
Memory Systems 195

direct-mapping cache memory. Another reason is that the difference between the miss
ratios of direct-mapping and set-associative cache memories diminishes as the size of
the cache memories increases. Therefore, set-associative mapping is preferred for
small cache memories, while direct-mapping is preferred for large cache memories.

4.7.8. Cache Memory Coherence

In shared-bus microprocessor systems, cache memories have an important
role in reducing the traffic on the shared system bus. Each processor has its own
cache memory with one or two levels, which forms a local memory and allows the
processor to access instructions and data without using the system bus. With an inde-
pendent cache memory for each processor, there is a possibility for two or more
cache memories to contain different versions of the same information in the same
time. This represents the cache-memory coherence problem.

This problem cannot be solved entirely by using the write-through policy. As
discussed in Section 4.7.3, this policy causes both the cache and main memory to be
updated whenever a memory write operation occurs. Consider, for example, that one
processor updates variable X in both its cache and main memory. If another proces-
sor changes the variable X, the new value of X will be written into main memory, but
the two cache memories will contain different values for X. Subsequent read opera-
tions from these cache memories can lead to inconsistent results. To assure coher-
ence, a mechanism is needed that informs each cache memory about changes of the
shared data stored in other cache memories.

The cache-memory coherence problem can be solved with either hardware or
software methods. One software method is to mark information during program
compilation to indicate that they either can or cannot be stored in cache memory
(cacheable or non-cacheable, respectively). All shared items which can be written are
marked as non-cacheable, meaning that they can be accessed only from main memory.
The coherence can then be assured by a write-through policy that requires a processor
to mark a shared data X in its cache memory as invalid whenever the processor writes
into X. When the processor accesses X again, it is forced to access the main memory
instead of the cache memory, thereby always obtaining the most recent version of X.
This solution can significantly degrade system performance. Invalidation also forces
the removal of the data from the cache memory, which increases the main-memory
traffic.

Hardware methods of maintaining cache-memory coherence offer the ad-
vantages of higher speed and program transparency, but they are more expensive.
One possible solution is for a processor to broadcast its write operations to all cache
memories and the global memory via the shared bus. Every cache-memory controller
in the system then examines its assigned addresses to determine if the requested data
resides presently in its cache memory. If it is, the corresponding cache memory block
is either updated or marked as modified. The disadvantage of this technique is that
every write operation into a cache memory forces all cache memories to check if they
contain the particular data.

Structure of Computer Systems196

A less costly hardware method is called cache-memory snooping. With this
method, each processor is equipped with circuits to continuously monitor the system-
bus activity in order to detect references by other processors to memory addresses
currently in its cache memory. The processor can also signal other processors that it
has a copy of the referenced data and, when necessary, can delay the other processor’s
accesses to main memory. If processor P2 attempts to read the data with an address
that is currently assigned to P1’s cache memory, P1 detects this attempt, called snoop
read hit; similarly, there is a snoop write hit. On detecting a snoop hit, P1 determines
whether real or potential incoherence exists and then performs appropriate operations
to eliminate it. The following situations are typical:

• Suppose that processor P1 detects a snoop read hit when the copy in its
cache memory of the requested word is modified, and P1 has not yet updated
the main memory (this situation can only occur when the write-back policy is
used). Processor P1 signals P2 to suspend its read request while P1 updates
main memory by writing back the block containing the requested word. Then
processor P1 signals P2 to complete its memory read operation.

• If processor P1 detects a snoop write hit, it knows that the copy in its cache
memory of the requested word is about to be modified. Processor P1 there-
fore marks the copy as modified. The next time processor P1 tries to read the
same word, a cache miss occurs that forces P1 to read a valid copy from main
memory.

Another response to a snoop write hit by processor P1 is to capture the new
data on the system bus as processor P2 writes it to global memory. Processor P1 can
then use the captured data to update its cache memory.

To maintain consistency in a multiprocessor system, or in a uniprocessor
system with independent I/O processors, a cache-memory controller must keep track
the state of each cache-memory block under its control. For this purpose, the con-
troller attaches a few state bits to every block stored in the cache data memory, and
processes the states according to some coherence algorithm or protocol. Processors
such as Pentium and PowerPC employ a standard cache-memory coherence protocol
called the MESI coherency protocol. This protocol is based on the following four states:

• M (Modified): The block has been modified by a recent write hit to the cache
memory.

