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Advances in Plastic Anisotropy
and Forming Limits in Sheet
Metal Forming
In the last decades, numerical simulation has gradually extended its applicability in the
field of sheet metal forming. Constitutive modeling and formability are two domains
closely related to the development of numerical simulation tools. This paper is focused,
on the one hand, on the presentation of new phenomenological yield criteria developed
in the last decade, which are able to describe the anisotropic response of sheet metals,
and, on the other hand, on new models and experiments to predict/determine the forming
limit curves. [DOI: 10.1115/1.4033879]

Anisotropic Yield Criteria

The accuracy of the simulation results is given mainly by the
accuracy of the material model. In the last years, scientific
research has been oriented toward the development of new
material models that are able to describe the material behavior
(mainly the anisotropic one) as accurately as possible [1–11]. The
computer simulation of the sheet metal forming processes needs a
quantitative description of the plastic anisotropy by the yield
locus.

For the case of an isotropic metallic material, the well-known
von Mises yield criterion is often sufficient to describe yielding.
This is, however, not true for anisotropic materials, especially
aluminum sheet metals. In order to take into account anisotropy,
the classical yield criterion proposed by von Mises should be
modified by introducing additional parameters. A simple approxi-
mation for the case of normal anisotropy is given by the quadratic
criterion of Hill [12]
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where r is the normal anisotropy coefficient and ru is the uniaxial
in-plane yield stress.

Woodthrope and Pearce [13] have found that the yield stress in
balanced biaxial tension, rb, for aluminum alloy sheets having a
r-value lying between 0.5 and 0.6 is significantly higher than the
uniaxial yield stress in the plane of the sheet. However, Hill’s
quadratic criterion [12] cannot describe this behavior, i.e., materi-
als with r< 1 and rb> ru. To capture this so-called “anomalous”
behavior, nonquadratic yield formulations were considered [13].

Later on, several scientists have proposed more and more
sophisticated yield functions for anisotropic materials. Hill [14]
himself improved his criterion and proposed a nonquadratic form.
Although the anomalous behavior is captured with this function,
the predicted yield surfaces are sometimes different from those
either determined experimentally or predicted with polycrystalline
models. Hill [15] included the shear stress component in the
expression of anisotropic yield function. Hill [16] stated that none
of the previous criteria is able to represent the behavior of a mate-
rial exhibiting a tensile yield stress almost equal in value in the
rolling and transverse direction, while r-values vary strongly with
the angle to the rolling direction. Another important research
direction in the field was initiated by Hershey [17], who intro-
duced a nonquadratic yield function for isotropic materials, based

on the results of polycrystalline calculations. This criterion was
later generalized to anisotropic materials by Hosford [18]. This
criterion is a particular expression of Hill’s 1979 yield criterion.
Its main advantage is that it leads to a good approximation of
yield loci computed using the polycrystalline Bishop–Hill model
by setting a¼ 6 for BCC materials and a¼ 8 for FCC materials
[19]. An important drawback of this as well as of Hill’s nonqua-
dratic yield criteria is that they do not involve shear stresses.
Barlat and Lian [20] successfully extended Hosford’s 1979 crite-
rion to capture the influence of the shear stress and proposed the
following yield function:

f ¼ ajk1 þ k2jM þ ajk1 � k2jM þ ð2� aÞj2k2jM ¼ 2rM
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while a, h, p, and M are material parameters.
Different other nonquadratic formulations were developed:

Gotoh [21] introduced a fourth-degree polynomial yield function;
Budiansky [22] prescribed a parametric expression in polar coor-
dinates of the yield function (extended by Tourki et al. [23]). Bar-
lat et al. [24] developed a six-component yield function, by using
a linear transformation of the stress state (extended successively
by Barlat et al. [25], denoted as Yld94 and by Barlat et al. [26],
denoted as Yld96). Karafillis and Boyce [27] proposed a general
yield criterion using a “weighted” linear transformation (extended
by Bron and Besson [28]).

