
Structure of Computer Systems246

where pb denotes the probability that a given instruction is a branch, tb represents the
average number of cycles per branch instruction, and tn represents the average num-
ber of cycles per nonbranch instruction.

The average number of cycles per branch instruction can be determined by
considering two cases. If the target path is chosen, 1 + c cycles are needed for the
execution; otherwise, there is no branch penalty and only one cycle is needed.

Thus,

tb = pt (1 + c) + (1 – pt) (1) (5.9)

where pt denotes the probability that the t target path is chosen. The average number
of cycles per nonbranch instruction is 1. After the pipeline becomes filled with in-
structions, a nonbranch instruction completes every cycle. Thus,

tavg = pb [pt (1 + c) + (1 – pt) (1)] + (1 – pb) ∗ (1) = 1 + pb pt c (5.10)

After analyzing many practical cases, J. K. Lee and A. J. Smith have shown
the average pb to be approximately 0.1 to 0.3 and the average pt to be approximately
0.6 to 0.7. Assuming that pb = 0.2, pt = 0.65, and c = 3, then:

tavg = 1 + 0.2 ∗ 0.65 ∗ 3 = 1.39 (5.11)

In other words, the pipeline operates at 100/1.39 = 72% of its maximum
speed when branch instructions are considered.

Sometimes, the performance of a pipeline is represented in terms of
throughput. The throughput H of a pipeline can also be expressed as the average
number of instructions executed per clock cycle; thus:

cppt
H

tbavg +
==

1
11 (5.12)

To reduce the effect of branching on processor performance, several tech-
niques have been proposed. Some of the better known techniques are branch predic-
tion, delayed branching, and multiple prefetching. Each of these techniques is ex-
plained next.

5.4.6.2. Branch Prediction

With branch prediction, the result of a branch decision is predicted before
the branch is actually executed. Based on the prediction, the sequential path or the
target path is chosen for execution. Although by choosing the predicted path the
branch penalty is often reduced, the penalty can be increased in case of incorrect pre-
diction.

There are two types of predictions, static and dynamic. In static prediction, a
fixed decision is made before the program runs for prefetching the instructions from
one of the two paths. For example, a simple technique would be to always assume
that the branch is taken. This technique simply loads the program counter with the

Pipelining 247

target address when a branch is encountered. Another technique is to automatically
choose one path (sequential or target) for some branch types and another for the rest
of the branch types. If the chosen path is wrong, the pipeline is drained and the in-
structions corresponding to the correct path are fetched; the penalty is paid.

In dynamic prediction, during the execution of the program the processor makes
a decision based on the information about the previously executed branches. The
simplest method is the 1-bit dynamic prediction, which is implemented, for example,
in the Alpha 21064 RISC processor. The idea behind this method is to assign a con-
trol bit p to a branch instruction when it is first executed. The CPU then will use the
value of p to predict the branch; p = 1 means that the branch will be taken, and p = 0
means that the branch will not be taken. The prediction rule of this method is that the
branch will be executed to the same instruction as it did last time it was executed.
Thus when perform the iterations of a loop controlled by the branch instruction, once
the loop is entered, p predicts that the same path will be followed each time this
branch instruction is encountered. An erroneous prediction eventually results when
the loop is exited, but the prediction will be correct most of the time. The result of
evaluating the branch condition determines the next state of the p bit: p remains un-
changed if this result agrees with the latest prediction made by p, and otherwise p is
changed.

A better approach is to associate an n-bit counter with each branch instruc-
tion. This is known as the counter-based branch prediction approach. In this method,
after executing a branch instruction for the first time, its counter C is set to a thresh-
old T if the target path was taken, or T -1 if the sequential path was taken. From then
on, whenever the branch instruction is about to be executed, if C ≥ T, then the target
path is taken; otherwise, the sequential path is taken. The counter value C is updated
after the branch is resolved. If the correct path is the target path, the counter is in-
cremented by 1; if not, the counter is decremented by 1. If C reaches 2n – 1 (the upper
bound), C is no longer incremented, even if the target path was correctly predicted
and chosen. Likewise, C is never decremented to a value less than 0.

Figure 5.13. Possible states in a 2-bit predictor.

Structure of Computer Systems248

In practice, often n and T are chosen to be 2. Studies have shown that 2-bit
predictors perform almost as well as predictors with more number of bits. Figure 5.13
represents the possible states in a 2-bit predictor.