• E (Exclusive): The block has not been modified, so it is the same as the copy
in main memory, and no other processor has a copy of the block.

• S (Shared): The block has not been modified, but other processors may have a
copy of the block.

• I (Invalid): The data in the block is not valid.

Memory Systems 197

Figure 4.48 presents a simplified version of the MESI protocol, showing how
the states of a cache-memory block change in response to various read and write con-
ditions, assuming that a write-back policy and a cache-memory snooping mechanism
are used. A one-level cache memory is assumed, although this protocol also works
well with multiple cache-memory levels.

Figure 4.48. Simplified state-transition graph for a cache-memory block using the MESI
coherence protocol.

First consider the effect of read operations on the state of a cache-memory
block. Read hits to the block do not change its state, as opposed to read misses. When
a processor P1 initially tries to read the cache memory, the cache-memory controller
changes all block states to I (invalid) and forwards the read request to main memory.
Thus I acts as a reset state that triggers a block transfer to the cache memory; the
loaded block’s state is set to E (exclusive) if no other processor has a copy of the
same block. If during P1’s read operation a snooping processor P2 signals via the
shared bus that its cache memory has a copy of the same block which has not been
modified, the state of the block in P1’s cache memory is set to S (shared) instead of E.
If, on the other hand, processor P2 signals that its cache memory has a modified copy
of the same block, the cache memories are no longer coherent. To resolve this inco-
herence, the signal from processor P2 causes processor P1 to postpone its memory
read and to relinquish the system bus. Processor P2 then assumes the role of bus
master and writes its modified block into main memory. Processor P2 also changes
the state of its copy of the cache-memory block from E to S because the block is now
shared. This state change is specified by the transition from E to S marked “snoop

Structure of Computer Systems198

read hit” in Figure 4.48. Finally, the first processor P1 repeats its main-memory read
request and obtains a copy of the block, which it marks as S.

In the case of a write hit to P1’s cache memory, if the target block is in either
of the states S or E, the block’s state changes to M (modified). In the case of state S,
processor P1 signals to other processors that it is performing a write operation to a
shared block, and they respond by marking their copies of the shared block as I (inva-
lid). The modified block remains in the M state in P1’s cache memory during subse-
quent read and write operations.

A write miss to P1’s cache memory triggers a main-memory read operation
that replaces the target block in the cache memory, where it is marked with the M
state. If some other processor P2 has a copy of the same block which has not been
modified (it is in the state S or E), processor P2 changes the state of its copy to I. If
processor P2 has a modified copy of the block, P2 sends a signal to processor P1,
causing the latter to delay its memory read. Processor P2 then takes control of the
system bus and writes its modified block into main memory; processor P2 also
changes the state of its copy, since it knows that the shared block in main memory is
about to be changed by processor P1. Control of the bus is then returned to processor
P1, which completes its block transfer.

4.8. Virtual Memory

4.8.1. Principle of Virtual Memory

Virtual memory allows to use a much larger memory than the actual physical
memory. In a virtual memory system, the main and secondary memories appear to a
user program like a single, large, and directly addressable memory.

Prior to the appearance of virtual memory, if a program’s address space ex-
ceeded the size of the available memory, the programmer was responsible for break-
ing up the program into smaller fragments called overlays. Each overlay than could fit
in main memory. All these overlays were stored in secondary memory, such as on a
disk, and individual overlays were loaded into main memory as they were needed. This
process required knowledge of where the overlays were to be stored on disk, knowl-
edge of input/output operations required for accessing the overlays, and keeping
track of the entire overlay process. This was a very complex process that made the
complexity of programming a computer even more difficult.

The concept of virtual memory was created primarily to relieve the pro-
grammer of this task. Virtual memory allows the user to write programs that exceeds
the bounds of physical memory and still execute properly. It also allows for multipro-
gramming, by which main memory is shared among many users on a dynamic basis.
With multiprogramming, portions of several programs are placed in the main memory
at the same time, and the processor switches its time among these programs. The
processor executes one program for a brief period of time (called a quantum or time-

	4.7.8. Cache Memory Coherence
	4.8. Virtual Memory
	4.8.1. Principle of Virtual Memory