During the last years, new yield functions were introduced in
order to improve the fitting of the experimental results, especially
for aluminum and magnesium alloys. In order to remove the dis-
advantages of the Yld94 and Yld97 yield criteria, while still pre-
serving their flexibility, Barlat in 2003 proposed [29] a new model
particularized for plane stress (2D) (Yld 2000). The expressions
of the two isotropic yield functions considered in Ref. [29] are

/0ðsÞ ¼ js1 � s2jm; /00ðsÞ ¼ j2s2 þ s1jm þ j2s1 þ s2jm (4)

leading to the resulting anisotropic yield function

/ ¼ /0ðX0Þ þ /00ðX00Þ ¼ 2�rm (5)

where m is the Hosford‘s exponent, s is the deviatoric stress ten-
sor, and X is the linearly transformed stress tensor.
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Using the following linear transformation on stresses

X0 ¼ C0s ¼ C0Tr ¼ L0r
X00 ¼ C00s ¼ C00Tr ¼ L00r

(6)

where C0 and C00 (or L0 and L00) represent the linear transforma-
tions and T is a matrix relating the deviatoric to the Cauchy
stresses
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A similar expression with double prime defines C00. A plane
stress state can be described by the two principal values of X0 and
X00
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with the appropriate indices (prime and double prime) for each
stress.

The yield function is defined by eight coefficients, determined
using as input the values of the stresses and anisotropy coefficients
in tension along three directions, the balanced biaxial flow stress
and biaxial anisotropy coefficient.

Barlat et al. [30] and Aretz and Barlat [31] proposed a general-
ization of Yld 2000 model for 3D case using 18 mechanical
parameters. The implementation of the Barlat 2004-18p model in
finite-element codes [32] is allowed, proving its capability to pre-
dict the occurrence of six and eight ears in the process of cup
drawing.

To introduce orthotropy in the expression of an isotropic crite-
rion, Cazacu and Barlat [33] proposed an alternative method
based on the theory of the representation of tensor functions. The
method is applied for the extension of Drucker’s isotropic [34]
yield criterion to transverse isotropy and cubic symmetries [35].
The experimental researches [36] have shown that for some HCP
alloys (e.g., magnesium- and titanium-based alloys), the yield sur-
face is better described by fourth-order functions. As a conse-
quence, in order to describe such behavior, Cazacu et al. [37]
proposed the model of an isotropic yield function for which the
degree of homogeneity is not fixed.

Vegter [38,39] proposed the representation of the yield function
with the help of Bezier’s interpolation using directly the test
results (pure shear point, uniaxial point, plain strain poin,t and
equi-biaxial point).

The analytical expression of the Vegter yield function is
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is a trigonometric expansion associated to the reference point

RðuÞ ¼
Xmcos

j¼0

bjcosð2juÞ (11)

is the cosine interpolation of the function R(u); u is the angle
between the principal directions and the orthotropic axes; k is a
parameter of the B�ezier function; r is a superscript denoting the
reference point; h is a superscript denoting the breaking point;
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are parameters of the trigonometric interpolation to be

determined at the reference points; and bj are parameters of the
trigonometric interpolation of the R-function.

Hill [40] proposed in 1950 a general formulation of a plane-
stress anisotropic yield criterion having the polynomial expres-
sion. Gotoh [21] succeeded to apply that idea in the 1970 s by
developing a polynomial yield function of fourth degree. During
the last years, a new family of polynomial yield criteria has been
created on the basis of Hill’s idea by Comsa and Banabic [41].
Soare et al. [42] proposed three yield criteria expressed by polyno-
mial functions of fourth, sixth, and eighth orders, respectively
(poly 4, poly 6, and poly 8).

Yld 2000 [29], Vegter et al. [38], and BBC 2005 [43] models
have been implemented in the last decade in the main FE com-
mercial softwares (see Table 1).

Table 2 presents the main yield criteria developed for descrip-
tion of the anisotropic plastic behavior. The mechanical parame-
ters used for the identification of the models are also presented.
The following notations have been used in the table: 3D, criterion
can be extended to spatial stress states; A1 and A2, criterion can
describe the first- and second-order anomalous behavior (see more
details in Ref. [6]).

The CERTETA team has developed several anisotropic yield
criteria. A description of these developments is presented in the
next section.

