafMessages).
Then, for each message, the links to the associated files
are completed: PDF for preview and ZIP for the official
package downloaded from SPV. If a message does not yet
have locally saved files, the user can modify the
download and attachment via a button. The action calls
the backend method that downloads and persists the
content, after which the panel refreshes and provides the
download links.
 The flow from server to client remains simple and
readable. When the server completes a relevant operation
(e.g., received “ok” on a receipt or recorded a “not ok”
error), it publishes a signal to that user, and the front-end
reacts by reloading only the notifications section. From
the user's point of view, the effect is immediate: the
“Accepted” status or the error message with explanations
received from ANAF appears on the screen, and if
available, the buttons for PDF and ZIP package appear.
 Below (Figure 4.) is a code snippet that shows the
mechanism used in the application.

Purpose: keep a live notifications connection for the
current user and refresh the invoice list when a message
arrives.

Procedure RefreshUserNotificationHubConnection

1) If there is an existing hub connection: try to stop it
(ignore errors).

2) If notifications are enabled in settings AND a user is
logged in:
 a) Create a new SignalR connection to

“/UserNotifications”.
 b) Subscribe to the event

“ReceiveRefreshInvoicePage(applicationUserID)”:
 If applicationUserID equals the current user's

Id:
 run on the UI thread:
 - reload invoice messages
 - refresh the screen (StateHasChanged)
 c) Start the hub connection.
 d) Put the current user's Id into the search model.
 e) Load invoice messages once immediately.
3) Else (no messages or no user):
 optionally clear any local notification state.
End Procedure

Figure 4. User Notification Hub Connection

 The RefreshUserNotificationHubConnection function
in the Blazor interface reinitializes the SignalR
connection to the /UserNotifications route and subscribes
to the ReceiveRefreshInvoicePage event. If a connection
already exists, it is stopped, and a new one is started only
when messages are enabled and there is an authenticated
user. Upon receiving an event addressed to the current
user, the component safely runs on the UI thread
(InvokeAsync) the loading of ANAF messages
(LoadInvoiceAnafMessages) and immediately updates
the screen (StateHasChanged).

F. User interface and main functionality

 Figure 5. shows the main screen used to create an
invoice in the proposed solution.

Figure 5. Invoice creation screen (add invoice form)

 The screen is organized into logical panels. The upper-
left panel groups the general billing details: selection of

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

22

the customer from the master data, choice of series,
currency and language, and the bank account that will be
used for collection. The upper-right panel contains the
document dates, specifically the issue date and due date,
aligned with the accounting rules enforced in the back-
end services. The “Products" section allows the
composition of invoice lines by selecting items from the
catalogue and specifying quantity, unit of measure and
unit price. At the bottom, the “Notes" area stores free-text
remarks that are later propagated into the UBL document.
When the Save button is pressed, the client sends a
structured request to the ASP.NET Core API, which
applies to the validation and mapping pipeline described
in Section II-C and generates the corresponding UBL
2.1/RO_CIUS XML representation.
 Figure 6. presents the invoice list view, which
consolidates the main operational states of the platform
on a single table.

Figure 6. Invoice list and status overview

 Each row displays the client’s name, series and
number, total amount, collected amount, issue date and
due date. The rightmost column exposes the available
actions, including delete, view, and a contextual menu.
The row labelled “A 23” represents an invoice currently
being submitted to SPV ANAF. The associated icon
indicates an ongoing upload operation according to the
workflow presented in Figure 1. The row “A 24”
corresponds to a pro-forma invoice that exists only in the
local system and is not reported to SPV. The entry “A 25”
denotes an automatically generated recurring invoice,
created from a predefined schedule but not necessarily
transmitted yet. Finally, row “A 22” shows an invoice that
has already been validated by ANAF, for which the
accepted status and the related receipt have been retrieved
and stored by the back-end services.
At the top of the list, the “Check latest invoices from
SPV” button triggers an on-demand synchronization with
the SPV ANAF APIs, complementing the periodic
background polling described in Section II-D. Together
with the real-time notification channel based on SignalR,
presented in Section II-E, this interface allows
observation of the complete life cycle of an invoice in a
single location, from local creation through submission
and processing to final acceptance or error notification,
while keeping the domain logic and communication with
ANAF entirely within the application and integration
layers.