Another variant of the preceding 2-bit predictor is to change the prediction
only when the predicted path has been wrong for two consecutive times. Figure 5.14
represents the possible states for such a scheme.

Figure 5.14. Possible states in an alternative 2-bit predictor.

It is convenient to store the branching statistics in a table called branch history
table, along with the address of the branch instruction and the branch target address.
For rapid access, most processors place the branch history table in a small size cache
memory called branch target buffer (BTB). Often, each entry of this cache memory keeps
a branch instruction’s address, the branch target address and the prediction statistics
(Figure 5.15).

Figure 5.15. Organization of a branch target buffer.

Pipelining 249

When a branch instruction is first executed, the processor allocates an entry
in the BTB for this instruction. Requests for instruction fetch are sent simultaneously
to the instruction cache memory and the BTB. If a match is found in the BTB, the
predicted branch target address is read from the table. Execution proceeds along the
instruction path defined by the branch target address, with all results considered
speculative until the result of the branch condition test becomes available. When exe-
cution of the branch instruction is completed, its target address is updated in the
BTB. The branch instruction’s prediction statistics are also updated.

Static prediction methods usually require little hardware, but they may in-
crease the complexity of the compiler. In contrast, dynamic prediction methods in-
crease the hardware complexity, but they require less work at compile time. In general,
better results can be obtained using dynamic prediction. Dynamic prediction also pro-
vides a greater degree of object code compatibility, since decisions are made after
compile time.

Figure 5.16. Branch penalties when the target path is predicted: (a) the penalty for a correctly
chosen target path; (b) the penalty for an incorrectly chosen target path.

To find the effect of branch prediction on the performance, we need to re-
evaluate the average number of clock cycles per branch instruction in Equation (5.8).
There are two possible cases: the predicted path is either correct or incorrect. In the
case of a correctly predicted path, the penalty is d when the path is the target path
(Figure 5.16(a)), and the penalty is 0 when the path is the sequential path. In the case
of an incorrectly predicted path for both target and sequential paths, the penalty is c
(Figure 5.12 and Figure 5.16(b)). Note that, in Figure 5.16(a), the address of target
path is obtained after the decode stage. However, when a branch target buffer is used,
the target address can be obtained during or after the fetch stage.

Based on these observations, we have:

tb = pr [pt (1 + d) + (1 – pt) (1)] + (1 – pr)[pt (1 + c) + (1 – pt) (1 + c)]

 = pr (1 + pt d) + (1 – pr) (1 + c) (5.13)

Structure of Computer Systems250

where pr is the probability of a right prediction. Substituting this term in Equation
(5.8), we get:

tavg = pb [pr (1 + pt d) + (1 – pr) (1 + c)] + (1 – pb) (1)

 = 1 + pb c – pb pr c + pb pr pt d (5.14)

Assume that pb = 0.2, pt = 0.65, pr = 0.70, c = 3, and d = 1. Then:

tavg = 1.27 (5.15)

That is, the pipeline operates at 100/1.27 = 78% of its maximum rate due to the
branch prediction.

5.4.6.3. Delayed Branching

The delayed branching eliminates or significantly reduces the effect of the
branch penalty. In this type of design, a certain number of instructions after the
branch instruction is fetched and executed regardless of which path will be chosen for
the branch. For example, a processor with a branch delay of k executes a path con-
taining the next k sequential instructions, and then either continues on the same path
or starts a new path from a new target address. As often as possible, the compiler tries
to place after the branch k instructions that are independent from the branch instruc-
tion. If there are not sufficient instructions of this type, NOP instructions are in-
serted. As an example, consider the following code:

i1: LOAD R1, A
i2: LOAD R2, B
i3: BRZ R2, i7 ; branch to i7 if R2 = 0
i4: LOAD R3, C
i5: ADD R4, R2, R3 ; R4 = R2 + R3
i6: MUL R5, R1, R2 ; R5 = R1 * R2
i7: ADD R4, R1, R2 ; R4 = R1 + R2

Assuming that k = 2, the compiler modifies this code by moving the instruc-
tion i1 and inserting an NOP instruction after the branch instruction i3. The modified
code is:

i2: LOAD R2, B
i3: BRZ R2, i7
i1: LOAD R1, A

NOP
i4: LOAD R3, C
i5: ADD R4, R2, R3
i6: MUL R5, R1, R2
i7: ADD R4, R1, R2

As can be seen in the modified code, the instruction i1 is executed regardless
of the branch result.

	5.4.6.2. Branch Prediction
	5.4.6.3. Delayed Branching