Advanced Yield Criteria Developed in the

CERTETA Research Center

CERTETA is a Romanian research center that supports metal
forming companies in developing advanced and efficient technolo-
gies (see more details in the CERTETA webpage1). In 2000, the
members of CERTETA started a research program having as princi-
pal objective the development of a model that is able to provide an
accurate description of the yield surfaces predicted by texture com-
putations. The new formulation [44,45] was developed on the basis
of the formulation proposed by Barlat in 1989 [20]. By adding
weight coefficients to that model, the researchers succeeded to de-
velop a flexible yield criterion. The version published in 2005 [43]
incorporates a number of eight coefficients and, consequently, its
identification procedure uses eight mechanical parameters (three
uniaxial yield stresses, three uniaxial coefficients of anisotropy, a
biaxial yield stress, and a biaxial coefficient of plastic anisotropy).
(An improvement of this criterion has been implemented in the
finite-element commercial code AUTOFORM version 4.1 [46]. The
equivalent stress is defined by the following formula:

Table 1 The main FE commercial software and the anisotropic yield criteria implemented in them

Hill 1948 Hill 1990 Barlat 1989 Barlat 2003 Vegter 1995 BBC 2005

ABAQUS

AUTOFORM

LS-DYNA

MARC

PAM STAMP

1http://certeta.utcluj.ro/
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here k 2 =�1 and a, b> 0 are material parameters, while C, K,
and W are functions depending on the planar components of the
stress tensor

C ¼ Lr11 þMr22

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNr11 � Pr22Þ2 þ r12r21

q
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQr11 � Rr22Þ2 þ r12r21

q (13)

Nine material parameters are involved in the expression of the
BBC equivalent stress: k, a, b, L, M, N, P, Q, and R (see Eqs. (12)
and (13)). The integer exponent k has a special status, due to the
fact that its value is fixed from the very beginning in accordance
with the crystallographic structure of the material: k¼ 3 for BCC
materials; k¼ 4 for FCC materials. The identification procedure
calculates the other parameters (a, b, L, M, N, P, Q, and R) by
forcing the constitutive equations associated to the BBC yield cri-
terion to reproduce the following experimental data: the uniaxial
yield stresses associated to the directions defined by 0 deg, 45 deg,
and 90 deg angles measured from rolling direction (RD) (denoted
as Y0, Y45, and Y90); the coefficients of uniaxial plastic anisotropy
associated to the directions defined by 0 deg, 45 deg, and 90 deg
angles measured from RD (denoted as r0, r45, and r90); the biaxial
yield stress associated to RD and transversal direction (TD)
(denoted as Yb); and the coefficient of biaxial plastic anisotropy
associated to RD and TD (denoted as rb) (see more details in
Ref. [6]).

The BBC 2005 model can be reduced to Hill 1948 or Barlat
1989 yield criteria, if they choose appropriate values of the mate-
rial parameters (see more details in Ref. [6]).

The yield criterion proposed by Barlat and Lian in 1989 can be
obtained by enforcing the following constraints on the material
parameters:

Y ¼ Y0; k ¼ 3 or 4; L ¼ N ¼ Q; M ¼ P ¼ R (14)

The identification procedure needs only r0, r45, and r90 as input
data.

Another situation of practical interest is the so-called normal
anisotropy (r0¼ r45¼ r90¼ r, Y0¼ Y45¼ Y90¼ Y). In this case,
BBC 2005 also reduces to the Hill 1948 or Barlat 1989 yield crite-
ria (depending on the value of the exponent k)

k ¼ 1 Hill 1948ð Þ; k ¼ 3 or 4 Barlat 1989ð Þ;

a ¼ 1

1þ r
; b ¼ r

1þ r
; L ¼ N ¼ Q ¼ M ¼ P ¼ R ¼ 1

2

(15)

Figure 1 shows a comparison of the yield loci predicted
by different formulations of BBC2005 for AA6016-T4 aluminum
alloy. The mechanical parameters of the tested alloy are
the following: r0¼ 139 MPa, r45¼ 137 MPa, r90¼ 136 MPa,
rb¼ 140.76 MPa, r0¼ 0.724, r45¼ 0.547, r90¼ 0.602, rb¼ 1.05.
Three experimental points are also plotted on the same diagram.
Due to the fact that both BBC2005 with seven and eight coeffi-
cients used in identification procedure of the experimental value
of r exp

b , the predictions of these formulations are more accurate.
The presented results show the ability of the BBC2005 yield crite-
rion to provide an accurate description of the anisotropic behavior
for AA6016-T4 aluminum alloy.