III. EXPERIMENTAL RESULTS
This section presents test data from a production like
environment, which briefly answers three simple
questions: how fast the platform processes an invoice
from start to finish, how often does it succeed without
human intervention, and how much does it cost per
volume. The focus is on the end-to-end behavior of the
platform, so that the results reflect the real experience of
the user who sends invoices, waits for the receipt, and
tracks the final status.

A. Test methodology

 To evaluate the platform in a realistic manner, a
dedicated environment was used in Azure, with an App
Service instance and a Blob storage account. The
connection to ANAF services was made on the test
endpoints. For scenarios where there is no stable public
sandbox on B2B, a simulation service was introduced that
responds in the same way as the official API, including
delays and intermittent errors. The idea was to observe
end-to-end behavior, not just local code execution.
 The tasks were designed to resemble a typical
workday in a finance department. Invoices with realistic
content were generated, with around ten items per
document, with different combinations of VAT rates,
discount lines, and products with or without VAT. The
volume ranged from a few dozen documents, used for
quick checks, to several thousand, used to see how the
processing queue behaves when running constantly for
several hours. Two scenarios were tested: a surge
scenario, in which many invoices are sent in a short
period of time to observe the system's response to a traffic
peak, and a conveyor belt scenario, in which documents
arrive constantly at fixed intervals, as in a normal
workflow.
 The code recorded the time for each important step,
from generating the XML file to receiving the receipt and
the moment when the invoice reaches its final status. At
the same time, errors and retrieves were tracked, and
processor and memory usage were monitored on the
server. For costs, consumption values were taken from
Azure and reported by volume so that a cost per 1000
invoices could be estimated on a comparable basis.
 The indicators analyzed were those that matter in
everyday use. End-to-end latency was viewed by median
and 95th percentile, measured from the moment of
sending until the appearance of the “accepted” or “error”
message in the interface. The transmission success rate
showed how many invoices reached “ok” without manual
intervention, even if there were automatic retries in the
background. The UBL error rate separated content issues
from network or unavailability issues to assess how well
the local pipeline filters documents before they reach the
ANAF server.

B. Results and analysis

 In terms of processing times, the platform performed
as expected. Under normal conditions, with a flow of
approximately ten invoices per minute, the median time
from sending to final status was around 2.8 seconds, and
the 95th percentile was around 5.2 seconds. Under high-
load conditions, at approximately fifty invoices per
minute, the times increased moderately: the median rose

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

23

to four seconds, and the 95th percentile reached
approximately eight seconds. These values also include
the waiting time for the receipt. In most cases, the receipt
was received quickly, in less than a second, and the
difference to the final state was generated by the actual
processing on the ANAF side, which varied between one
and four seconds.
 The distribution curves (CDFs of latency) for the
“nominal” and “peak” scenarios indicate a slightly longer
tail at the top: approximately five percent of invoices
exceeded ten seconds, and the slowest ones occasionally
reached fifteen seconds. Log analysis showed that these
isolated cases involved at least one retry, usually caused
by a reconnection. Even in high-load scenarios, 95% of
invoices are processed in less than eight seconds, which is
a reasonable level for current usage.
 The maximum flow rate obtained in stress tests was
approximately 120 invoices per minute, equivalent to two
invoices per second. After this threshold, a deliberate
limitation was imposed to avoid overloading external
services. The values observed are consistent with what
was noted for OAuth2 tokens: for each token, services
can support around two to three requests per second.
Horizontal scaling, with multiple instances and distinct
tokens for each taxpayer, can increase flow almost
linearly. For the target audience, consisting of individual
companies or ERP integrations, a rate of over one
hundred invoices per minute comfortably covers current
needs.
 To obtain a clear benchmark, the current platform was
compared to a baseline variant in which invoices are sent
regularly, without concurrent queues and without
retribution.
 The summarized results for a batch of one thousand
invoices are presented below in Table 1.

Config. TP
(inv/min)

P50
(s)

P95
(s)

Succ.
(%)

$/1k
inv.

