
Introduction 29

67.1
6.0

1

5
0.5+0.5

1= ==Speedup

The new machine will cost 33.25*
3
11*

3
2 =+ times the original machine.

Since the cost increase is larger than the performance improvement, this change does
not improve cost/performance.

1.4.2. Locality of Reference

While Amdahl’s Law is a theorem that applies to any computer system, the
locality of reference is an important characteristic of programs. According to this
principle, programs tend to reuse data and instructions they have used recently. An
observation based on programs’ behavior is that a program spends 90% of its execu-
tion time in only 10% of the code. An implication of locality of reference is that based
on the program’s recent past, it can be predicted with reasonably accuracy what in-
structions and data the program will use in the near future.

To examine locality of reference, several measurements were made on pro-
grams to determine what percentage of the instructions are responsible for 80% and
for 90% of the instructions executed. For example, less than 4% of the Spice program
instructions (also called the static instructions) represent 80% of the dynamically exe-
cuted instructions, while less than 10% of the static instructions account for 90% of
the executed instructions. In the Spice program, only 30% of the instructions are exe-
cuted one or more times.

Locality of reference also applies to data accesses. There are several types of
locality that have been observed. Spatial locality affirms that items whose addresses are
near one another tend to be referenced close together in time. Temporal locality states
that recently accessed items are likely to be accessed in the near future. These princi-
ples are especially useful for memory design.

1.5. Problems

1.5.1. A frequently used program runs in 10 seconds on computer A, which has a
400-MHz clock. A computer designer is asked to build a computer B that will
run this program in 6 seconds. The designer has determined that a substantial
increase of the clock rate is possible, but this increase will affect the rest of
the CPU, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate is needed for computer B?

1.5.2. Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 4 ns and a CPI of 2.0 for some

Structure of Computer Systems30

program, and computer B has a clock cycle time of 2 ns and a CPI of 1.2 for
the same program. Which computer is faster for this program?

1.5.3. A computer has three instruction classes, shown in Table 1.6.

Table 1.1. Instruction classes and CPIs for Problem 1.5.3.

Instruction class CPI

A 1

B 2

C 3

For a particular high-level language statement, a compiler writer is considering
two code sequences that require the instruction counts shown in Table 1.7.

Table 1.2. Code sequences and instruction counts for Problem 1.5.3.

Instruction counts for instruction class
Code sequence

A B C

S1 2 1 2

S2 4 1 1

Which code sequence is faster? What is the CPI for each sequence?

1.5.4. Consider the computer with three instruction classes and CPI measurements
from Problem 1.5.3. Suppose we examine the code for the same program
from two different compilers and obtain the data presented in Table 1.8.

Table 1.3. Code sequences generated by two compilers and their instruction counts for
Problem 1.5.4.

Instruction counts for instruction class
Code from

A B C

Compiler 1 5,000,000 1,000,000 1,000,000

Compiler 2 10,000,000 1,000,000 1,000,000

Assume that the clock rate is 600 MHz. Which code sequence will execute
faster according to MIPS and according to execution time?

1.5.5. Consider two implementations of a computer, one with and one without spe-
cial floating-point hardware. A program P has the instruction frequencies
shown in Table 1.9.
Computer CFP (Computer with Floating-Point) has floating-point hardware
and can implement the floating-point operations directly. For each instruction
class, this computer requires the number of clock cycles shown in Table 1.10.
Computer CNFP (Computer with No Floating-Point) has no floating-point

Introduction 31

hardware and so must emulate the floating-point operations using integer in-
structions. The number of clock cycles needed to implement each of the
floating-point operations is also shown in Table 1.10.

Table 1.4. Instruction frequencies for Problem 1.5.5.

Instruction Frequency

Floating-point add 15%

Floating-point multiply 10%

Floating-point divide 5%

Integer instructions 70%

Table 1.5. Number of clock cycles needed for the instructions of CFP and CNFP computers
for Problem 1.5.5.

Number of clock cycles
Instruction

CFP CNFP

Floating-point add 4 40

Floating-point multiply 6 60

Floating-point divide 20 100

Integer instructions 2 2

Both computers have a clock rate of 600 MHz. Determine the native MIPS
rating for both computers.

1.5.6. If the computer CFP in Problem 1.5.5 needs 300,000,000 instructions for
program P, how many integer instructions does the computer CNFP require
for the same program?

1.5.7. Assuming that each floating-point operation counts as 1, and that CFP exe-
cutes 300,000,000 instructions, find the MFLOPS rating for both computers
in Problem 1.5.5.

1.5.8. Table 1.11 shows the number of floating-point operations executed in two
different programs and the runtime for those programs on three different
computers A, B, and C.

Table 1.6. Number of floating-point operations and execution times of two programs for
Problem 1.5.8.

Execution time (in seconds)
Program Floating-point

operations A B C

P1 10,000,000 1 10 20

P2 100,000,000 1000 100 20

Which computer is the fastest according to total execution time?

Structure of Computer Systems32

1.5.9. Determine the MFLOPS rating for each program on each computer in Prob-
lem 1.5.8, assuming that each floating-point operation counts as 1.

1.5.10. Compare the performance of the three computers in Problem 1.5.8 using the
geometric mean.

1.5.11. A computer is enhanced by adding a vector mode to it. When a computation
is run in vector mode, it is 20 times faster than the normal mode of execution.
The percentage of time that could be spent using vector mode is called percent-
age of vectorization. What percentage of vectorization is needed to achieve a
speedup of 2?

1.5.12. We are considering two alternatives for implementing conditional branch in-
structions. In computer A, a condition code is set by a compare instruction
and is followed by a branch that tests the condition code. In computer B, a
compare is included in the branch instruction. On both computers, the con-
ditional branch instruction takes 2 clock cycles, and all other instructions take
1 clock cycle. On computer A, 20% of all instructions executed are branch in-
structions. Since every branch needs a compare instruction, another 20% of
the instructions are compares. Because computer A does not have the com-
pare included in the branch, its clock cycle is 25% faster than computer B’s.
Which computer is faster?

1.5.13. Consider a computer with a clock rate of 800 MHz. The measurements in
Table 1.12 have been made using a simulator.

Table 1.7. Instruction frequency and clock cycles per instructions (CPI) for Problem 1.5.13.

Instruction class Frequency CPI

A 40% 2

B 25% 3

C 25% 3

D 10% 5

What is the MIPS rating for this computer?

1.5.14. Consider a computer with special floating-point hardware. A program has the
following mix of operations and number of clock cycles for each instruction
class, presented in Table 1.13.

Table 1.8. Mix of operations and clock cycles per instructions (CPI) for Problem 1.5.14.

Instruction class Frequency CPI

Floating-point multiply 10% 6

Floating-point add 15% 4

Floating-point divide 5% 20

Integer instructions 70% 2

Introduction 33

The clock rate is 800 MHz. Assuming that each floating-point operation
counts as 1, and the computer needs 300,000,000 instructions for this pro-
gram, find the MFLOPS rating for the program.

1.5.15. Suppose we enhance a computer making all floating-point instructions run 5
times faster. If the execution time of some benchmark program before the
floating-point enhancement is 10 seconds, what will the speedup be if 50% of
the execution time is spent executing floating-point instructions?

	1.4.2. Locality of Reference
	1.5. Problems