Table 2 The main yield criteria and experimental data to be evaluated for their material parameters’ identification [6]

Author, year r0 r30 r45 r75 r90 rb r0 r30 r45 r75 r90 rb 3D A1 A2

Hill’s family
Hill, 1948 X X X X X
Hill, 1979 X X X X X
Hill, 1990 X X X X X X
Hill, 1993 X X X X X X X
Lin and Ding, 1996 X X X X X X X X
Hu, 2005 X X X X X X X X X X
Leacock, 2006 X X X X X X X X X

Hershey’s family
Hosford, 1979 X X X X X
Barlat, 1989 X X X X
Barlat, 1991 X X X X X X
Karafillis and Boyce, 1993 X X X X X X X X X
Barlat, 1997 X X X X X X X X X X
Banabic, 2000 X X X X X X X X X X
Barlat, 2000 X X X X X X X X X
Bron and Besson, 2003 X X X X X X X X X X X
Barlat, 2004 X X X X X X X X X X X X X X X
Banabic, 2005 X X X X X X X X X X X
Banabic, 2008 X X X X X X X X X X X X X X X
Aretz and Barlat, 2012 X X X X X X X X X X X X X X X

Drucker’s family
Cazacu-Barlat, 2001 X X X X X X X X X X X X X X
Cazacu-Barlat, 2003 X X X X X X X X X X X X X X
Cazacu-Pluncket, 2006 X X X X X X X X X X X X X X

Polynomial criteria
Gotoh, 1977 X X X X X X X X X X X X X X X
Comsa and Banabic, 2007 X X X X X X X X X X X
Soare, 2007 (Poly 4, 6, 8) X X X X X X X X X X X X X X X

Other criteria
Ferron, 1994 X X X X X X X
Vegter, 1995 X X X X X X X X X X X X X
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Figure 2 shows the distribution of the thickness strain versus
the distance measured from the bulge axis (material coordinate
before deformation). From this diagram, one may notice that the
results provided by the BBC 2005-7 and BBC 2005-8 show the
best agreement with the experimental data. The predictions of the
yield criteria are very sensible to the number of input data. The
results of the finite-element simulation are in the best agreement
with the experimental data, when the whole set of eight input pa-
rameters is used [47].

In order to enhance the flexibility of the BBC2005 yield crite-
rion, a new version (BBC2008) of this model has been developed
[48]. The model is expressed as a finite series that can be
expanded to retain more or fewer terms, depending on the amount
of experimental data. Different identification strategies (using 8,
16, 24, etc., input values) could be used in order to determine the
coefficients of the yield function.

The BBC2008 equivalent stress is defined as follows:

�r2k

w� 1
¼
Xs

i¼1

�
wi�1 L ið Þ þM ið Þ

� �2k
þ L ið Þ �M ið Þ½ �2k

n o

þ ws�i M ið Þ þ N ið Þ
� �2k

þ M ið Þ � N ið Þ
� �2k

n o�

k; s 2 N� w ¼ 3=2ð Þ1=s > 1

L ið Þ ¼ ‘ ið Þ
1 r11 þ ‘ ið Þ

2 r22

M ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m ið Þ

1 r11 � m ið Þ
2 r22

h i2

þ m ið Þ
3 r12 þ r21ð Þ

h i2
r

N ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ið Þ

1 r11 � n ið Þ
2 r22

h i2

þ n ið Þ
3 r12 þ r21ð Þ

h i2
r

‘ ið Þ
1 ; ‘

ið Þ
2 ;m

ið Þ
1 ;m

ið Þ
2 ;m

ið Þ
3 ; n

ið Þ
1 ; n

ið Þ
2 ; n

ið Þ
3 2 R (16)

The quantities denoted as k; ‘
ðiÞ
1 ; ‘

ðiÞ
2 ;m

ðiÞ
1 ;m

ðiÞ
2 ;m

ðiÞ
3 ; n

ðiÞ
1 ; n

ðiÞ
2 ; n

ðiÞ
3

ði ¼ 1;…; sÞ are material parameters. One may prove that k 2 N�

is a sufficient condition for the convexity of the yield surface
defined by Eq. (14). The identification procedure to identify the
coefficients is described in details in Refs. [6,48].