Baseline
(seq.) 30 5.0 12.4 98.7 0.45

Proposed
(par.) 120 2.8 5.2 99.5 0.50

No retry 120 2.5 4.8 92.0 0.50
ANAF

fault sim. 120 (0 off) ~2.8 7.5 97.0 0.52
Table 1. System performance (analysis per 1000 invoices)

 The basic version remained limited by the individual
processing times for each invoice. The flow did not
exceed approximately thirty invoices per minute, and the
95th percentile increased significantly due to queue
accumulation. The success rate was easily below that of
the current platform because, without the retry
mechanism, some network errors were not corrected. In
the parallel version, the success rate approached 99.5%.
Out of a batch of a thousand invoices, only a few required
manual interventions, mainly for content reasons.
 In the scenario without retry, the success rate dropped
to 92%. Basically, some of the temporary errors that
would normally have been resolved by retries became
definitive failures. The results confirm the important role
of the controlled backoff mechanism and explain the
performance difference between the full platform and the

basic variant.
 Compared to typical ERP extension modules or SaaS
connectors used in practice, which often rely on
synchronous calls to SPV APIs and manual recovery in
case of errors, the proposed architecture emphasizes
asynchronous processing and explicit observability.
 The queue-based delivery model decouples invoice
creation from their transmission to ANAF, while
idempotent upload semantics avoid duplicates even when
client applications or network links are unstable. In
addition, the exposure of end-to-end indicators such as
P50/P95 latency, success rate without human
intervention, and cost per thousand invoices allows
operators to plan capacity and define clear service level
objectives. These aspects are usually absent from vendor
documentation and national guidelines.
 Viewed from a broader perspective, these results
suggest several design guidelines that may be useful to
other developers of tax reporting platforms. First, the
almost eight-percentage-point difference in success rate
between the variant with retry (≈99.5%) and the one
without retry (≈92%) shows that transient errors in
external services cannot be ignored; an explicit retry
policy with controlled backoff is essential to move
towards an almost 100% delivery rate. Second, the fact
that throughput stabilizes around 120 invoices per minute
even when the number of worker threads is increased
beyond four to five indicates that the bottleneck is
imposed by the external service (ANAF), not by the
application. In such contexts, adding more workers brings
little benefit, and horizontal scaling with multiple
instances and separate tokens per taxpayer becomes the
recommended strategy
 Figure 7 shows the cumulative distribution of end-to-
end times for the two load scenarios: nominal and peak.
 The curve for the nominal scenario rises more steeply
(P50 ≈ 2.8 s, P95 ≈ 5.2 s). Under peak load, the curve
shifts right (P50 ≈ 4 s, P95 ≈ 8 s) and shows a thin tail:
~1–2% of invoices exceed 10 s, with rare outliers
approaching 15 s. These slow cases typically correspond
to retries after reconnection. Even so, 95% of invoices
finish under 8 s.
 The graph in Figure 8 also shows how throughput
evolves depending on the number of execution threads in
internal scaling tests.

Figure 7. CDF Data

Volume 65, Number 2, 2025 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications
__

24

 The throughput increases almost linearly up to about
four to five workers, after which it stabilizes at around
120 invoices per minute. The limitation is imposed by
downstream services, not by the application. From a
practical point of view, beyond five threads, additional
parallelism no longer brings significant benefits. For
higher throughput, horizontal scaling is required, through
additional instances and separate tokens for each
taxpayer, in accordance with the observations and values
in the table.