It is easily noticeable that Eq. (16) reduce to the isotropic
formulation proposed by Barlat and Richmond [49], if

‘
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1 ¼ n
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¼ n
ðiÞ
3 ¼ 1=2; i ¼ 1;…; s (17)

Under these circumstances, the exponent k may be chosen as in
Barlat and Richmond’s model, i.e., according to the crystallo-
graphic structure of the sheet metal: k ¼ 3 for BCC materials
ð2k ¼ 6Þ and k ¼ 4 for FCC materials ð2k ¼ 8Þ.

Due to the expandable structure of the yield criterion, many
identification strategies can be devised. In the papers [6] and [48],
a procedure that uses only normalized yield stresses and
r-coefficients obtained from uniaxial and biaxial tensile tests is
presented. An identification procedure that strictly enforces a
large number of experimental constraints on the yield criterion
would be inefficient in practical applications. The failure probabil-
ity of such a strategy increases when the external restrictions
become stronger. Taking into account this aspect, the authors
have developed an identification procedure based on the minimi-
zation of the error function [48].

Two versions of the BBC2008 yield criterion have been
evaluated from the point of view of their performance [48].
They include 8 and 16 material coefficients, respectively, and

Fig. 2 Comparison between FE simulation and experiment for
thickness-strain distribution

Fig. 1 Yield loci predicted by using different versions of the
BBC2005 model for AA6016-T4 aluminum alloy

Fig. 3 Normalized yield surface predicted by BBC2008 model
for AA2090-T3 aluminum alloy

090801-4 / Vol. 138, SEPTEMBER 2016 Transactions of the ASME

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/ on 07/19/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



correspond to the smallest values of the summation limit ðs ¼ 1
and s ¼ 2Þ: The identification of the BBC2008 (16 parameters)
model has been performed using the following mechanical param-

eters: y
ðexpÞ
0 deg , y

ðexpÞ
15 deg, y

ðexpÞ
30 deg, y

ðexpÞ
45 deg, y

ðexpÞ
60 deg, y
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75 deg, y
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ðexpÞ
b ,

r
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0 deg , r
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90 deg, and r

ðexpÞ
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case of BBC2008 (eight parameters), the input data have been re-

stricted to the values y
ðexpÞ
0 deg , y

ðexpÞ
45 deg, y

ðexpÞ
90 deg, y

ðexpÞ
b , r

ðexpÞ
0 deg , r

ðexpÞ
45 deg,

r
ðexpÞ
90 deg, and r

ðexpÞ
b .

The predictions of the BBC2008 model with 16 parameters
are superior to those given by the eight-parameter version (see
Figs. 3–5).

The improvement is noticeable especially in the case of the
r-coefficients. This capability of the 16-parameter version is rele-
vant for the accurate prediction of thickness when simulating
sheet metal forming processes. For the materials exhibiting a dis-
tribution of the anisotropy characteristics that would lead to the
occurrence of eight ears in a cylindrical deep-drawing process
[50], the planar distribution of the r-coefficient predicted by the
BBC2008 yield criterion with eight parameters is very inaccurate
(see Ref. [48]). This model would not be able to predict the occur-
rence of more than four ears at the top edge of a cup deep-drawn
from a circular blank. In contrast, the variation of the r-coefficient
described by BBC2008 with 16 parameters closely follows the

reference data. In conclusion, this model would predict the occur-
rence of six or eight ears as reported by Yoon et al. [32]. As com-
pared with other formulations described in the literature, the new
model does not use linear transformations of the stress tensor. Due
to this fact, its computational efficiency should be superior in the
simulation of sheet metal forming processes.

Figure 6(a) displays the simulated final geometry of deep drawn
cup (for 16 parameters model) and the corresponding equivalent
plastic strain distribution, whereas in Fig. 6(b), a comparison
between predicted and experimental ears is given [50]. Also, for
the sake of comparison, the ears’ profile calculated with the
Yld2004 model [32] is included.

Predictions of the BBC2008 model are in good agreement with
the prediction of the Yld2004 model and also with the experiment
[32]. As expected, the eight-parameter version was unable to
predict six ears, which were experimentally observed. On the con-
trary, the 16-parameter version predicts six ears and their location,
and at least qualitatively, the results are in good agreement with
the experiment.