Figure 8. Scaling Data

IV. CONCLUSIONS AND FUTURE WORK

The proposed solution for RO e-Factura, integrated with
SPV, aligns with EN 16931, UBL 2.1, and RO_CIUS and
is implemented with ASP.NET Core, Blazor, and Azure
services. In practice, this means legally compliant XML
invoices, transmission to ANAF, real time feedback for
the user, and processing times that remain constant even
under heavy loads.
 From an architectural perspective, the paper
demonstrates that a combination of an internal queue
layer, a strict idempotence mechanism, and explicit rate
limits is sufficient to simultaneously satisfy legal and
performance constraints. In addition, designing all critical
operations as idempotent actions greatly simplifies the
handling of network errors and allows the retry logic to
remain transparent from the user's perspective.
 Compared to a simple, sequential variant, the results
are obvious: almost four times more throughput, times
almost halved, and a success rate of around 99.5%. In the
basic variant, without retries and without a concurrent
queue, losses occur due to transient errors and delays
accumulated. In the proposed variant, these situations are
absorbed by correctly calibrated retry policies, and
manual intervention is only necessary when the data is
incorrect.
 Beyond e-Invoicing, the same base can also support
integration with e-Transport, using the same
authentication and monitoring mechanisms. A reporting
module would bring visibility to operations: how many
invoices have been validated, how long the medians
(P50/P95) are for each customer, where recurring errors
occur, and what the actual cost per 1000 invoices is. In
the medium term, alignment with the European ViDA
(VAT in the Digital Age) initiatives is also worth
pursuing [2]. For implementations that already comply

with EN 16931, adaptation will only mean format and
rule updates.
 From a user experience perspective, the current
evaluation has focused on technical indicators and has not
yet quantified the impact of real-time notifications on
daily activities. A natural direction for applied research is
to instrument the interface and conduct controlled studies
measuring user satisfaction, perceived response speed,
and error reduction when using live status updates
compared to periodic manual refreshes. Such
measurements would complement the latency and
processing capacity results presented in Section III and
provide empirical evidence on how the design of
notifications influences operators' workload and the risk
of omitting or delaying invoice processing.
 In conclusion, the solution is ready for production in
typical scenarios. It offers good times, a high success rate,
and predictable user experience. The next steps are
scaling and operation: more automation in the face of
outages, more advanced observability tools, and some
security optimizations around authentication.

REFERENCES
[1] CEN, “EN 16931-1:2017 — Electronic invoicing —
Semantic data model of the core elements of an electronic
invoice,” 2017. [Online]. Available:
https://standards.cencenelec.eu (Accessed: Oct. 13, 2025).
[2] European Commission, “Navigating the eInvoicing standard
— documentation,” n.d. [Online]. Available:
https://ec.europa.eu/digital-building-blocks (Accessed: Oct. 13,
2025).
[3] European Commission, “eInvoicing Country Sheet —
Romania,” Aug. 14, 2025. [Online]. Available:
https://ec.europa.eu/digital-building-blocks (Accessed: Oct. 13,
2025).
[4] Government of Romania, “Emergency Ordinance No.
69/2024 on amendments concerning the RO e-Factura system,”
2024. [Online]. Available: https://legislatie.just.ro (Accessed:
Oct. 13, 2025).
[5] Internet Engineering Task Force (IETF), “RFC 6749: The
OAuth 2.0 Authorization Framework,” Oct. 2012. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6749
(Accessed: Oct. 13, 2025).
[6] Internet Engineering Task Force (IETF), “RFC 7636: Proof
Key for Code Exchange (PKCE) by OAuth Public Clients,”
Sept. 2015. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7636 (Accessed: Oct. 13,
2025).
[7] Microsoft, “Azure Storage — Specify conditional headers
for Blob service operations (ETag/If-Match/If-None-Match),”
2025. [Online]. Available:
https://learn.microsoft.com/azure/storage (Accessed: Oct. 13,
2025).
[8] OASIS, “Universal Business Language Version 2.1 (UBL
2.1),” Nov. 2013. [Online]. Available: https://docs.oasis-
open.org/ubl/UBL-2.1.html (Accessed: Oct. 13, 2025).
[9] Parliament of Romania, “Law No. 296/2023 on certain
fiscal-budgetary measures to ensure Romania’s long-term
financial sustainability,” Official Gazette No. 977, Oct. 27,
2023. [Online]. Available: https://static.anaf.ro (Accessed: Oct.
13, 2025).
[10] Romanian Ministry of Finance, “Order No. 1366/2021
approving the national RO_CIUS specification (Romania’s Core
Invoice Usage Specification),” 2021. [Online]. Available:
https://static.anaf.ro (Accessed: Oct. 13, 2025).
[11] ISO/IEC, “ISO/IEC 19845:2015 — Information technology
— Universal Business Language (UBL),” 2015. [Online].
Available: https://www.iso.org/standard/66370.html (Accessed:
Oct. 13, 2025).