An extension of the BBC 2008 yield criterion has been pro-
posed [51], which provides adaptive updates of the local anisot-
ropy in the integration points of the macroscopic FE model. The
BBC 2008 model is systematically recalibrated to the data pro-
vided by the crystal plasticity virtual experiment framework
(VEF), using the advanced LAMEL model crystal plasticity

Fig. 5 Planar distribution of the r-coefficient predicted by
BBC2008 model for AA2090-T3 aluminum alloy

Fig. 6 Earing prediction for aluminum AA2090-T3: (a) simulation and (b) ears profile

Fig. 4 Planar distribution of the uniaxial yield stress predicted
by BBC2008 model for AA2090-T3 aluminum alloy
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model developed at the Catholic University Leuven [52]. An
enhanced identification algorithm has been proposed. The new
algorithm exploits comprehensive material characterization deliv-
ered by the VEF. A new hierarchical multiscale (HMS) frame-
work that allows taking into account evolution of the plastic
anisotropy during sheet forming processes has also been proposed
(see Fig. 7). The earing number and height profile was measured
experimentally for drawn cups for an AA6016 T4 aluminum alloy
and compared to simulations with the continuously calibrated
HMS-BBC2008 model (Fig. 8). The textures A, B, C, and D
denote texture at 0%, 25%, 50% depths in thickness of sheet, and
the average of the three, respectively. “Mechanical testing” denote
the predicted cup profile using BBC2008 yield criterion identified
using the results of the mechanical testing.

As it can be seen in Fig. 8, the HMS-BBC2008 simulations
started from different textures tend toward decreasing ear height.
With the only exception for the simulation initialized with the
midthickness texture, the calculated cup profiles nearly coincide.
Moreover, in terms of the ear height the predictions started from
textures A, B, and D are accurate. This indicates that the selection
of the initial texture is important but not necessarily predetermines
the deformation process and can be spontaneously corrected by
the local deformation-informed crystal plasticity code.

Theoretical and Experimental Determination of the

Forming Limit Curves

Several theoretical models and a new experimental method to
determine the limit strains have been developed in the CERTETA
research center (presented below).

It is well known that the position and shape of the forming limit
diagram (FLD) is influenced by the shape of the yield surface
adopted in the computational model [53,54]. A sensitivity analysis
regarding laws upon the limit strains is needed in the preprocess-
ing stage. Such an analysis is also useful for the sheet metal pro-
ducers, when trying to obtain materials having desired formability
characteristics. Aiming to meet these requirements, a software
package named FORM-CERT able to calculate FLDs [55] has been
developed in the CERTETA center. The program is based on the
Marciniak–Kuczynski (M–K) model of the necking process. A
useful facility offered by the program is the possibility to perform
the sensitivity analysis both for the yield surface and the forming
limit curves. The numerical results can be compared with experi-
mental data, using the import/export facilities included in the pro-
gram. The program may be incorporated in finite-element codes.

Recently, the CERTETA team used the Gurson’s model with
some recent extensions to model the porous material, following
both the evolution of a homogeneous sheet and the evolution of
the distribution of voids [56]. At each moment, the material is
tested for a potential change of plastic mechanism, by comparing
the stresses in the uniform region to those in a virtual band with a
larger porosity. The main difference with the coalescence of voids
in a bulk solid is that the plastic mechanism for a sheet admits a
supplementary degree-of-freedom, namely, the change in the
thickness of the virtual band. For strain ratios close to the plane-
strain case, the limit analysis (LA) model predicts almost instanta-
neous necking, but in the next step, the virtual band hardens
enough to deactivate the localization condition. In this case, a sup-
plementary condition for incipient necking has been applied, simi-
lar to the one used in Hill’s model for the second quadrant. It has
been showed that this condition is precisely the one for incipient
bifurcation inside the virtual (and weaker) band. Figure 9 com-
pares again the results of the new LA necking model and M–K

Fig. 7 HMS computational plasticity framework

Fig. 8 Comparison of experimental and predicted cup profiles
using BBC 2008 model identified by mechanical testing and
using the evolving anisotropy HMS-BBC 2008 (Reprinted from
Gawad et al., 2015 [51] with permission from Elsevier)

Fig. 9 Numerical FLD predictions for Gologanu model: LA
necking model versus M–K model (Reprinted from Gologanu et
al., 1913 [57] with permission from AIP)
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models. The following notations have been used: f-porosity in the
LA model; fa and fb are the porosities in zones “a” and “b” in the
MK model.

The Gurson–Tvergaard–Needleman (GTN) damage model has
been used to determine the forming limit curve (FLC) of
AA6016-T4 aluminum alloy [57] (see the mechanical parameters
in page 4). Figure 10 indicates that the results obtained by numeri-
cal simulation using the GTN damage model are in good agree-
ment with the experimental data. The comparison becomes even
more favorable when confronted with the predictions of the
Marciniak–Kuczynski (M–K) model and the modified maximum
force criterion (MMFC) [58]—see Fig. 10. The Hill’48 yield crite-
rion has been used in the FLC predictions. One may notice from
the diagram that the quality of the GTN predictions is far better,
especially along the right branch of the forming limit curve, where
both M–K and MMFC models overestimate the formability of the
metallic sheet. Fixing this deficiency can be achieved by imple-
menting in the MK and MMFC plasticity models of nonquadratic
criteria.

The CERTETA team developed a new procedure for the experi-
mental determination of the FLCs [59]. The methodology is based
on the hydraulic bulging of a double specimen (Fig. 11). The
upper blank has a pair of holes pierced in symmetric positions
with respect to the center, while the lower blank acts both as a
carrier and a deformable punch. By modifying the dimensions and

reciprocal position of the holes, it is possible to investigate the
entire deformation range of the FLC. The most important advan-
tages of the method proposed by the authors are the following:
capability of investigating the whole strain range specific to the
sheet metal forming processes; simplicity of the equipment; sim-
plicity of the specimen configuration; reduction of the parasitic
effects induced by the frictional interactions between the speci-
men and the other elements of the experimental device; and occur-
rence of the necking and fracture in the polar region of the
specimen. The comparison between the FLCs determined using
the new procedure and the Nakazima test shows minor differen-
ces. Figure 12 compares the FLCs obtained using the methodol-
ogy proposed by the authors and the Nakazima test (according to
the specifications of the international standard ISO 12004-2).
In both cases, the limit strains have been measured using the
ARAMIS (commercial system based on digital image correlation
developed by GOM company from Germany) system.

Conclusion

The accuracy of the simulation results is given mainly by the
accuracy of the material models. As it has been shown in the pre-
vious chapters, advanced yield criteria allow accurate prediction
of the anisotropic behavior of materials. On the one hand, it is
possible to simultaneously describe both the uniaxial yield stress
variation and the anisotropic coefficient in the sheet. On the other
hand, it is also possible to model both “first and second order ani-
sotropic behavior anomalies.” Furthermore, the yield criteria have
also been extended to 3D.

The new yield criteria developed in the last years in the CER-
TETA research center show a very good prediction of the plastic
anisotropy of sheet metals, especially for aluminum alloys. Com-
parison with data shows that the new criteria presented can suc-
cessfully describe anisotropic behavior in both aluminum and
steel sheets. In general, these models lead to yield surface shapes
consistent with those predicted using polycrystal models. The
biaxial yield stress and the biaxial anisotropy coefficient of the
sheet metal are the parameters used in the identification procedure
in the above-mentioned criteria. As shown by the results presented
in this paper, the BBC2005 and BBC2008 yield criteria offer
more accurate predictions than the classical yield criteria. The
new models for FLC developed by the CERTETA team show a
very good prediction of the experiments. The experimental proce-
dure proposed to determine the limit strains demonstrates several
advantages compared with the classical procedures.

In the future, the research in this field of study will be oriented
toward developing new models that include special properties

Fig. 12 Forming limit diagram of the AA6016-T4 alloy (Reprinted
from Banabic et al., 2013 [59] with permission from Elsevier)

Fig. 11 Schematic view of the new formability test (Reprinted
from Banabic et al., 2013 [59] with permission from Elsevier)

Fig. 10 Comparison between the FLC obtained by different
methods (Reprinted from Kami et al., 2015 [57] with permission
from Elsevier)
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(superplastic materials, shape memory materials, etc.). By includ-
ing the evolution of the coefficients in yield functions, it will be
possible to predict the yield loci for nonlinear loading [60,61].
Stochastic modeling will be used for a more robust prediction of
the yield loci and forming limit curves (taking into account the
variability of the mechanical parameters). Coupling of the phe-
nomenological models with the ones based on crystal plasticity
will allow better simulation of the parameters’ evolution in tech-
nological processes (temperature, strain rate, strain path, and
structural evolution).
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